1
|
de Oliveira-Neto JT, Souza JDP, Rodrigues D, Machado MR, Alves JV, Barros PR, Bressan AF, Silva JF, Costa TJ, Costa RM, Bonaventura D, de Arruda-Neto E, Tostes RC, Abrão EP. Acute Chikungunya Infection Induces Vascular Dysfunction by Directly Disrupting Redox Signaling in Endothelial Cells. Cells 2024; 13:1770. [PMID: 39513877 PMCID: PMC11544861 DOI: 10.3390/cells13211770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Chikungunya virus (CHIKV) infection is characterized by febrile illness, severe joint pain, myalgia, and cardiovascular complications. Given that CHIKV stimulates reactive oxygen species (ROS) and pro- and anti-inflammatory cytokines, events that disrupt vascular homeostasis, we hypothesized that CHIKV induces arterial dysfunction by directly impacting redox-related mechanisms in vascular cells. Wild-type (WT) and iNOS knockout (iNOS-/-) mice were administered either CHIKV (1.0 × 106 PFU/µL) or Mock vehicle via the intracaudal route. In vivo, CHIKV infection induced vascular dysfunction (assessed by a wire myograph), decreased systolic blood pressure (tail-cuff plethysmography), increased IL-6 and IFN-γ, but not TNF-α levels (determined by ELISA), and increased protein content by Western blot. Marked contractile hyporesponsiveness to phenylephrine was observed 48 h post-infection, which was restored by endothelium removal. L-NAME, 1400W, Tiron, and iNOS gene deletion prevented phenylephrine hyporesponsiveness. CHIKV infection increased vascular nitrite concentration (Griess reaction) and superoxide anion (O2•-) generation (lucigenin chemiluminescence), and decreased hydrogen peroxide (H2O2, by Amplex Red) levels 48 h post-infection, alongside increased TBARS levels. In vitro, CHIKV infected endothelial cells (EA.hy926) and upregulated ICAM-1 and iNOS protein expression (determined by Western blot). These data support the conclusion that CHIKV-induced alterations in vascular ROS/NF-kB/iNOS/NO signaling potentially contribute to cardiovascular events associated with Chikungunya infection.
Collapse
Affiliation(s)
- José Teles de Oliveira-Neto
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Juliano de P. Souza
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Mirele R. Machado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Juliano V. Alves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
- Academic Unit of Health Sciences, Federal University of Jatai, Jataí 75804-068, Brazil
| | - Paula R. Barros
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
- Institute of Biomedical Sciences, University of Sao Paulo, Ribeirão Preto 05508-000, Brazil
| | - Alecsander F. Bressan
- Department of Basic Health Sciences, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 79070-900, Brazil
| | - Josiane F. Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Tiago J. Costa
- Institute of Biomedical Sciences, University of Sao Paulo, Ribeirão Preto 05508-000, Brazil
| | - Rafael M. Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
- Academic Unit of Health Sciences, Federal University of Jatai, Jataí 75804-068, Brazil
| | - Daniella Bonaventura
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Eurico de Arruda-Neto
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Emiliana P. Abrão
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
- Master’s Education Institute President Antonio Carlos (IMEPAC), Araguari 38025-440, Brazil
| |
Collapse
|
2
|
Li D, Liu S, Yu T, Liu Z, Sun S, Bragin D, Shirokov A, Navolokin N, Bragina O, Hu Z, Kurths J, Fedosov I, Blokhina I, Dubrovski A, Khorovodov A, Terskov A, Tzoy M, Semyachkina-Glushkovskaya O, Zhu D. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat Commun 2023; 14:6104. [PMID: 37775549 PMCID: PMC10541888 DOI: 10.1038/s41467-023-41710-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Intraventricular hemorrhage is one of the most fatal forms of brain injury that is a common complication of premature infants. However, the therapy of this type of hemorrhage is limited, and new strategies are needed to reduce hematoma expansion. Here we show that the meningeal lymphatics is a pathway to remove red blood cells from the brain's ventricular system of male human, adult and newborn rodents and is a target for non-invasive transcranial near infrared photobiomodulation. Our results uncover the clinical significance of phototherapy of intraventricular hemorrhage in 4-day old male rat pups that have the brain similar to a preterm human brain. The course of phototherapy in newborn rats provides fast recovery after intraventricular hemorrhage due to photo-improvements of lymphatic drainage and clearing functions. These findings shed light on the mechanisms of phototherapy of intraventricular hemorrhage that can be a clinically relevant technology for treatment of neonatal intracerebral bleedings.
Collapse
Affiliation(s)
- Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- School of Optical Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Shaojun Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Silin Sun
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
- Department of Neurology University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Nikita Navolokin
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
- Saratov State Medical University, B. Kazachya str., 112, Saratov, 410012, Russia
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
| | - Zhengwu Hu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- School of Optical Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Jürgen Kurths
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473, Potsdam, Germany
- Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, building 4, 119435, Moscow, Russia
| | - Ivan Fedosov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Inna Blokhina
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | | | | | - Andrey Terskov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Maria Tzoy
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia.
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Alanazi WA, Alharbi T, El-Nagar DM, Albogami AM, Alswayyed M. Dapagliflozin Mitigates Hypotension in Lipopolysaccharide-Induced Acute Inflammation Independent of Glycemia Level. Pharmaceutics 2023; 15:1683. [PMID: 37376131 DOI: 10.3390/pharmaceutics15061683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been suggested to have anti-inflammatory properties in diabetes. The goal of this study was to evaluate the role of the SGLT2 inhibitor dapagliflozin (DAPA) in the attenuation of lipopolysaccharide (LPS)-induced hypotension. Male Wistar albino rats were divided into normal and diabetic groups and received DAPA (1 mg/kg/day) for two weeks followed by a single dose of 10 mg/kg LPS. Blood pressure was recorded throughout the study and the circulatory levels of cytokines were assessed using a multiplex array, while the aortas were harvested for analysis. DAPA attenuated the vasodilation and hypotension caused by LPS. Mean arterial pressure (MAP) was preserved in the normal and diabetic DAPA-treated septic groups (MAP = 83.17 ± 5.27, 98.43 ± 5.57 mmHg) compared to the vehicle-treated septic groups (MAP = 65.60 ± 3.31, 68.21 ± 5.88 mmHg). Most of the cytokines induced by LPS were decreased in the DAPA-treated septic groups. In the aorta, the inducible nitric oxide synthase-derived nitric oxide had lower expression in the DAPA-treated rats. In contrast, the expression of α-smooth muscle actin, a marker of the vessel's contractile state, was higher in the DAPA-treated rats in comparison with non-treated septic rats. These findings revealed that the protective role of DAPA against LPS-induced hypotension is likely to be glucose-lowering independent, as was observed in the non-diabetic septic group. Taken together, the results show that DAPA has a potential effect in the prevention of the hemodynamic disturbances of sepsis regardless of glycemia levels.
Collapse
Affiliation(s)
- Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Turki Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa M El-Nagar
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Albogami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Gottschalk CG, Whelan R, Peterson D, Roy A. Detection of Elevated Level of Tetrahydrobiopterin in Serum Samples of ME/CFS Patients with Orthostatic Intolerance: A Pilot Study. Int J Mol Sci 2023; 24:ijms24108713. [PMID: 37240059 DOI: 10.3390/ijms24108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a multisystem chronic illness characterized by severe muscle fatigue, pain, dizziness, and brain fog. Many patients with ME/CFS experience orthostatic intolerance (OI), which is characterized by frequent dizziness, light-headedness, and feeling faint while maintaining an upright posture. Despite intense investigation, the molecular mechanism of this debilitating condition is still unknown. OI is often manifested by cardiovascular alterations, such as reduced cerebral blood flow, reduced blood pressure, and diminished heart rate. The bioavailability of tetrahydrobiopterin (BH4), an essential cofactor of endothelial nitric oxide synthase (eNOS) enzyme, is tightly coupled with cardiovascular health and circulation. To explore the role of BH4 in ME/CFS, serum samples of CFS patients (n = 32), CFS patients with OI only (n = 10; CFS + OI), and CFS patients with both OI and small fiber polyneuropathy (n = 12; CFS + OI + SFN) were subjected to BH4 ELISA. Interestingly, our results revealed that the BH4 expression is significantly high in CFS, CFS + OI, and CFS + OI + SFN patients compared to age-/gender-matched controls. Finally, a ROS production assay in cultured microglial cells followed by Pearson correlation statistics indicated that the elevated BH4 in serum samples of CFS + OI patients might be associated with the oxidative stress response. These findings suggest that the regulation of BH4 metabolism could be a promising target for understanding the molecular mechanism of CFS and CFS with OI.
Collapse
Affiliation(s)
- Carl Gunnar Gottschalk
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Simmaron Research and Development Laboratory, Chemistry Building, University of Wisconsin-Milwaukee, 3210 N Cramer Street, Suite # 214, Milwaukee, WI 53211, USA
| | - Ryan Whelan
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
| | - Daniel Peterson
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Sierra Internal Medicine, 920 Incline Way, Incline Village, NV 89451, USA
| | - Avik Roy
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Simmaron Research and Development Laboratory, Chemistry Building, University of Wisconsin-Milwaukee, 3210 N Cramer Street, Suite # 214, Milwaukee, WI 53211, USA
| |
Collapse
|
5
|
Chuaiphichai S, Chu SM, Carnicer R, Kelly M, Bendall JK, Simon JN, Douglas G, Crabtree MJ, Casadei B, Channon KM. Endothelial cell-specific roles for tetrahydrobiopterin in myocardial function, cardiac hypertrophy, and response to myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2023; 324:H430-H442. [PMID: 36735402 PMCID: PMC9988535 DOI: 10.1152/ajpheart.00562.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 02/04/2023]
Abstract
The cofactor tetrahydrobiopterin (BH4) is a critical regulator of nitric oxide synthase (NOS) function and redox signaling, with reduced BH4 implicated in multiple cardiovascular disease states. In the myocardium, augmentation of BH4 levels can impact on cardiomyocyte function, preventing hypertrophy and heart failure. However, the specific role of endothelial cell BH4 biosynthesis in the coronary circulation and its role in cardiac function and the response to ischemia has yet to be elucidated. Endothelial cell-specific Gch1 knockout mice were generated by crossing Gch1fl/fl with Tie2cre mice, generating Gch1fl/flTie2cre mice and littermate controls. GTP cyclohydrolase protein and BH4 levels were reduced in heart tissues from Gch1fl/flTie2cre mice, localized to endothelial cells, with normal cardiomyocyte BH4. Deficiency in coronary endothelial cell BH4 led to NOS uncoupling, decreased NO bioactivity, and increased superoxide and hydrogen peroxide productions in the hearts of Gch1fl/flTie2cre mice. Under physiological conditions, loss of endothelial cell-specific BH4 led to mild cardiac hypertrophy in Gch1fl/flTie2cre hearts. Endothelial cell BH4 loss was also associated with increased neuronal NOS protein, loss of endothelial NOS protein, and increased phospholamban phosphorylation at serine-17 in cardiomyocytes. Loss of cardiac endothelial cell BH4 led to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia-reperfusion injury. Taken together, these studies reveal a specific role for endothelial cell Gch1/BH4 biosynthesis in cardiac function and the response to cardiac ischemia-reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction and ischemia-reperfusion injury.NEW & NOTEWORTHY We demonstrate a critical role for endothelial cell Gch1/BH4 biosynthesis in coronary vascular function and cardiac function. Loss of cardiac endothelial cell BH4 leads to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia/reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction, ischemia injury, and heart failure.
Collapse
Affiliation(s)
- Surawee Chuaiphichai
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sandy M Chu
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ricardo Carnicer
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew Kelly
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jenifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jillian N Simon
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mark J Crabtree
- Department of Biochemical Sciences, School of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Barbara Casadei
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Wood A, Antonopoulos A, Chuaiphichai S, Kyriakou T, Diaz R, Al Hussaini A, Marsh AM, Sian M, Meisuria M, McCann G, Rashbrook VS, Drydale E, Draycott S, Polkinghorne MD, Akoumianakis I, Antoniades C, Watkins H, Channon KM, Adlam D, Douglas G. PHACTR1 modulates vascular compliance but not endothelial function: a translational study. Cardiovasc Res 2023; 119:599-610. [PMID: 35653516 PMCID: PMC10064844 DOI: 10.1093/cvr/cvac092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS The non-coding locus at 6p24 located in Intron 3 of PHACTR1 has consistently been implicated as a risk allele in myocardial infarction and multiple other vascular diseases. Recent murine studies have identified a role for Phactr1 in the development of atherosclerosis. However, the role of PHACTR1 in vascular tone and in vivo vascular remodelling has yet to be established. The aim of this study was to investigate the role of PHACTR1 in vascular function. METHODS AND RESULTS Prospectively recruited coronary artery disease (CAD) patients undergoing bypass surgery and retrospectively recruited spontaneous coronary artery dissection (SCAD) patients and matched healthy volunteers were genotyped at the PHACTR1 rs9349379 locus. We observed a significant association between the PHACTR1 loci and changes in distensibility in both the ascending aorta (AA = 0.0053 ± 0.0004, AG = 0.0041 ± 0.003, GG = 0.0034 ± 0.0009, P < 0.05, n = 58, 54, and 7, respectively) and carotid artery (AA = 12.83 ± 0.51, AG = 11.14 ± 0.38, GG = 11.69 ± 0.66, P < 0.05, n = 70, 65, and 18, respectively). This association was not observed in the descending aorta or in SCAD patients. In contrast, the PHACTR1 locus was not associated with changes in endothelial cell function with no association between the rs9349379 locus and in vivo or ex vivo vascular function observed in CAD patients. This finding was confirmed in our murine model where the loss of Phactr1 on the pro-atherosclerosis ApoE-/- background did not alter ex vivo vascular function. CONCLUSION In conclusion, we have shown a role for PHACTR1 in arterial compliance across multiple vascular beds. Our study suggests that PHACTR1 has a key structural role within the vasculature.
Collapse
Affiliation(s)
- Alice Wood
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alexios Antonopoulos
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Surawee Chuaiphichai
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Theodosios Kyriakou
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Rebeca Diaz
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Abtehale Al Hussaini
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Anna-Marie Marsh
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Manjit Sian
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Mitul Meisuria
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gerry McCann
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria S Rashbrook
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Edward Drydale
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Sally Draycott
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Murray David Polkinghorne
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Ioannis Akoumianakis
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Charalambos Antoniades
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Hugh Watkins
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Keith M Channon
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - David Adlam
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gillian Douglas
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| |
Collapse
|
7
|
Madokoro Y, Kamikokuryo C, Niiyama S, Ito T, Hara S, Ichinose H, Kakihana Y. Early ascorbic acid administration prevents vascular endothelial cell damage in septic mice. Front Pharmacol 2022; 13:929448. [PMID: 36278212 PMCID: PMC9582851 DOI: 10.3389/fphar.2022.929448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidation of BH4, a cofactor of nitric oxide synthase (NOS), produces reactive oxygen species (ROS) through uncoupling of NOS and affects vascular endothelial dysfunction. Ascorbic acid (AsA) inhibits the oxidation of BH4 and reduces ROS. However, the kinetic changes of BH4 in sepsis and its effect on the kinetic changes in AsA administration therapy, as well as the appropriate timing of AsA administration for AsA therapy to be effective, are unclear. Mice with sepsis, induced by cecal ligation and puncture (CLP), were examined for the effect of AsA administration (200 mg/kg) on vascular endothelial cell dysfunction at two administration timings: early group (AsA administered immediately after CLP) and late group (AsA administered 12 h after CLP). Survival rates were compared between the early and late administration groups, and vascular endothelial cell damage, indicated by the dihydrobiopterin/tetrahydrobiopterin ratio, serum syndecan-1, and endothelial nitric oxide synthase, as well as liver damage, were examined. The early group showed significantly improved survival compared to the non-treatment group (p < 0.05), while the late group showed no improved survival compared to the non-treatment group. Compared to the non-treated group, the early AsA group showed less oxidation of BH4 in sepsis. Syndecan1, a marker of vascular endothelial cell damage, was less elevated and organ damage was reduced in the early AsA-treated group. In septic mice, early AsA administration immediately after CLP may protect vascular endothelial cells by inhibiting BH4 oxidation, thereby reducing organ dysfunction and improving survival.
Collapse
Affiliation(s)
- Yutaro Madokoro
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chinatsu Kamikokuryo
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuhei Niiyama
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takashi Ito
- Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Hara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- *Correspondence: Yasuyuki Kakihana,
| |
Collapse
|
8
|
Mul Fedele ML, Senna CA, Aiello I, Golombek DA, Paladino N. Circadian Rhythms in Bacterial Sepsis Pathology: What We Know and What We Should Know. Front Cell Infect Microbiol 2021; 11:773181. [PMID: 34956930 PMCID: PMC8696002 DOI: 10.3389/fcimb.2021.773181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a syndrome caused by a deregulated host response to infection, representing the primary cause of death from infection. In animal models, the mortality rate is strongly dependent on the time of sepsis induction, suggesting a main role of the circadian system. In patients undergoing sepsis, deregulated circadian rhythms have also been reported. Here we review data related to the timing of sepsis induction to further understand the different outcomes observed both in patients and in animal models. The magnitude of immune activation as well as the hypothermic response correlated with the time of the worst prognosis. The different outcomes seem to be dependent on the expression of the clock gene Bmal1 in the liver and in myeloid immune cells. The understanding of the role of the circadian system in sepsis pathology could be an important tool to improve patient therapies.
Collapse
Affiliation(s)
- Malena Lis Mul Fedele
- Laboratorio de Cronofisiología, Instituto de Investigaciones Biomédicas/Pontificia Universidad Católica Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (UCA-CONICET), Buenos Aires, Argentina
| | - Camila Agustina Senna
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ignacio Aiello
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Andres Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia Paladino
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- *Correspondence: Natalia Paladino,
| |
Collapse
|
9
|
Cai GL, Yang ZX, Guo DY, Hu CB, Yan ML, Yan J. Macrophages enhance lipopolysaccharide induced apoptosis via Ang1 and NF-κB pathways in human umbilical vein endothelial cells. Sci Rep 2021; 11:2918. [PMID: 33536546 PMCID: PMC7858588 DOI: 10.1038/s41598-021-82531-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Lipopolysaccharide (LPS) could induce apoptosis and dysfunction of endothelial cells. We aimed to reveal the effects of macrophages on cell proliferation and apoptosis in LPS induced human umbilical vein endothelial cells (HUVECs). THP-1 derived macrophages and HUVECs were co-cultured in the presence of LPS. Cell viability was measured by Cell Counting Kit-8 and apoptosis was analyzed by flow cytometry. Expression of Ang1, the NF-κB component p65 was evaluated by western blot and quantitative PCR. Small interfering RNAs (siRNAs) were used to knockdown the expression of proinflammatory cytokines and p65 in HUVECs. Plasmid transfection-mediated overexpression of Ang1 was employed to see its effects on cell proliferation and apoptosis in HUVECs. Macrophages enhanced LPS-induced proliferation impairments and apoptosis in HUVECs, which could be attenuated by siRNA-mediated knockdown of cytokines TNF-α, IL-1β, IL-6 and IL-12p70 in macrophages. The dysfunction of HUVECs was tightly associated with reduced Ang1 expression and increased phosphorylated p65 (p-65). Overexpression of Ang1 in HUVECs significantly decreased p-p65, suggesting negatively regulation of p-p65 by Ang1. Overexpression of Ang1, adding recombinant Ang1 or silencing of p65 substantially attenuated the dysfunction of HUVECs in terms of cell proliferation and apoptosis. In conclusions, THP-1-derived macrophages enhance LPS induced dysfunction of HUVECs via Ang1 and NF-κB pathways, suggesting new therapeutic targets for sepsis.
Collapse
Affiliation(s)
- Guo-Long Cai
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China
| | - Zhou-Xin Yang
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China.
| | - Dong-Yang Guo
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China
| | - Cai-Bao Hu
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China
| | - Mo-Lei Yan
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China
| | - Jing Yan
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
10
|
Dolmatova EV, Wang K, Mandavilli R, Griendling KK. The effects of sepsis on endothelium and clinical implications. Cardiovasc Res 2021; 117:60-73. [PMID: 32215570 PMCID: PMC7810126 DOI: 10.1093/cvr/cvaa070] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT Sepsis accounts for nearly 700 000 deaths in Europe annually and is caused by an overwhelming host response to infection resulting in organ failure. The endothelium is an active contributor to sepsis and as such represents a major target for therapy. During sepsis, endothelial cells amplify the immune response and activate the coagulation system. They are both a target and source of inflammation and serve as a link between local and systemic immune responses. In response to cytokines produced by immune cells, the endothelium expresses adhesion molecules and produces vasoactive compounds, inflammatory cytokines, and chemoattractants, thus switching from an anticoagulant to procoagulant state. These responses contribute to local control of infection, but systemic activation can lead to microvascular thrombosis, capillary permeability, hypotension, tissue hypoxia, and ultimately tissue damage. This review focuses on the role of the endothelium in leucocyte adhesion and transmigration as well as production of reactive oxygen and nitrogen species, microRNAs and cytokines, formation of signalling microparticles, and disseminated intravascular coagulation. We also discuss alterations in endothelial permeability and apoptosis. Finally, we review the diagnostic potential of endothelial markers and endothelial pathways as therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Elena V Dolmatova
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Keke Wang
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Rohan Mandavilli
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Molecular mechanisms by which iNOS uncoupling can induce cardiovascular dysfunction during sepsis: Role of posttranslational modifications (PTMs). Life Sci 2020; 255:117821. [PMID: 32445759 DOI: 10.1016/j.lfs.2020.117821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
Human sepsis is the result of a multifaceted pathological process causing marked dysregulation of cardiovascular responses. A more sophisticated understanding of the pathogenesis of sepsis is certainly prerequisite. Evidence from studies provide further insight into the role of inducible nitric oxide synthase (iNOS) isoform. Results on inhibition of iNOS in sepsis models remain inconclusive. Concern has been devoted to improving our knowledge and understanding of the role of iNOS. The aim of this review is to define the role of iNOS in redox homeostasis disturbance, the detailed mechanisms linking iNOS and posttranslational modifications (PTMs) to cardiovascular dysfunctions, and their future implications in sepsis settings. Many questions related to the iNOS and PTMs still remain open, and much more work is needed on this.
Collapse
|
12
|
Mul Fedele ML, Aiello I, Caldart CS, Golombek DA, Marpegan L, Paladino N. Differential Thermoregulatory and Inflammatory Patterns in the Circadian Response to LPS-Induced Septic Shock. Front Cell Infect Microbiol 2020; 10:100. [PMID: 32226779 PMCID: PMC7080817 DOI: 10.3389/fcimb.2020.00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Sepsis is caused by a dysregulated host response to infection, and characterized by uncontrolled inflammation together with immunosuppression, impaired innate immune functions of phagocytes and complement activation. Septic patients develop fever or hypothermia, being the last one characteristic of severe cases. Both lipopolysaccharide (LPS) and Tumor Necrosis Factor (TNF)-α- induced septic shock in mice is dependent on the time of administration. In this study, we aimed to further characterize the circadian response to high doses of LPS. First, we found that mice injected with LPS at ZT11 developed a higher hypothermia than those inoculated at ZT19. This response was accompanied by higher neuronal activation of the preoptic, suprachiasmatic, and paraventricular nuclei of the hypothalamus. However, LPS-induced Tnf-α and Tnf-α type 1 receptor (TNFR1) expression in the preoptic area was time-independent. We also analyzed peritoneal and spleen macrophages, and observed an exacerbated response after ZT11 stimulation. The serum of mice inoculated with LPS at ZT11 induced deeper hypothermia in naïve animals than the one coming from ZT19-inoculated mice, related to higher TNF-α serum levels during the day. We also analyzed the response in TNFR1-deficient mice, and found that both the daily difference in the mortality rate, the hypothermic response and neuronal activation were lost. Moreover, mice subjected to circadian desynchronization showed no differences in the mortality rate throughout the day, and developed lower minimum temperatures than mice under light-dark conditions. Also, those injected at ZT11 showed increased levels of TNF-α in serum compared to standard light conditions. These results suggest a circadian dependency of the central thermoregulatory and peripheral inflammatory response to septic-shock, with TNF-α playing a central role in this circadian response.
Collapse
Affiliation(s)
- Malena Lis Mul Fedele
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Ignacio Aiello
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Carlos Sebastián Caldart
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Diego Andrés Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Luciano Marpegan
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Natalia Paladino
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| |
Collapse
|
13
|
Haybar H, Shahrabi S, Rezaeeyan H, Shirzad R, Saki N. Endothelial Cells: From Dysfunction Mechanism to Pharmacological Effect in Cardiovascular Disease. Cardiovasc Toxicol 2019; 19:13-22. [PMID: 30506414 DOI: 10.1007/s12012-018-9493-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endothelial cells (ECs) are the innermost layer of blood vessels that play important roles in homeostasis and vascular function. However, recent evidence suggests that the onset of inflammation and the production of reactive oxygen species impair the function of ECs and are a main factor in the development of cardiovascular disease (CVD). In this study, we investigated the effects of inflammatory markers, oxidative stress, and treatment on ECs in CVD patients. This review article is based on the material obtained from PubMed up to 2018. The key search terms used were "Cardiovascular Disease," "Endothelial Cell Dysfunction," "Inflammation," "Treatment," and "Oxidative Stress." The generation of reactive oxygen species (ROS) as well as reduced nitric oxide (NO) production by ECs impairs the function of blood vessels. Therefore, treatment of CVD patients leads to the expression of transcription factors activating anti-oxidant mechanisms and NO production. In contrast, NO production by inflammatory agents can cause ECs repair due to differentiation of endothelial progenitor cells (EPCs). Therefore, identifying the molecular pathways leading to the differentiation of EPCs through mediation of factors induced by inflammatory factors can be effective in regenerative medicine for ECs repair.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Shirzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
14
|
Chuaiphichai S, Rashbrook VS, Hale AB, Trelfa L, Patel J, McNeill E, Lygate CA, Channon KM, Douglas G. Endothelial Cell Tetrahydrobiopterin Modulates Sensitivity to Ang (Angiotensin) II-Induced Vascular Remodeling, Blood Pressure, and Abdominal Aortic Aneurysm. Hypertension 2018; 72:128-138. [PMID: 29844152 PMCID: PMC6012043 DOI: 10.1161/hypertensionaha.118.11144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
GTPCH (GTP cyclohydrolase 1, encoded by Gch1) is required for the synthesis of tetrahydrobiopterin; a critical regulator of endothelial NO synthase function. We have previously shown that mice with selective loss of Gch1 in endothelial cells have mild vascular dysfunction, but the consequences of endothelial cell tetrahydrobiopterin deficiency in vascular disease pathogenesis are unknown. We investigated the pathological consequence of Ang (angiotensin) II infusion in endothelial cell Gch1 deficient (Gch1fl/fl Tie2cre) mice. Ang II (0.4 mg/kg per day, delivered by osmotic minipump) caused a significant decrease in circulating tetrahydrobiopterin levels in Gch1fl/fl Tie2cre mice and a significant increase in the Nω-nitro-L-arginine methyl ester inhabitable production of H2O2 in the aorta. Chronic treatment with this subpressor dose of Ang II resulted in a significant increase in blood pressure only in Gch1fl/fl Tie2cre mice. This finding was mirrored with acute administration of Ang II, where increased sensitivity to Ang II was observed at both pressor and subpressor doses. Chronic Ang II infusion in Gch1fl/fl Tie2ce mice resulted in vascular dysfunction in resistance mesenteric arteries with an enhanced constrictor and decreased dilator response and medial hypertrophy. Altered vascular remodeling was also observed in the aorta with an increase in the incidence of abdominal aortic aneurysm formation in Gch1fl/fl Tie2ce mice. These findings indicate a specific requirement for endothelial cell tetrahydrobiopterin in modulating the hemodynamic and structural changes induced by Ang II, through modulation of blood pressure, structural changes in resistance vessels, and aneurysm formation in the aorta.
Collapse
Affiliation(s)
- Surawee Chuaiphichai
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Victoria S Rashbrook
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Ashley B Hale
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Lucy Trelfa
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Jyoti Patel
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Eileen McNeill
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Craig A Lygate
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Keith M Channon
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom.
| | - Gillian Douglas
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| |
Collapse
|
15
|
Li P, Chen XR, Xu F, Liu C, Li C, Liu H, Wang H, Sun W, Sheng YH, Kong XQ. Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways. Life Sci 2018; 206:106-116. [PMID: 29679702 DOI: 10.1016/j.lfs.2018.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Abstract
Sepsis-induced myocardial dysfunction represents a major cause of death. Alamandine is an important biologically active peptide. The present study evaluated whether alamandine improves cardiac dysfunction, inflammation, and apoptosis, and affects the signaling pathways involved in these events. Experiments were carried out in mice treated with lipopolysaccharide (LPS) or alamandine, and in neonatal rat cardiomyocytes. Alamandine increased the ejection fraction and fractional shortening, both of which were decreased upon LPS infusion in mice. LPS and alamandine reduced blood pressure, and increased the expression of inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) in the heart in mice. The LPS-induced decrease in α-myosin heavy chain (MHC) and β-MHC, and increase in S100 calcium binding protein A8 (S100A8) and S100A9, were reversed by alamandine pre-treatment. Alamandine pre-treatment prevented LPS-induced myocardial inflammation, apoptosis and autophagy. LPS increased p-ERK, p-JNK, and p-p38 levels, which were inhibited by alamandine. Dibutyryl cyclic AMP (db-cAMP) increased p-ERK, p-JNK, and p-p38 levels, and reversed the inhibitory effects of alamandine on the LPS-induced increase in p-ERK, p-JNK, and p-p38. Moreover, db-cAMP reduced the expression of α-MHC and β-MHC in cardiomyocytes, and reversed the almandine-induced attenuation of the LPS-induced decrease in α-MHC and β-MHC. These results indicate that alamandine attenuates LPS-induced cardiac dysfunction, resulting in increased cardiac contractility, and reduced inflammation, autophagy, and apoptosis. Furthermore, alamandine attenuates sepsis induced by LPS via inhibiting the mitogen-activated protein kinases (MAPKs) signaling pathways.
Collapse
Affiliation(s)
- Peng Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi-Ru Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Xu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Ultrasound, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan-Hui Sheng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiang-Qing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
El-Awady MS, Nader MA, Sharawy MH. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:74-80. [PMID: 28837867 DOI: 10.1016/j.etap.2017.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Vascular dysfunction leading to hypotension is a major complication in patients with septic shock. Inducible nitric oxide synthase (iNOS) together with oxidative stress play an important role in development of vascular dysfunction in sepsis. Searching for an endogenous, safe and yet effective remedy was the chief goal for this study. The current study investigated the effect of agmatine (AGM), an endogenous metabolite of l-arginine, on sepsis-induced vascular dysfunction induced by lipopolysaccharides (LPS) in rats. AGM pretreatment (10mg/kg, i.v.) 1h before LPS (5mg/kg, i.v.) prevented the LPS-induced mortality and elevations in serum creatine kinase-MB isoenzyme (CK-MB) activity, lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) level and total nitrite/nitrate (NOx) level after 24h from LPS injection. The elevation in aortic lipid peroxidation illustrated by increased malondialdehyde (MDA) content and the decrease in aortic glutathione (GSH) and superoxide dismutase (SOD) were also ameliorated by AGM. Additionally, AGM prevented LPS-induced elevation in mRNA expression of iNOS, while endothelial NOS (eNOS) mRNA was not affected. Furthermore AGM prevented the impaired aortic contraction to KCl and phenylephrine (PE) and endothelium-dependent relaxation to acetylcholine (ACh) without affecting endothelium-independent relaxation to sodium nitroprusside (SNP). IN CONCLUSION AGM may represent a potential endogenous therapeutic candidate for sepsis-induced vascular dysfunction through its inhibiting effect on iNOS expression and oxidative stress.
Collapse
Affiliation(s)
- Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Almadinah Almonawarah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Almadinah Almonawarah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
17
|
Chuaiphichai S, Crabtree MJ, Mcneill E, Hale AB, Trelfa L, Channon KM, Douglas G. A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin-deficient mice. Br J Pharmacol 2017; 174:657-671. [PMID: 28128438 PMCID: PMC5368052 DOI: 10.1111/bph.13728] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS-derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of resistance arteries, we have generated a mouse model with endothelial cell-specific deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme for BH4 biosynthesis, and evaluated BH4-dependent eNOS regulation, eNOS-derived NO and ROS generation. EXPERIMENTAL APPROACH The reactivity of mouse second-order mesenteric arteries was assessed by wire myography. High performance liquid chromatography was used to determine BH4, BH2 and biopterin. Western blotting was used for expression analysis. KEY RESULTS Gch1fl/fl Tie2cre mice demonstrated reduced GTPCH protein and BH4 levels in mesenteric arteries. Deficiency in endothelial cell BH4 leads to eNOS uncoupling, increased ROS production and loss of NO generation in mesenteric arteries of Gch1fl/fl Tie2cre mice. Gch1fl/fl Tie2cre mesenteric arteries had enhanced vasoconstriction to U46619 and phenylephrine, which was abolished by L-NAME. Endothelium-dependent vasodilatations to ACh and SLIGRL were impaired in mesenteric arteries from Gch1fl/fl Tie2cre mice, compared with those from wild-type littermates. Loss of eNOS-derived NO-mediated vasodilatation was associated with increased eNOS-derived H2 O2 and cyclooxygenase-derived vasodilator in Gch1fl/fl Tie2cre mesenteric arteries. CONCLUSIONS AND IMPLICATIONS Endothelial cell Gch1 and BH4-dependent eNOS regulation play pivotal roles in maintaining vascular homeostasis in resistance arteries. Therefore, targeting vascular Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of microvascular dysfunction in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Surawee Chuaiphichai
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Mark J Crabtree
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Eileen Mcneill
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Ashley B Hale
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Lucy Trelfa
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Keith M Channon
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Gillian Douglas
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
18
|
Sand CA, Hobbs AJ. The nuances of NO synthase regulation in sepsis: Could targeting BH4 be the answer? Vascul Pharmacol 2016; 77:35-7. [PMID: 26556765 DOI: 10.1016/j.vph.2015.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Claire A Sand
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|