1
|
Fan X, Li Y, Xu Y, Lin J, Guo X, Liao J, Xu M. New biomarkers of Kawasaki disease identified by gingival crevicular fluid proteomics. Front Mol Biosci 2025; 12:1597412. [PMID: 40421421 PMCID: PMC12104053 DOI: 10.3389/fmolb.2025.1597412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/18/2025] [Indexed: 05/28/2025] Open
Abstract
Introduction Kawasaki disease (KD) is an acute systemic vasculitis that primarily affects coronary arteries, and delayed diagnosis increases the risk of cardiovascular complications. Biomarkers are essential for improving diagnostic accuracy, especially in atypical cases. Gingival crevicular fluid (GCF), derived from periodontal tissues, contains serum components and inflammatory mediators, and has emerged as a valuable biofluid for systemic disease diagnosis. Previous studies suggest GCF protein profiles reflect immune status and metabolic disorders, such as type 2 diabetes. Given the immune-related nature of KD, GCF protein composition may also be altered, yet no studies have systematically explored GCF biomarkers in KD. This study uses DIA and MRM-MS proteomics to identify potential GCF biomarkers for KD diagnosis. Methods Twenty-seven patients with KD were enrolled in this study, and 18 healthy volunteers were recruited as the control group. GCF samples were collected from the KD patients, who formed the experimental group, before they received intravenous immunoglobulin treatment. Data-independent acquisition (DIA) quantitative proteomics mass spectrometry was performed on the GCF samples to analyze the protein expression profiles in both groups. DEPs were identified and subjected to functional enrichment analysis using KEGG and GO. Protein-protein interaction (PPI) analysis was conducted for all detected DEPs. Finally, multiple reaction monitoring mass spectrometry (MRM-MS) was used to validate the selected DEPs. Results A total of 197 DEPs were identified in GCF between the KD group and the normal control group, with 174 upregulated and 23 downregulated proteins. Functional enrichment analysis revealed that cellular and metabolic processes were the most significantly altered biological processes, while binding and catalytic activity were the most affected molecular functions. Pathway analysis further highlighted the NOD-like receptor signaling pathway, protein processing in the endoplasmic reticulum, and the influenza pathway as the most significantly enriched pathways. In the PPI network, EIF2AK2, B2M, and GBP1 were identified as key hub proteins, suggesting their potential regulatory roles in KD pathophysiology. Finally, MRM-MS confirmed the expression patterns of 12 DEPs (IFIT3, UB2L6, HP, A1AT, HSP90AA1, HNRPC, HSP90AB1, SAA1, MX1, B2M, FKBP4, and TRAP1), thereby demonstrating high consistency with the DIA results and further validating the DEPs' potential as biomarkers for KD. Conclusion Our findings suggest that 12 proteins in GCF could serve as potential biomarkers for the early diagnosis of KD. Additionally, the molecular analysis revealed a close association between KD and gingival inflammation, offering new insights into KD's pathophysiology and potential directions for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Xue Fan
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Department of Pediatrics, Shenzhen People’s Hospital, Shenzhen, China
| | - Yuehao Xu
- Department of Pediatrics, The Third People’s Hospital of Longgang, Clinical Institute of Shantou University Medical College, Shenzhen, China
| | - Jianqing Lin
- Department of Pediatrics, The Third People’s Hospital of Longgang, Clinical Institute of Shantou University Medical College, Shenzhen, China
| | - Xin Guo
- Department of Pediatrics, Longgang District Maternal and Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Jinwen Liao
- Department of Pediatrics, Longgang District Maternal and Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Mingguo Xu
- Department of Pediatrics, The Third People’s Hospital of Longgang, Clinical Institute of Shantou University Medical College, Shenzhen, China
| |
Collapse
|
2
|
Emerson JI, Shi W, Conlon FL. Sex-specific response to A1BG loss results in female dilated cardiomyopathy. Biol Sex Differ 2025; 16:27. [PMID: 40270023 PMCID: PMC12016195 DOI: 10.1186/s13293-025-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Cardiac disease often manifests with sex-specific differences in frequency, pathology, and progression. However, the molecular mechanisms underlying these differences remain incompletely understood. The glycoprotein A1BG has emerged as a female-specific regulator of cardiac structure and integrity, yet its precise role in the female heart is not well characterized. METHODS To investigate the sex-specific role of A1BG in the heart, we generated both a conditional A1bg knockout allele and an A1bg Rosa26 knockin allele. We employed histological analysis, electrocardiography, RNA sequencing (RNA-seq), transmission electron microscopy (TEM), western blotting, mass spectrometry, and immunohistochemistry to assess structural, functional, and molecular phenotypes. RESULTS Loss of A1BG in cardiomyocytes leads to persistent structural remodeling in female, but not male, hearts. Despite preserved systolic function in female A1bgCM/CM mice left ventricular dilation and wall thinning are evident and sustained over time, consistent with early-stage dilated cardiomyopathy (DCM). Transcriptomic analyses reveal that A1BG regulates key metabolic pathways in females, including glucose-6-phosphate and acetyl-CoA metabolism. TEM imaging highlights sex-specific disruption of intercalated disc architecture in female cardiomyocytes. These findings suggest that the absence of A1BG initiates chronic pathological remodeling in female hearts, potentially predisposing them to DCM under stress or aging. CONCLUSION A1BG is essential for maintaining ventricular structural integrity in female, but not male, hearts, leading to a chronic remodeling consistent with early-stage DCM.
Collapse
Affiliation(s)
- James I Emerson
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Shi
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, USA
| | - Frank L Conlon
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Zhang W, Guo S, Dou J, Zhang X, Shi F, Zhang C, Zhang H, Lan X, Su Y. Berberine and its derivatives: mechanisms of action in myocardial vascular endothelial injury - a review. Front Pharmacol 2025; 16:1543697. [PMID: 40103596 PMCID: PMC11914797 DOI: 10.3389/fphar.2025.1543697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
Myocardial vascular endothelial injury serves as a crucial inducer of cardiovascular diseases. Mechanisms such as endoplasmic reticulum stress, apoptosis, inflammation, oxidative stress, autophagy, platelet dysfunction, and gut microbiota imbalance are intimately linked to this condition. Berberine and its derivatives have demonstrated potential in modulating these mechanisms. This article reviews the pathogenesis of endothelial injury in myocardial vessels, the pharmacological effects of berberine and its derivatives, particularly their interactions with targets implicated in vascular endothelial injury. Furthermore, it discusses clinical applications, methods to enhance bioavailability, and toxicity concerns, aiming to lay a foundation for the development of BBR as a therapeutic agent for cardiovascular diseases.
Collapse
Affiliation(s)
- Wenhui Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Siyi Guo
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinjin Dou
- Department of Cardiovascular, The Fourth Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chun Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Huxiao Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaodong Lan
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yi Su
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Yang H, Cao G, Li X, Zhao Z, Wang Y, Xu F. Berberine Intervention Mitigates Myocardial Ischemia-Reperfusion Injury in a Rat Model: Mechanistic Insights via miR-184 Signaling. Biologics 2025; 19:31-42. [PMID: 40026702 PMCID: PMC11871928 DOI: 10.2147/btt.s479430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/31/2024] [Indexed: 03/05/2025]
Abstract
Background Ischemia-reperfusion (I/R) injury is a major contributor to myocardial dysfunction and tissue damage. A natural alkaloid-Berberine having a wide range of pharmacological properties, has garnered interest for its potential cardioprotective properties. This study aimed to investigate the protective effects of berberine on myocardial tissue in a rat model of myocardial ischemia-reperfusion (I/R) injury. Additionally, the study explored the role of the miR-184/NOTCH1 signaling pathway in mediating these effects. Methods Male Wistar rats were randomly assigned to five groups: sham-operated control, I/R injury, I/R treated with berberine, I/R treated with inhibitor NC and I/R treated with a miR-184 inhibitor. The I/R injury was induced by ligating the left anterior descending (LAD) coronary artery for 30 minutes, followed by 2 hours of reperfusion. Berberine was administered orally at 100 mg/kg/day for 2 weeks, and the miR-184 inhibitor was administered via intraperitoneal injection. Hemodynamic parameters were recorded using a pressure sensor connected to a catheter inserted into the left ventricle. Myocardial infarct size was assessed using TTC staining, while histological and molecular changes were evaluated through H&E staining, TUNEL assay, and Western blotting. The expression levels of target genes were analyzed using quantitative real-time PCR (qRT-PCR). Results Berberine significantly reduced myocardial infarct size and improved hemodynamic parameters compared to the untreated I/R group. Additionally, berberine treatment attenuated apoptosis as evidenced by decreased TUNEL-positive cells. The miR-184 inhibitor also demonstrated protective effects by modulating key signaling pathways involved in myocardial injury. Western blot analysis revealed downregulation of NOTCH1 and HES1 expression in treated groups, indicating a potential mechanism for the observed cardio protection. Conclusion Berberine and miR-184 inhibition offer significant protection against myocardial ischemia-reperfusion injury. These findings suggest that targeting miR-184 and associated pathways may be a promising therapeutic strategy for reducing cardiac damage following ischemia-reperfusion.
Collapse
Affiliation(s)
- Haichen Yang
- Department of Emergency, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an second People’s Hospital, Huai’an, People’s Republic of China
| | - Gang Cao
- Department of Respiratory Medicine, Hongze District People’s Hospital, Hongze, Jiangsu, People’s Republic of China
| | - Xia Li
- Department of Geriatric, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, People’s Republic of China
| | - Zhikun Zhao
- Department of Intensive Care Unit, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, People’s Republic of China
| | - Yong Wang
- Department of Cardiology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, People’s Republic of China
| | - Fei Xu
- Department of Intensive Care Unit, Lianshui County People’s Hospital, Huai’an, People’s Republic of China
| |
Collapse
|
5
|
Zhou L, Zhu X, Lei S, Wang Y, Xia Z. The role of the ER stress sensor IRE1 in cardiovascular diseases. Mol Cell Biochem 2025; 480:683-691. [PMID: 38717685 DOI: 10.1007/s11010-024-05014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 02/19/2025]
Abstract
Despite enormous advances in the treatment of cardiovascular diseases, including I/R injury and heart failure, heart diseases remain a leading cause of mortality worldwide. Inositol-requiring enzyme 1 (IRE1) is an evolutionarily conserved sensor endoplasmic reticulum (ER) transmembrane protein that senses ER stress. It manages ER stress induced by the accumulation of unfolded/misfolded proteins via the unfolded protein response (UPR). However, if the stress still persists, the UPR pathways are activated and induce cell death. Emerging evidence shows that, beyond the UPR, IRE1 participates in the progression of cardiovascular diseases by regulating inflammation levels, immunity, and lipid metabolism. Here, we summarize the recent findings and discuss the potential therapeutic effects of IRE1 in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xizi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
廖 锦, 郭 鑫, 梁 波, 李 许, 徐 明. [Berberine ameliorates coronary artery endothelial cell injury in Kawasaki disease through complement and coagulation cascades]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2025; 27:101-108. [PMID: 39825659 PMCID: PMC11750244 DOI: 10.7499/j.issn.1008-8830.2406075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/14/2024] [Indexed: 01/20/2025]
Abstract
OBJECTIVES To explore the role of berberine (BBR) in ameliorating coronary endothelial cell injury in Kawasaki disease (KD) by regulating the complement and coagulation cascade. METHODS Human coronary artery endothelial cells (HCAEC) were divided into a healthy control group, a KD group, and a BBR treatment group (n=3 for each group). The healthy control group and KD group were supplemented with 15% serum from healthy children and KD patients, respectively, while the BBR treatment group received 15% serum from KD patients followed by the addition of 20 mmol/L BBR. Differential protein expression was analyzed and identified using isobaric tags for relative and absolute quantitation technology and liquid chromatography-tandem mass spectrometry, followed by GO functional enrichment analysis and KEGG signaling pathway enrichment analysis of the differential proteins. Western blot was used to detect differential protein expression. RESULTS A total of 518 differential proteins were identified between the KD group and the healthy control group (300 upregulated proteins and 218 downregulated proteins). A total of 422 differential proteins were identified between the BBR treatment group and the KD group (221 upregulated proteins and 201 downregulated proteins). Bioinformatics analysis showed that compared to the healthy control group, the differential proteins in the KD group were enriched in the complement and coagulation cascade and ribosome biogenesis in eukaryotes. Compared to the KD group, the differential proteins in the BBR treatment group were also enriched in the complement and coagulation cascade and ribosome biogenesis in eukaryotes. Western blot results indicated that compared to the healthy control group, the expression of complement C1q subcomponent subunit C (C1QC), kininogen-1 (KNG1), complement C1s subcomponent (C1S), and C4b-binding protein alpha chain (C4BPA) was increased in the KD group (P<0.05). Compared to the KD group, the expression of KNG1, C1S, C1QC, and C4BPA was decreased in the BBR treatment group (P<0.05). CONCLUSIONS The complement and coagulation cascade may be involved in the regulation of BBR treatment for coronary injury in KD, and C1QC, KNG1, C1S, and C4BPA may serve as biomarkers for this treatment.
Collapse
Affiliation(s)
| | | | - 波 梁
- 深圳市龙岗区第三人民医院儿科,广东深圳518020
| | - 许霞 李
- 深圳市龙岗区第三人民医院儿科,广东深圳518020
| | - 明国 徐
- 深圳市龙岗区第三人民医院儿科,广东深圳518020
| |
Collapse
|
7
|
Shen Q, Yuan Y, Li Z, Ling Y, Wang J, Gao M, Wang P, Li M, Lai L, Jin J. Berberine ameliorates septic cardiomyopathy through protecting mitochondria and upregulating Notch1 signaling in cardiomyocytes. Front Pharmacol 2024; 15:1502354. [PMID: 39568588 PMCID: PMC11576164 DOI: 10.3389/fphar.2024.1502354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Septic cardiomyopathy (SCM) arises as a consequence of sepsis-associated cardiovascular dysfunction, for which there is currently no specific targeted therapy available. Previous studies have demonstrated the beneficial therapeutic effect of berberine (BBR) on SCM; however, the underlying mechanisms of action remain unclear. The objective of this is to elucidate how BBR alleviates SCM. Methods Septic cardiomyopathy rat model was established by performing cecal ligation and puncture (CLP), while a cardiomyocyte injury model was provoked in H9C2 cells using lipopolysaccharide (LPS). Cardiac function was assessed through echocardiography, and myocardial histopathology was examined with hematoxylin-eosin (HE) staining. Cardiomyocyte viability was determined through Cell Counting Kit-8 (CCK8) assay, and measurement of ATP levels was done with an ATP assay kit. Mitochondrial ultrastructure was observed using transmission electron microscopy. Real-time polymerase chain reaction (RT-PCR) and Western blotting were employed to analyze the expression of Notch1 signaling pathway components and downstream molecules in myocardial tissues and cells. Result In vivo, BBR markedly improved symptoms and cardiac function in SCM rats, leading to enhanced ATP content, and ameliorated mitochondrial structure. Additionally, BBR increased Notch1 protein expression in myocardial tissue of the rats. In vitro, BBR elevated the survival rates of H9C2 cell, improved mitochondrial morphology, and raised ATP levels. The mRNA expression of Notch1, Hes1, and Hes2, and Notch1 protein expression was upregulated by BBR. While these effects were reversed upon inhibiting the Notch1 signaling pathway. Conclusion BBR improves septic cardiomyopathy by modulating Notch1 signaling to protect myocardial mitochondria.
Collapse
Affiliation(s)
- Qi Shen
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufan Yuan
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zelin Li
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Ling
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jian Wang
- Department of Basic Research of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingjing Gao
- Department of Automation, Tsinghua University, Beijing, China
| | - Peng Wang
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mengli Li
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lizhong Lai
- Department of Pathology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinlan Jin
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
8
|
Ren Y, Wang F, Sun R, Zhang Y, Zheng X, Liu H, Chen L, Lin Y, Zhao Y, Liang M, Chao Z. N-glycosylation Modification Reveals Insights into the Oxidative Reactions of Liver in Wuzhishan Pigs. Molecules 2024; 29:5222. [PMID: 39598613 PMCID: PMC11596063 DOI: 10.3390/molecules29225222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Although porcine liver contributes to their growth and development by nutrition production and energy supply, oxidative stress-induced hepatocyte damage is inevitable during metabolism. N-glycosylation is a common modification in oxidation; nevertheless, the effects of N-glycosylation on pig liver oxidative reactions remain undefined. In this study, liver proteins with N-glycosylation were detected in Wuzhishan (WZS) pigs between 4 and 8 months old and Large White (LW) pigs at 4 months old based on LC-MS/MS. The results showed that the number of differentially expressed proteins (DEPs) was larger between different pig cultivars than that between WZS pigs at various growth periods. The enriched pathways of DEPs were mainly related to oxidative reactions, and 10 proteins were finally selected that primarily consisted of CYPs, GSTs and HSPs with expressions significantly correlating to liver size and weight. The oxidative genes shared N-glycosylation-modified models of N-x-S and N-G. Five out of 10 proteins were upregulated in WZS pigs compared to LW pigs at 4 months old, while five proteins increased in WZS pigs from 4 to 8 months old. In conclusion, this research provides valuable information on the N-glycosylation motifs in liver oxidation genes of WZS pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhe Chao
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
9
|
Yang K, Zhang P, Li J, Zhang G, Chang X. Potential of natural drug modulation of endoplasmic reticulum stress in the treatment of myocardial injury. J Pharm Anal 2024; 14:101034. [PMID: 39720623 PMCID: PMC11667710 DOI: 10.1016/j.jpha.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 12/26/2024] Open
Abstract
Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death. Cardiac damage frequently triggers ERS in response to different types of injuries and stress. High levels of ERS can exacerbate myocardial damage by inducing necrosis and apoptosis. To target ERS in MI prevention and treatment, current medical research is focused on identifying effective therapy approaches. Traditional Chinese medicine (TCM) is frequently used because of its vast range of applications and low risk of adverse effects. Various studies have demonstrated that active components of Chinese medicines, including polyphenols, saponins, and alkaloids, can reduce myocardial cell death, inflammation, and modify the ERS pathway, thus preventing and mitigating cardiac injury. Thus, this paper aims to provide a new direction and scientific basis for targeting ERS in MI prevention and treatment. We specifically summarize recent research progress on the regulation mechanism of ERS in MI by active ingredients of TCM.
Collapse
Affiliation(s)
- Kai Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Genming Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
10
|
Yang K, Tang J, Li H, Zhang H, Ding J, Li Z, Luo J. LncRNAs in Kawasaki disease and Henoch-Schönlein purpura: mechanisms and clinical applications. Mol Cell Biochem 2024; 479:1969-1984. [PMID: 37639198 DOI: 10.1007/s11010-023-04832-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Kawasaki disease (KD) and Henoch-Schönlein purpura (HSP) are the two most predominant types of childhood vasculitis. In childhood vasculitis, factors such as lack of sensitive diagnostic indicators and adverse effects of drug therapy may cause multiorgan system involvement and complications and even death. Many studies suggest that long noncoding RNAs (lncRNAs) are involved in the mechanism of vasculitis development in children and can be used to diagnose or predict prognosis by lncRNAs. In existing drug therapies, lncRNAs are also involved in drug-mediated treatment mechanisms and are expected to improve drug toxicity. The aim of this review is to summarize the link between lncRNAs and the pathogenesis of KD and HSP. In addition, we review the potential applications of lncRNAs in multiple dimensions, such as diagnosis, treatment, and prognosis prediction. This review highlights that targeting lncRNAs may be a novel therapeutic strategy to improve and treat KD and HSP.
Collapse
Affiliation(s)
- Kangping Yang
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Jiayao Tang
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Haoying Li
- Queen Mary School of Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinghua Luo
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
11
|
Emerson JI, Shi W, Conlon FL. Sex-Specific Response to A1BG Loss Results in Female Dilated Cardiomyopathy. RESEARCH SQUARE 2024:rs.3.rs-4631369. [PMID: 39070637 PMCID: PMC11276010 DOI: 10.21203/rs.3.rs-4631369/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Cardiac disease often manifests differently in terms of frequency and pathology between men and women. However, the mechanisms underlying these differences are not fully understood. The glycoprotein A1BG is necessary for proper cardiac function in females but not males. Despite this, the role of A1BG in the female heart remains poorly studied. Methods To determine the sex differential function of A1BG, we generated a novel conditional A1bg allele and a novel conditional A1bg Rosa26 knockin allele. Histology, electrocardiography, transcriptional profiling (RNA-seq), transmission electron microscopy, western blot analyses, mass spectrometry, and immunohistochemistry were used to assess cardiac structure and function. Results The study reveals that the absence of A1BG results in significant cardiac dysfunction in female but not male mice. Gene expression underscores that A1BG plays a critical role in metabolic processes and the integrity of intercalated discs in female cardiomyocytes. This dysfunction may be related to sex-specific A1BG cardiac interactomes and manifests as structural and functional alterations in the left ventricle indicative of dilated cardiomyopathy, thus suggesting a sex-specific requirement for A1BG in cardiac health. Conclusion The loss of A1BG in cardiomyocytes leads to dilated cardiomyopathy in females, not males.
Collapse
Affiliation(s)
| | - Wei Shi
- University of North Carolina at Chapel Hill
| | | |
Collapse
|
12
|
Shrestha S, Wiener HW, Kajimoto H, Srinivasasainagendra V, Ledee D, Chowdhury S, Cui J, Chen JY, Beckley MA, Padilla LA, Dahdah N, Tiwari HK, Portman MA. Pharmacogenomics of intravenous immunoglobulin response in Kawasaki disease. Front Immunol 2024; 14:1287094. [PMID: 38259468 PMCID: PMC10800400 DOI: 10.3389/fimmu.2023.1287094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Kawasaki disease (KD) is a diffuse vasculitis in children. Response to high dose intravenous gamma globulin (IVIG), the primary treatment, varies according to genetic background. We sought to identify genetic loci, which associate with treatment response using whole genome sequencing (WGS). Method We performed WGS in 472 KD patients with 305 IVIG responders and 167 non-responders defined by AHA clinical criteria. We conducted logistic regression models to test additive genetic effect in the entire cohort and in four subgroups defined by ancestry information markers (Whites, African Americans, Asians, and Hispanics). We performed functional mapping and annotation using FUMA to examine genetic variants that are potentially involved IVIG non-response. Further, we conducted SNP-set [Sequence] Kernel Association Test (SKAT) for all rare and common variants. Results Of the 43,288,336 SNPs (23,660,970 in intergenic regions, 16,764,594 in introns and 556,814 in the exons) identified, the top ten hits associated with IVIG non-response were in FANK1, MAP2K3:KCNJ12, CA10, FRG1DP, CWH43 regions. When analyzed separately in ancestry-based racial subgroups, SNPs in several novel genes were associated. A total of 23 possible causal genes were pinpointed by positional and chromatin mapping. SKAT analysis demonstrated association in the entire MANIA2, EDN1, SFMBT2, and PPP2R5E genes and segments of CSMD2, LINC01317, HIVEPI, HSP90AB1, and TTLL11 genes. Conclusions This WGS study identified multiple predominantly novel understudied genes associated with IVIG response. These data can serve to inform regarding pathogenesis of KD, as well as lay ground work for developing treatment response predictors.
Collapse
Affiliation(s)
- Sadeep Shrestha
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Howard W. Wiener
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hidemi Kajimoto
- Division of Cardiology, Seattle Children’s and University of Washington Department of Pediatrics, Seattle, WA, United States
| | - Vinodh Srinivasasainagendra
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dolena Ledee
- Division of Cardiology, Seattle Children’s and University of Washington Department of Pediatrics, Seattle, WA, United States
| | - Sabrina Chowdhury
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jinhong Cui
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jake Y. Chen
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mikayla A Beckley
- Division of Cardiology, Seattle Children’s and University of Washington Department of Pediatrics, Seattle, WA, United States
| | - Luz A. Padilla
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nagib Dahdah
- CHU Ste-Justine, Universite de Montreal, Montreal, QC, Canada
| | - Hemant K. Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael A. Portman
- Division of Cardiology, Seattle Children’s and University of Washington Department of Pediatrics, Seattle, WA, United States
| |
Collapse
|
13
|
Chen L, Shangguan Z, Dong Z, Deng Q, Ding Y, Yang S. NFIL3 aggravates human coronary artery endothelial cell injury by promoting ITGAM transcription in Kawasaki disease. Hematology 2023; 28:2277502. [PMID: 37933872 DOI: 10.1080/16078454.2023.2277502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE High expression of nuclear factor interleukin-3 (NFIL3) and integrin Alpha M (ITGAM) was found in serum samples from Kawasaki disease (KD) patients through bioinformatics analysis. Hence, this study aimed to explore the biological functions of NFIL3 and ITGAM in KD serum-stimulated human coronary artery endothelial cells (HCAECs). METHODS The differentially-expressed genes in KD were analyzed through bioinformatics analysis. Serum samples were obtained from 18 KD patients and 18 healthy volunteers, followed by detection of NFIL3 and ITGAM levels in KD serum. After HCAECs were transfected with sh-NFIL3, sh-ITGAM, or sh-NFIL3 + oe-ITGAM and underwent 24-h KD serum stimulation, cell viability and apoptosis and the levels of inflammation-related factors were measured. The binding between NFIL3 and ITGAM was validated by dual-luciferase and chromatin immunoprecipitation (ChIP) assays. RESULTS NFIL3 and ITGAM were up-regulated in serum from KD patients and KD serum-stimulated HCAECs. Down-regulation of NFIL3 or ITGAM inhibited KD serum-induced cell apoptosis and inflammatory response of HCAECs and promoted cell viability. Mechanistically, NFIL3 promoted ITGAM transcription level. Up-regulation of ITGAM reversed the improvement of NFIL3 down-regulation on KD serum-induced HCAEC injury. CONCLUSION NFIL3 aggravated KD serum-induced HCAEC injury by promoting ITGAM transcription, which provided new insights into the treatment of KD.
Collapse
Affiliation(s)
- Li Chen
- Clinical College, Fuzhou Medical College, Nanchang University, Fuzhou, People's Republic of China
| | - Zhiyang Shangguan
- Basic Medicine College, Fuzhou Medical College, Nanchang University, Fuzhou, People's Republic of China
| | - Zeya Dong
- Clinical College, Fuzhou Medical College, Nanchang University, Fuzhou, People's Republic of China
| | - Qunfan Deng
- Department of Pediatrics, First People's Hospital of Fuzhou, Fuzhou, People's Republic of China
| | - Yunyun Ding
- Department of Pediatrics, First People's Hospital of Fuzhou, Fuzhou, People's Republic of China
| | - Shulong Yang
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou, People's Republic of China
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou, People's Republic of China
- Technology Innovation Center of Chronic Disease Research in Fuzhou CityFuzhou, People's Republic of China
| |
Collapse
|
14
|
Zhang B, Liu P, Sheng H, Guo Y, Han Y, Suo L, Yuan Q. New Insight into the Potential Protective Function of Sulforaphene against ROS-Mediated Oxidative Stress Damage In Vitro and In Vivo. Int J Mol Sci 2023; 24:13129. [PMID: 37685936 PMCID: PMC10487408 DOI: 10.3390/ijms241713129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Sulforaphene (SFE) is a kind of isothiocyanate isolated from radish seeds that can prevent free-radical-induced diseases. In this study, we investigated the protective effect of SFE on oxidative-stress-induced damage and its molecular mechanism in vitro and in vivo. The results of cell experiments show that SFE can alleviate D-gal-induced cytotoxicity, promote cell cycle transformation by inhibiting the production of reactive oxygen species (ROS) and cell apoptosis, and show a protective effect on cells with H2O2-induced oxidative damage. Furthermore, the results of mice experiments show that SFE can alleviate D-galactose-induced kidney damage by inhibiting ROS, malondialdehyde (MDA), and 4-hydroxyalkenals (4-HNE) production; protect the kidney against oxidative stress-induced damage by increasing antioxidant enzyme activity and upregulating the Nrf2 signaling pathway; and inhibit the activity of pro-inflammatory factors by downregulating the expression of Toll-like receptor 4 (TLR4)-mediated inflammatory response. In conclusion, this research shows that SFE has antioxidant effects, providing a new perspective for studying the anti-aging properties of natural compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (B.Z.); (P.L.); (H.S.); (Y.G.); (Y.H.); (L.S.)
| |
Collapse
|
15
|
Hu JJ, Yu XZ, Zhang SQ, Zhang YX, Chen XL, Long ZJ, Hu HZ, Xie DH, Zhang WH, Chen JX, Zhang Q. Hydrogel with ROS scavenging effect encapsulates BR@Zn-BTB nanoparticles for accelerating diabetic mice wound healing via multimodal therapy. iScience 2023; 26:106775. [PMID: 37213227 PMCID: PMC10196962 DOI: 10.1016/j.isci.2023.106775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
The strategies for eliminating excess reactive oxygen species (ROS) or suppressing inflammatory responses on the wound bed have proven effective for diabetic wound healing. In this work, a zinc-based nanoscale metal-organic framework (NMOF) functions as a carrier to deliver natural product berberine (BR) to form BR@Zn-BTB nanoparticles, which was, in turn, further encapsulated by hydrogel with ROS scavenging ability to yield a composite system of BR@Zn-BTB/Gel (denoted as BZ-Gel). The results show that BZ-Gel exhibited the controlled release of Zn2+ and BR in simulated physiological media to efficiently eliminated ROS and inhibited inflammation and resulted in a promising antibacterial effect. In vivo experiments further proved that BZ-Gel significantly inhibited the inflammatory response and enhanced collagen deposition, as well as to re-epithelialize the skin wound to ultimately promote wound healing in diabetic mice. Our results indicate that the ROS-responsive hydrogel coupled with BR@Zn-BTB synergistically promotes diabetic wound healing.
Collapse
Affiliation(s)
- Jing-Jing Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Xue-Zhao Yu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Shu-Qin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Yu-Xuan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Xiao-Lin Chen
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Zhu-Jun Long
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Hua-Zhong Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Deng-Hui Xie
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
- Corresponding author
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
- Corresponding author
| |
Collapse
|
16
|
Fasipe B, Li S, Laher I. Exercise and vascular function in sedentary lifestyles in humans. Pflugers Arch 2023:10.1007/s00424-023-02828-6. [PMID: 37272982 DOI: 10.1007/s00424-023-02828-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
People with sedentary lifestyles engage in minimal or no physical activity. A sedentary lifestyle promotes dysregulation of cellular redox balance, diminishes mitochondrial function, and increases NADPH oxidase activity. These changes collectively increase cellular oxidative stress, which alters endothelial function by oxidizing LDL-C, reducing NO production, and causing eNOS uncoupling. Reduced levels of nitric oxide (NO) leads to vasoconstriction, vascular remodeling, and vascular inflammation. Exercise modulates reactive oxygen species (ROS) to modify NRF2-KEAP signaling, leading to the activation of NRF2 to alleviate oxidative stress. While regular moderate exercise activates NRF2 through ROS production, high-intensity intermittent exercise stimulates NRF2 activation to a greater degree by reducing KEAP levels, which can be more beneficial for sedentary individuals. We review the damaging effects of a sedentary lifestyle on the vascular system and the health benefits of regular and intermittent exercise.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, Canada.
| |
Collapse
|
17
|
Xu X, Yang B, Zhang H, Feng X, Hao H, Du W, Zhu H, Khan A, Khan MZ, Zhang P, Zhao X. Effects of β-Nicotinamide Mononucleotide, Berberine, and Cordycepin on Lipid Droplet Content and Developmental Ability of Vitrified Bovine Oocytes. Antioxidants (Basel) 2023; 12:antiox12050991. [PMID: 37237857 DOI: 10.3390/antiox12050991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Oocyte vitrification is crucial for livestock reproduction, germplasm conservation, and human-assisted reproduction, but the overabundance of lipids is highly detrimental to oocyte development. It is necessary to reduce the lipid droplet content of oocytes before cryopreservation. This study analyzed the impact of β-nicotinamide mononucleotide (NMN), berberine (BER), or cordycepin (COR) on various aspects of bovine oocytes, including lipid droplet content and the expression levels of genes related to lipid synthesis in bovine oocytes, development ability, reactive oxygen species (ROS), apoptosis, and the expression levels of genes associated with endoplasmic reticulum (ER) stress, and mitochondrial function in vitrified bovine oocytes. The results of our study indicated that 1 μM NMN, 2.5 μM BER, and 1 μM COR were effective in reducing the lipid droplet content and suppressing the expression levels of genes involved in lipid synthesis in bovine oocytes. Our findings showed that the vitrified bovine oocytes treated with 1 μM of NMN had a significantly higher survival rate and better development ability compared to the other vitrified groups. Additionally, 1 μM NMN, 2.5 μM BER, and 1 μM COR decreased the levels of ROS and apoptosis, decreased the mRNA expression levels of genes involved in ER stress and mitochondrial fission but increased the mRNA expression levels of genes associated with mitochondrial fusion in the vitrified bovine oocytes. Our study results suggested that 1 μM NMN, 2.5 μM BER, and 1 μM COR effectively decreased the lipid droplet content and enhanced the development ability of vitrified bovine oocytes by lowering ROS levels, reducing ER stress, regulating mitochondrial function, and inhibiting apoptosis. Furthermore, the results showed that 1 μM NMN was more effective than 2.5 μM BER and 1 μM COR.
Collapse
Affiliation(s)
- Xi Xu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Baigao Yang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Haisheng Hao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Weihua Du
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Huabin Zhu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Zahoor Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peipei Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| |
Collapse
|
18
|
The Effect of N6-Methyladenosine Regulators and m6A Reader YTHDC1-Mediated N6-Methyladenosine Modification Is Involved in Oxidative Stress in Human Aortic Dissection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3918393. [PMID: 36819785 PMCID: PMC9935809 DOI: 10.1155/2023/3918393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 02/11/2023]
Abstract
Aortic dissection (AD) develops pathological changes in the separation of the true and false aortic lumen, with high lethality. m6A methylation and oxidative stress have also been shown to be involved in the onset of AD. Through bioinformatics methods, three differentially expressed m6A regulators (YTHDC1, YTHDC2, and RBM15) were excavated from the GSE52093 dataset in the Gene Expression Omnibus (GEO) database, and functional enrichment analysis of the differentially expressed genes (DEGs) regulated by m6A regulators was performed. Then, the genes with oxidative stress-related functions among these genes were found. The protein interaction network of the oxidative stress-related genes and the competing endogenous RNA- (ceRNA-) miRNA-mRNA network were constructed. Among them, DHCR24, P4HB, and PDGFRA, which have m6A differences in AD samples, were selected as key genes. We also performed immune infiltration analysis, as well as cell-gene correlation analysis, on samples from the dataset. The results showed that YTHDC1 was positively correlated with macrophage M1 and negatively correlated with macrophage M2. Finally, we extracted AD and healthy aorta RNA and protein from human tissues that were taken from AD patients and patients who received heart transplants, performed quantitative real-time PCR (qRT-PCR) on YTHDC2 and RBM15, and performed qRT-PCR and western blot (WB) detection on YTHDC1 to verify their differences in AD. The mRNA and protein levels of YTHDC1 were consistent with the results of bioinformatics analysis and were downregulated in AD. Immunofluorescence (IF) was used to colocalize YTHDC1 and endothelial cell marker CD31. After knocking down YTHDC1 in human umbilical vein endothelial cells (HUVECs), reactive oxygen species (ROS) levels had a tendency to increase and the expression of peroxide dismutase SOD2 was decreased. This study provides assistance in discovering the role of m6A regulator YTHDC1 in AD. In particular, m6A modification participates in oxidative stress and jointly affects AD.
Collapse
|
19
|
Qiu Y, Zhang Y, Li Y, Hua Y, Zhang Y. Molecular mechanisms of endothelial dysfunction in Kawasaki-disease-associated vasculitis. Front Cardiovasc Med 2022; 9:981010. [PMID: 36003919 PMCID: PMC9393387 DOI: 10.3389/fcvm.2022.981010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Kawasaki disease (KD) is an acute, inflammation mediated vasculitis, mainly affecting in children under five, which is consider as the most common coronary artery disease in children. The injuries of coronary arteries would result in dilation or thrombus formation, bringing great threaten to patients. Endothelium, located in the inner surface of coronary artery, serves as the interface between the circulating inflammatory cells and vascular media or adventitia, which is the first target of inflammatory attacks during early stage of KD. A series of studies have determined vascular endothelial cells damages and dysfunction in KD patients. However, current therapeutic strategy is still challenging. So that it is critical to underline the mechanisms of endothelium injuries. In this review, the role of endothelial cells in the pathogenesis of KD and the therapeutic methods for endothelial cells were systematically described.
Collapse
|
20
|
The Ameliorative Effect of Berberine on Vascular Calcification by Inhibiting Endoplasmic Reticulum Stress. J Cardiovasc Pharmacol 2022; 80:294-304. [PMID: 35580317 DOI: 10.1097/fjc.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Vascular calcification (VC), which currently cannot be prevented or treated, is an independent risk factor for cardiovascular events. We aimed to investigate the ameliorative effect of berberine on VC via the activation of Akt signaling and inhibition of endoplasmic reticulum stress (ERS). The VC model was induced by high-dose Vitamin D 3 in rats and beta-glycerophosphate in primary vascular smooth muscle cells of rat aortas, which were evaluated by Alizarin red staining to determine the calcium content and alkaline phosphatase activity. ERS was determined by the levels of GRP78 and CHOP, whereas that of the Akt signaling pathway was determined by the levels of phosphorylated Akt and GSK3β. VC was significantly ameliorated by berberine treatment in vivo and in vitro, and the inhibition of ERS and the activation of the Akt/GSK3 signaling pathway. In the vascular smooth muscle cells of primary rats, tunicamycin, an ERS activator, blocked the ameliorative effect of berberine on VC and ERS, but not the activation of Akt/GSK3. The ameliorative effects of berberine on VC, ERS, and the Akt signaling pathway were all prevented by inhibitor IV. Four-phenylbutyric acid, an ERS inhibitor, can restore the ameliorative effect of berberine on VC and ERS that was blocked by inhibitor IV. Our results are the first to demonstrate the ameliorative effect of VC that was mediated by the activation of the Akt signaling pathway and inhibition of ERS. These results may provide a new pharmaceutical candidate for the prevention and treatment of VC.
Collapse
|
21
|
Yarmohammadi F, Hayes AW, Karimi G. The therapeutic effects of berberine against different diseases: A review on the involvement of the endoplasmic reticulum stress. Phytother Res 2022; 36:3215-3231. [PMID: 35778942 DOI: 10.1002/ptr.7539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Various factors interfere with the endoplasmic reticulum (ER) function, which is involved in protein folding and calcium homeostasis. ER dysfunction referred to as ER stress triggers cell death by apoptosis and inflammation. Berberine (BBR) is an alkaloid extracted from the family Berberidacea. It has shown multiple pharmacological activities, including anti-inflammatory, antioxidative, anti-apoptotic, antiproliferative, and antihypertensive. It has been reported that BBR can decrease apoptosis and inflammation following different pathological conditions, which might be mediated by targeting ER stress pathways. In this manuscript, we reviewed the protective potential of BBR against several diseases, such as metabolic disorders, cancer, intestinal diseases, cardiovascular, liver, kidney, and central nervous system diseases, in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Dai L, Zhu L, Ma S, Liu J, Zhang M, Li J, Luo Y, Zhou X, Chen Q, Wang L, Huang Y, Chen Y. Berberine alleviates NLRP3 inflammasome induced endothelial junction dysfunction through Ca 2+ signalling in inflammatory vascular injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154131. [PMID: 35533609 DOI: 10.1016/j.phymed.2022.154131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Berberine has received rising attention for its application in cardiovascular disease because of its relationship with inflammation. The endothelial NLRP3 inflammasome triggers inflammatory vascular injury which would lead to cardiovascular disease. Endothelial calcium signalling plays a crucial role in both the activation of NLRP3 inflammasome and endothelial cells dysfunction. However, the efficacy of BBR on the endothelial NLRP3 inflammasome in inflammatory vascular injury remains unknown. PURPOSE In this study, we focused on the NLRP3 pathway to determine whether BBR regulates endothelial junction function in inflammatory vascular injury. METHODS The integrity of the junction proteins VE-cadherin (VEC) and zonula occludens-1 (ZO-1) detected by immunofluorescence and immunoblotting was used to determine the therapeutic effect of BBR (50, 100, or 200 mg/kg/day) in LPS (100 μg/kg/day)-induced inflammatory vascular injury in mice and mouse microvascular endothelial cells (MECs) treated with LPS (1 μLPS ) and ATP (5 mM). Endothelial permeability was assessed by FITC-labelled dextran and trans-endothelial electrical resistance (TEER) in vitro. The assembly and activation of NLRP3 inflammasomes were detected by western blotting and immunofluorescence. Pharmacophore-based virtual molecular docking studies and calcium imaging analyses were used to determine the interaction of BBR with the ATP-gated Ca2+ channel P2X7R (purinergic P2X receptor 7) in the context of inflammatory vascular injury. RESULTS BBR recovered the expression of ZO-1 and VEC and inhibited endothelial NLRP3 inflammasome activation in coronary microvascular endothelium and in MECs. These results suggested a crucial role of the NLRP3 inflammasome in BBR-regulated endothelial integrity. Further analysis demonstrated that BBR treatment suppressed the binding of TXNIP (thioredoxin interacting protein) with NLRP3. Intriguingly, eliminating extracellular Ca2+ showed a similar effect as BBR. Virtual docking analysis indicated that R574 of P2X7R is a potential target for BBR binding. Ca2+ imaging showed that BBR inhibited the Ca2+ influx in response to ATP, supporting the potential interaction of BBR with P2X7R. CONCLUSIONS These findings suggest that BBR exhibits potential and specific therapeutic value by targeting calcium signals and the endothelial NLRP3 inflammasome in inflammatory vascular injury.
Collapse
Affiliation(s)
- Linfeng Dai
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou, 510000, China
| | - Li Zhu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou, 510000, China
| | - Shiyu Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jingya Liu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou, 510000, China
| | - Minyi Zhang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou, 510000, China
| | - Jieyi Li
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou, 510000, China
| | - Yong Luo
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou, 510000, China
| | - Xing Zhou
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou, 510000, China
| | - Qiuxiong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou, 510000, China.
| | - Yi Huang
- Department of Stomatology, The First Affiliated Hospital, The school of Dental Medicine, Jinan University, Guangzhou, China.
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou, 510000, China.
| |
Collapse
|
23
|
Tang M, Zheng Y, Li J, Hu Y. The X box binding protein 1/C/EBP homologous protein pathway induces apoptosis of endothelial cells under hyperglycemia. Exp Ther Med 2022; 24:454. [PMID: 35720621 DOI: 10.3892/etm.2022.11381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/16/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maoshun Tang
- Department of Neurosurgery, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| | - Yi Zheng
- Department of Science and Education, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| | - Jianping Li
- Department of Cardiology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| | - Yuanlang Hu
- Department of Obstetrics and Gynecology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| |
Collapse
|
24
|
The Beneficial Role of Nrf2 in the Endothelial Dysfunction of Atherosclerosis. Cardiol Res Pract 2022; 2022:4287711. [PMID: 35600333 PMCID: PMC9119788 DOI: 10.1155/2022/4287711] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular disease (CVD) is a serious public health issue in China, accounting for more than 40% of all mortality, and it is the leading cause of death worldwide. Atherosclerosis is the pathological basis for much CVD, including coronary heart disease, acute myocardial infarction, and stroke. Endothelial dysfunction is an initiating and exacerbating factor in atherosclerosis. Recent research has linked oxidative stress and mitochondrial damage to endothelial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor with antioxidant effects that is strongly connected to several CVDs. However, the mechanism by which Nrf2 reduces CVD is unknown. Research indicates that Nrf2 improves endothelial function by resisting oxidative stress and mitochondrial damage, thereby delaying atherosclerosis. This article examines the mechanisms and potential targets of Nrf2 affecting endothelial cell function to improve atherosclerosis and to provide ideas for the development of new CVD treatments.
Collapse
|
25
|
Wang Y, Lin K, Zhang L, Lin Y, Yu H, Xu Y, Fu L, Pi L, Li J, Mai H, Wei B, Jiang Z, Che D, Gu X. The rs7404339 AA Genotype in CDH5 Contributes to Increased Risks of Kawasaki Disease and Coronary Artery Lesions in a Southern Chinese Child Population. Front Cardiovasc Med 2022; 9:760982. [PMID: 35571208 PMCID: PMC9095914 DOI: 10.3389/fcvm.2022.760982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Kawasaki disease (KD) is an acute, self-limited febrile illness of unknown cause. And it predominantly affects children <5 years and the main complication is coronary artery lesion (CAL). Studies demonstrated that vascular endothelial cells (VECs) played a very important role in the CAL of KD. VE-cad encoded by CDH5 may exert a relevant role in endothelial cell biology through controlling the cohesion of the intercellular junctions. The pathogenesis of KD remains unclear and genetic factors may increase susceptibility of KD. However, the relationship between CDH5 polymorphisms and KD susceptibility has not been reported before. The present study is aimed at investigating whether the rs7404339 polymorphism in CDH5 is associated with KD susceptibility and CAL in a southern Chinese child population. Methods and Results We recruited 1,335 patients with KD and 1,669 healthy children. Each participant had supplied 2 mL of fresh blood in the clinical biologic bank at our hospital for other studies. Multiplex PCR is used to assess the genotypes of rs7404339 polymorphism in CDH5. According to the results, we found significant correlated relationship between rs7404339 polymorphism in CDH5 and KD susceptibility [AA vs. GG: adjusted odds ratio (OR) = 1.43, 95% confidence interval (CI) = 1.00-2.05; p = 0.0493; recessive model: adjusted OR = 1.44, 95% CI = 1.01-2.06, P = 0.0431]. In further stratified analysis, we found that children younger than 60 months (adjusted OR = 1.46, 95% CI = 1.01-2.10; p = 0.0424) and male (adjusted OR = 1.70, 95% CI = 1.09-2.65; p = 0.0203) with the rs7404339 AA genotype in CDH5 had a higher risk of KD than carriers of the GA/GG genotype. Furthermore, stratification analysis revealed that patients with the rs7404339 AA genotype exhibited the significantly higher onset risk for CAL than carriers of the GA/GG genotype (adjusted age and gender odds ratio = 1.56, 95% CI = 1.01-2.41; P = 0.0433). Conclusion Our results showed that rs7404339 AA genotype in CDH5 is significant associated with KD susceptibility. And children younger than 60 months and male with the rs7404339 AA genotype had a higher risk of KD than carriers with the GA/GG genotype. Furthermore, patients with the rs7404339 AA genotype exhibited a significantly higher risk of CAL complication than carriers of the GA/GG genotype.
Collapse
Affiliation(s)
- Yishuai Wang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Kun Lin
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Linyuan Zhang
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yueling Lin
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinqing Li
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hanran Mai
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Wei
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhiyong Jiang
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| |
Collapse
|
26
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Yang F, Ao X, Ding L, Ye L, Zhang X, Yang L, Zhao Z, Wang J. Non-coding RNAs in Kawasaki disease: Molecular mechanisms and clinical implications. Bioessays 2022; 44:e2100256. [PMID: 35355301 DOI: 10.1002/bies.202100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022]
Abstract
Kawasaki disease (KD) is an acute self-limiting vasculitis with coronary complications, usually occurring in children. The incidence of KD in children is increasing year by year, mainly in East Asian countries, but relatively stably in Europe and America. Although studies on KD have been reported, the pathogenesis of KD is unknown. With the development of high-throughput sequencing technology, growing number of regulatory noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) have been identified to involved in KD. However, the role of ncRNAs in KD has not been comprehensively elucidated. Therefore, it is significative to study the regulatory role of ncRNA in KD, which might help to uncover new and effective therapeutic strategies for KD. In this review, we summarize recent studies on ncRNA in KD from the perspectives of immune disorders, inflammatory disorders, and endothelial dysfunction, and highlight the potential of ncRNAs as therapeutic targets for KD.
Collapse
Affiliation(s)
- Fuqing Yang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lin Ding
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lin Ye
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xuejuan Zhang
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lanting Yang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Zhonghao Zhao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Obata F, Ozuru R, Tsuji T, Matsuba T, Fujii J. Stx2 Induces Differential Gene Expression and Disturbs Circadian Rhythm Genes in the Proximal Tubule. Toxins (Basel) 2022; 14:toxins14020069. [PMID: 35202097 PMCID: PMC8874938 DOI: 10.3390/toxins14020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes proximal tubular defects in the kidney. However, factors altered by Shiga toxin (Stx) within the proximal tubules are yet to be shown. We determined Stx receptor Gb3 in murine and human kidneys and confirmed the receptor expression in the proximal tubules. Stx2-injected mouse kidney tissues and Stx2-treated human primary renal proximal tubular epithelial cell (RPTEC) were collected and microarray analysis was performed. We compared murine kidney and RPTEC arrays and selected common 58 genes that are differentially expressed vs. control (0 h, no toxin-treated). We found that the most highly expressed gene was GDF15, which may be involved in Stx2-induced weight loss. Genes associated with previously reported Stx2 activities such as src kinase Yes phosphorylation pathway activation, unfolded protein response (UPR) and ribotoxic stress response (RSR) showed differential expressions. Moreover, circadian clock genes were differentially expressed, suggesting Stx2-induced renal circadian rhythm disturbance. Circadian rhythm-regulated proximal tubular Na+-glucose transporter SGLT1 (SLC5A1) was down-regulated, indicating proximal tubular functional deterioration, and mice developed glucosuria confirming proximal tubular dysfunction. Stx2 alters gene expression in murine and human proximal tubules through known activities and newly investigated circadian rhythm disturbance, which may result in proximal tubular dysfunctions.
Collapse
Affiliation(s)
- Fumiko Obata
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago 683-8503, Japan; (T.T.); (J.F.)
- Correspondence:
| | - Ryo Ozuru
- Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Takahiro Tsuji
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago 683-8503, Japan; (T.T.); (J.F.)
| | - Takashi Matsuba
- Division of Infectious Disease Control and Prevention, Department of Animal Pharmaceutical Science, School of Pharmaceutical Science, Kyusyu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka 882-8508, Japan;
| | - Jun Fujii
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago 683-8503, Japan; (T.T.); (J.F.)
| |
Collapse
|
29
|
Wang R, Zheng L, Xu Q, Xu L, Wang D, Li J, Lu G, Huang C, Wang Y. Unveiling the structural properties of water-soluble lignin from gramineous biomass by autohydrolysis and its functionality as a bioactivator (anti-inflammatory and antioxidative). Int J Biol Macromol 2021; 191:1087-1095. [PMID: 34600953 DOI: 10.1016/j.ijbiomac.2021.09.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
Due to its low molecular weight and abundant functional groups, water-soluble lignin (WSL) is considered as a more potent antioxidant than traditional industrial lignin in biofields. However, few studies have been conducted to evaluate its intracellular and endogenous reactive oxygen species (ROS)-scavenging ability, especially for the intervention of ROS-related disease in vivo. In this work, WSL in bamboo autohydrolysate (WSL-BM) and wheat stalk autohydrolysate (WSL-WS) were isolated and characterized to comparably analyze their bioactivities. The composition analysis and NMR characterization showed that both WSL-BM and WSL-WS contained relatively similar components and substructures, but WSL-BM contained higher contents of phenolic OH groups. Both WSL samples exhibited excellent biocompatibility with the concentration below 50 μg/mL, while WSL-BM exhibited superior ROS-scavenging ability and ROS-related ulcerative colitis treatment potential at same concentration. In addition, WSL-BM also showed better performance in ameliorating inflammation and oxidative stress in RAW 264.7 cells and colitis mice by activating Nrf2 and suppressing NFκB signaling, resulting in an overall improvement in both macroscopic and histological parameters. Overall, these results implied that WSL from gramineous biomass can be used as a novel anti-inflammatory and antioxidative agent in the biomedical field.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Liming Zheng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Qinmei Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210000, Jiangsu, PR China
| | - Liang Xu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Daojuan Wang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Jinyang Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Geng Lu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, Jiangsu, PR China.
| |
Collapse
|
30
|
Unveiling the structural properties of water-soluble lignin from gramineous biomass by autohydrolysis and its functionality as a bioactivator (anti-inflammatory and antioxidative). Int J Biol Macromol 2021. [DOI: 10.1016/j.ijbiomac.2021.09.124
expr 902102837 + 985201983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
31
|
Graciano-Machuca O, Villegas-Rivera G, López-Pérez I, Macías-Barragán J, Sifuentes-Franco S. Multisystem Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection: Role of Oxidative Stress. Front Immunol 2021; 12:723654. [PMID: 34737740 PMCID: PMC8560690 DOI: 10.3389/fimmu.2021.723654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
With the appearance of the SARS-CoV-2 virus in December 2019, all countries in the world have implemented different strategies to prevent its spread and to intensively search for effective treatments. Initially, severe cases of the disease were considered in adult patients; however, cases of older school-age children and adolescents who presented fever, hypotension, severe abdominal pain and cardiac dysfunction, positive for SARS-CoV-2 infection, have been reported, with increased pro-inflammatory cytokines and tissue damage, condition denominated multisystemic inflammatory syndrome (MIS-C); The emerging data from patients with MIS-C have suggested unique characteristics in the immunological response and also clinical similarities with other inflammatory syndromes, which can support as a reference in the search for molecular mechanisms involved in MIS-C. We here in propose that oxidative stress (OE) may play a very important role in the pathophysiology of MIS-C, such as occurs in Kawasaki disease (KD), severe COVID-19 in adults and other processes with characteristics of vascular damage similar to MIS- C, for which we review the available information that can be correlated with possible redox mechanisms.
Collapse
Affiliation(s)
- Omar Graciano-Machuca
- Laboratory of Biological Systems, Department of Health Sciences, University of Guadalajara (UDG), Ameca, Mexico
| | - Geannyne Villegas-Rivera
- Department of Health Sciences—Disease as an Individual Process, University of Guadalajara (UDG), Tonalá, Mexico
| | - Iván López-Pérez
- Department of Health Sciences—Disease as an Individual Process, University of Guadalajara (UDG), Tonalá, Mexico
| | - José Macías-Barragán
- Laboratory of Biological Systems, Department of Health Sciences, University of Guadalajara (UDG), Ameca, Mexico
| | - Sonia Sifuentes-Franco
- Laboratory of Biological Systems, Department of Health Sciences, University of Guadalajara (UDG), Ameca, Mexico
- Department of Health Sciences—Disease as an Individual Process, University of Guadalajara (UDG), Tonalá, Mexico
| |
Collapse
|
32
|
Liu C, Yang D, Wang H, Hu S, Xie X, Zhang L, Jia H, Qi Q. MicroRNA-197-3p mediates damage to human coronary artery endothelial cells via targeting TIMP3 in Kawasaki disease. Mol Cell Biochem 2021; 476:4245-4263. [PMID: 34351574 DOI: 10.1007/s11010-021-04238-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Kawasaki disease (KD) causes cardiovascular system injury in children. However, the pathogenic mechanisms of KD have not been well defined. Recently, strong correlation between aberrant microRNAs and KD nosogenesis has been revealed. A role of microRNA-197-3p (miR-197-3p) in the pathogenesis of KD is identified in the present study. Cell proliferation assay showed human coronary artery endothelial cells (HCAECs) were suppressed by serum from KD patients, which was correlated with high levels of miR-197-3p in both KD serum and HCAECs cultured with KD serum. The inhibition of HCAECs by miR-197-3p was confirmed by cells expressing miR-197-3p mimic and miR-197-3p inhibitor. Comparative proteomics analysis and Ingenuity Pathway Analysis (IPA) revealed TIMP3 as a potential target of miR-197-3p, which was demonstrated by western blot and dual-luciferase reporter assays. Subsequently, by detecting the endothelium damage markers THBS1, VWF, and HSPG2, the role of miR-197-3p/TIMP3 in KD-induced damage to HCAECs was confirmed, which was further validated by a KD mouse model in vivo. The expressions of miR-197-3p and its target, TIMP3, are dramatically variational in KD serum and HCAECs cultured with KD serum. Increased miR-197-3p induces HCAECs abnormal by restraining TIMP3 expression directly. Hence, dysregulation of miR-197-3p/TIMP3 expression in HCAECs may be an important mechanism in cardiovascular endothelium injury in KD patients, which offers a feasible therapeutic target for KD treatment.
Collapse
Affiliation(s)
- Chaowu Liu
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, Guangdong, China
| | - Deguang Yang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hong Wang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Colleges of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Shengwei Hu
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaofei Xie
- Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Li Zhang
- Department of Pediatric Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
33
|
Scherlinger M, Tsokos GC. Reactive oxygen species: The Yin and Yang in (auto-)immunity. Autoimmun Rev 2021; 20:102869. [PMID: 34118461 DOI: 10.1016/j.autrev.2021.102869] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) are produced by immune cells in response to antigens. They are produced mostly in the mitochondria and their levels are tightly controlled by a series of metabolic processes. ROS are necessary for the development of the immune response but the role of ROS in the development of autoimmune disease needs further clarification. Early clinical information points to the beneficial role of supplementation of antioxidant agents or the reduction of ROS production. We review recent information in the field in an effort to identify areas more studies are needed.
Collapse
Affiliation(s)
- Marc Scherlinger
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares, Est/Sud-Ouest (RESO), France; Service de rhumatologie, Centre Hospitalier Universitaire de Strasbourg, 1 avenue Molière, 67098 Strasbourg, France.
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Sun Y, Huang S, Wan C, Ruan Q, Xie X, Wei D, Li G, Lin S, Li H, Wu S. Knockdown of lncRNA ENST00000609755.1 Confers Protection Against Early oxLDL-Induced Coronary Heart Disease. Front Cardiovasc Med 2021; 8:650212. [PMID: 34095248 PMCID: PMC8175657 DOI: 10.3389/fcvm.2021.650212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background: This study investigated the association between long non-coding RNAs (lncRNAs) and coronary heart disease (CHD) and further elucidated the potential biological roles of lncRNAs in CHD pathogenesis. Methods: A case-control study (590 patients and 590 controls) was conducted from February 2017 and March 2019 in Fuzhou, China. Environmental factors were investigated using questionnaires and physical examinations. Five representative lncRNAs were screened using lncRNA microarray (peripheral blood in 5 cases and 5 controls) and further verified by quantitative real-time polymerase chain reaction (peripheral blood leukocyte in 100 cases and 100 controls). Oxidized low-density lipoprotein (oxLDL) was used to induce a human coronary artery endothelial cell (HCAECs) injury model, and loss of function was used to elucidate the role of lncRNA ENST00000609755.1 (lnc-MICALL2-2) in oxLDL-induced HCAECs injury. Results: A total of 320 lncRNAs were found dysregulated in CHD patients (fold change> 2, p < 0.05). The results of a discovery microarray, population verification and HCAEC experiments suggested the lnc-MICALL2-2 is upregulated in CHD subjects and in an oxLDL-induced HCAECs injury model. Conversely, lnc-MICALL2-2 inhibition in vitro attenuated the effects of oxLDL on HCAECs morphology, proliferation, and apoptosis. Conclusion: Elevated expression of lnc-MICALL2-2 is an independent risk factor for CHD, and knockdown subsequently confers protection against early pathological processes of oxLDL-induced CHD.
Collapse
Affiliation(s)
- Yi Sun
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shuna Huang
- Department of Clinical Research and Translation Center Office, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chunyu Wan
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Qishuang Ruan
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxu Xie
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Donghong Wei
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Guobo Li
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shaowei Lin
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huangyuan Li
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Siying Wu
- School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Fan X, Guo X, Li Y, Xu M. Utilizing Network Pharmacology to Explore the Possible Mechanism of Coptidis Rhizoma in Kawasaki Disease. Front Pediatr 2021; 9:708553. [PMID: 34589453 PMCID: PMC8473743 DOI: 10.3389/fped.2021.708553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The purpose of the research is to identify the main active ingredients in Coptidis Rhizoma (CR) and explore the possible molecular mechanisms in the treatment of Kawasaki disease (KD). Materials and Methods: A total of 58 children with KD were randomly divided into a control group and a Berberine treatment group. The therapeutic indicators of the two groups before and after treatment were compared. Then, compounds and drug targets of CR from the TCMSP, SWISS, SEA, and the STITCH were collected, and targeted KD genes were retrieved from the DisGeNET, DrugBank, and GeneCards databases. The network pharmacology approach involved network construction, target prediction, and module analysis. GO and KEGG enrichment analysis were performed to investigate the possible pathways related to CR for KD treatments. Finally, protein expression was determined to verify the core targets using Western blotting in the cell experiment. Results: In total, nine compounds, 369 relative drug targets, and 624 KD target genes were collected in the above database. The network analysis revealed that 41 targets might be the therapeutic targets of CR on KD. GO and KEGG enrichment analysis revealed that the biological processes, namely, response to hormone, response to inorganic substance, and enzyme-linked receptor protein signaling pathway, and Pathways in cancer, Toll-like receptor signaling pathway, and Pancreatic cancer are the most significant. Protein expression of CASP3, PTGS2, and SRC was upregulated and AKT1 and ERK were downregulated. Conclusion: We provided useful resources to understand the molecular mechanism and the potential targets for novel therapy of KD.
Collapse
Affiliation(s)
- Xue Fan
- Department of Pediatric Cardiology, Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Xin Guo
- Department of Pediatric, Longgang District Maternal and Children Health Care Hospital, Shenzhen, China
| | - Ying Li
- Department of Pediatric Cardiology, Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Mingguo Xu
- Department of Pediatric, Longgang District Maternal and Children Health Care Hospital, Shenzhen, China
| |
Collapse
|