1
|
Lee GL, Hu CC, Chen MF, Chang Y, Lin YC, Wu YY, Hsu YH. Inosine from purine metabolism enhances fracture healing by coupling fibrinolysis and angiogenesis of type H vessels. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167818. [PMID: 40157654 DOI: 10.1016/j.bbadis.2025.167818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Fibrinolysis-angiogenesis coupling is crucial for successful fracture healing, in which type H vessels play an indispensable role. However, the metabolic control of fibrinolysis-type H angiogenesis coupling in fracture healing remains unclear. We used a metabolomics approach to gain metabolic insights from mouse fracture models (0.3 mm and 1.0 mm femur defects). Furthermore, human umbilical vein endothelial cells (HUVECs) and MC3T3-E1 cells were employed as in vitro models to examine the effects of identified metabolites on endothelial events and osteogenesis, respectively. CD31 and endomucin (Emcn) were used for detecting type H markers, and tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) for fibrinolysis. A femur defect of 1.5 mm in mice was included to validate the therapeutic potential of identified metabolites by bone imaging and micro-CT. Purine metabolism is the most significant pathway in fracture healing; three purinergic metabolites, adenosine, adenine, and inosine, are regulated in mouse serum. According to the in vivo results, CD31HiEmcnHi type H vessels are upregulated near the defect site in mouse femur and are associated with tPA expression, but not PAI-1. Additionally, in vitro experiments examining the endothelial functions of HUVECs demonstrated that these three metabolites promote cell migration and tube formation rather than proliferation. Fibrinolytic activity and type H phenotype in HUVECs were induced only by inosine through activation of the adenosine A2A receptor. Inosine, regulated during fracture healing, has the capacity to synchronously induce fibrinolysis and type H phenotype in line with osteogenesis, indicating its role in enhancing fracture healing.
Collapse
Affiliation(s)
- Guan-Lin Lee
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chih Lin
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ying-Yu Wu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
2
|
Wojciak-Stothard B, Gupte S, Bossone E. Disease mechanisms and therapeutic targets in pulmonary hypertension: Key insights from the special issue of vascular pharmacology on pulmonary hypertension. Vascul Pharmacol 2024; 156:107415. [PMID: 39117158 DOI: 10.1016/j.vph.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Affiliation(s)
| | - Sachin Gupte
- Department of Pharmacology, New York Medical College, New York, USA
| | - Eduardo Bossone
- Department of Public Health, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
3
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
4
|
Choudhury P, Dasgupta S, Bhattacharyya P, Roychowdhury S, Chaudhury K. Understanding pulmonary hypertension: the need for an integrative metabolomics and transcriptomics approach. Mol Omics 2024; 20:366-389. [PMID: 38853716 DOI: 10.1039/d3mo00266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pulmonary hypertension (PH), characterised by mean pulmonary arterial pressure (mPAP) >20 mm Hg at rest, is a complex pathophysiological disorder associated with multiple clinical conditions. The high prevalence of the disease along with increased mortality and morbidity makes it a global health burden. Despite major advances in understanding the disease pathophysiology, much of the underlying complex molecular mechanism remains to be elucidated. Lack of a robust diagnostic test and specific therapeutic targets also poses major challenges. This review provides a comprehensive update on the dysregulated pathways and promising candidate markers identified in PH patients using the transcriptomics and metabolomics approach. The review also highlights the need of using an integrative multi-omics approach for obtaining insight into the disease at a molecular level. The integrative multi-omics/pan-omics approach envisaged to help in bridging the gap from genotype to phenotype is outlined. Finally, the challenges commonly encountered while conducting omics-driven studies are also discussed.
Collapse
Affiliation(s)
- Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, West Bengal, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
5
|
Zhang H, Li M, Hu CJ, Stenmark KR. Fibroblasts in Pulmonary Hypertension: Roles and Molecular Mechanisms. Cells 2024; 13:914. [PMID: 38891046 PMCID: PMC11171669 DOI: 10.3390/cells13110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Fibroblasts, among the most prevalent and widely distributed cell types in the human body, play a crucial role in defining tissue structure. They do this by depositing and remodeling extracellular matrixes and organizing functional tissue networks, which are essential for tissue homeostasis and various human diseases. Pulmonary hypertension (PH) is a devastating syndrome with high mortality, characterized by remodeling of the pulmonary vasculature and significant cellular and structural changes within the intima, media, and adventitia layers. Most research on PH has focused on alterations in the intima (endothelial cells) and media (smooth muscle cells). However, research over the past decade has provided strong evidence of the critical role played by pulmonary artery adventitial fibroblasts in PH. These fibroblasts exhibit the earliest, most dramatic, and most sustained proliferative, apoptosis-resistant, and inflammatory responses to vascular stress. This review examines the aberrant phenotypes of PH fibroblasts and their role in the pathogenesis of PH, discusses potential molecular signaling pathways underlying these activated phenotypes, and highlights areas of research that merit further study to identify promising targets for the prevention and treatment of PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Ranasinghe ADCU, Tennakoon TMPB, Schwarz MA. Emerging Epigenetic Targets and Their Molecular Impact on Vascular Remodeling in Pulmonary Hypertension. Cells 2024; 13:244. [PMID: 38334636 PMCID: PMC10854593 DOI: 10.3390/cells13030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Pulmonary Hypertension (PH) is a terminal disease characterized by severe pulmonary vascular remodeling. Unfortunately, targeted therapy to prevent disease progression is limited. Here, the vascular cell populations that contribute to the molecular and morphological changes of PH in conjunction with current animal models for studying vascular remodeling in PH will be examined. The status quo of epigenetic targeting for treating vascular remodeling in different PH subtypes will be dissected, while parallel epigenetic threads between pulmonary hypertension and pathogenic cancer provide insight into future therapeutic PH opportunities.
Collapse
Affiliation(s)
| | | | - Margaret A. Schwarz
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, South Bend, IN 46617, USA
| |
Collapse
|
7
|
Bassareo PP, D’Alto M. Metabolomics in Pulmonary Hypertension-A Useful Tool to Provide Insights into the Dark Side of a Tricky Pathology. Int J Mol Sci 2023; 24:13227. [PMID: 37686034 PMCID: PMC10487467 DOI: 10.3390/ijms241713227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Pulmonary hypertension (PH) is a multifaceted illness causing clinical manifestations like dyspnea, fatigue, and cyanosis. If left untreated, it often evolves into irreversible pulmonary arterial hypertension (PAH), leading to death. Metabolomics is a laboratory technique capable of providing insights into the metabolic pathways that are responsible for a number of physiologic or pathologic events through the analysis of a biological fluid (such as blood, urine, and sputum) using proton nuclear magnetic resonance spectroscopy or mass spectrometry. A systematic review was finalized according to the PRISMA scheme, with the goal of providing an overview of the research papers released up to now on the application of metabolomics to PH/PAH. So, eighty-five papers were identified, of which twenty-four concerning PH, and sixty-one regarding PAH. We found that, from a metabolic standpoint, the hallmarks of the disease onset and progression are an increase in glycolysis and impaired mitochondrial respiration. Oxidation is exacerbated as well. Specific metabolic fingerprints allow the characterization of some of the specific PH and PAH subtypes. Overall, metabolomics provides insights into the biological processes happening in the body of a subject suffering from PH/PAH. The disarranged metabolic pathways underpinning the disease may be the target of new therapeutic agents. Metabolomics will allow investigators to make a step forward towards personalized medicine.
Collapse
Affiliation(s)
- Pier Paolo Bassareo
- Mater Misercordiae University Hospital, D07 R2WY Dublin, Ireland
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Michele D’Alto
- Pulmonary Hypertension Unit, Dipartimento di Cardiologia, Università della Campania “Luigi Vanvitelli”, Ospedale Monaldi, 80131 Naples, Italy;
| |
Collapse
|