1
|
Merouani EFO, Ferdowsi M, Buelna G, Jones JP, Benyoussef EH, Malhautier L, Heitz M. Exploring the potential of biofiltration for mitigating harmful gaseous emissions from small or old landfills: a review. Biodegradation 2024; 35:469-491. [PMID: 38748305 DOI: 10.1007/s10532-024-10082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/13/2024] [Indexed: 07/14/2024]
Abstract
Landfills are widely employed as the primary means of solid waste disposal. However, this practice generates landfill gas (LFG) which contains methane (CH4), a potent greenhouse gas, as well as various volatile organic compounds and volatile inorganic compounds. These emissions from landfills contribute to approximately 25% of the total atmospheric CH4, indicating the imperative need to valorize or treat LFG prior to its release into the atmosphere. This review first aims to outline landfills, waste disposal and valorization, conventional gas treatment techniques commonly employed for LFG treatment, such as flares and thermal oxidation. Furthermore, it explores biotechnological approaches as more technically and economically feasible alternatives for mitigating LFG emissions, especially in the case of small and aged landfills where CH4 concentrations are often below 3% v/v. Finally, this review highlights biofilters as the most suitable biotechnological solution for LFG treatment and discusses several advantages and challenges associated with their implementation in the landfill environment.
Collapse
Affiliation(s)
- El Farouk Omar Merouani
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Milad Ferdowsi
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Gerardo Buelna
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - J Peter Jones
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - El-Hadi Benyoussef
- Laboratoire de Valorisation des Énergies Fossiles, École Nationale Polytechnique, 10 Avenue Hassan Badi El Harrach, BP182, 16200, Algiers, Algeria
| | - Luc Malhautier
- Laboratoire des Sciences des Risques, IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Michèle Heitz
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
2
|
Ferdowsi M, Khabiri B, Buelna G, Jones JP, Heitz M. Air biofilters for a mixture of organic gaseous pollutants: an approach for industrial applications. Crit Rev Biotechnol 2023; 43:1019-1034. [PMID: 36001040 DOI: 10.1080/07388551.2022.2100735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
Hazardous airborne pollutants are frequently emitted to the atmosphere in the form of a gaseous mixture. Air biofilters as the primary biotechnological choice for waste gas treatment (low inlet concentration and high gas flow rate) should run properly when the feed contains multiple pollutants. Simultaneous removal of pollutants in biofilters has been extensively studied over the last 10 years. In this review, the results and findings of the mentioned studies including different groups of pollutants, such as methane (CH4) and volatile organic compounds (VOCs) are discussed. As the number of pollutants in a mixture increases, their elimination might become more complicated due to interactions between the pollutants. Parallel batch studies might be helpful to better understand these interaction effects in the absence of mass transfer limitations. Setting optimum operating conditions for removal of mixtures in biofilters is challenging because of opposing properties of pollutants. In biofilters, concerns, such as inlet gas composition variation and stability while dealing with abrupt inlet load and concentration changes, must be managed especially at industrial scales. Biofilters designed with multi-layer beds, allow tracking the fate of each pollutant as well as analyzing the diversity of microbial culture across the filter bed. Certain strategies are recommended to improve the performance of biofilters treating mixtures. For example, addition of (bio)surfactants as well as a second liquid phase in biotrickling filters might be considered for the elimination of multiple pollutants especially when hydrophobic pollutants are involved.
Collapse
Affiliation(s)
- Milad Ferdowsi
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Bahman Khabiri
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gerardo Buelna
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - J Peter Jones
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Michèle Heitz
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Sana N, Arnepalli DN, Krishnan C. A bio-augmented system with Methylosarcina sp. LC-4 immobilized on bio-carriers: Towards an integrated approach to mitigate and valorize methane emissions from landfills to biodiesel. CHEMOSPHERE 2023; 341:139992. [PMID: 37657707 DOI: 10.1016/j.chemosphere.2023.139992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Bio-augmented systems based on methanotrophs are indispensable in curbing anthropogenic methane emissions from engineered landfills or dumpsites to curtail rising levels of greenhouse gases. Using a defined methanotroph culture immobilized on an inert material-based bio-carrier makes it possible to harness these methane emissions for creating value-added products, thus contributing to the circular bio-economy. The methane oxidation capacity of the model methanotroph Methylosarcina sp. LC-4, a prospective organism for biodiesel production using methane present in landfill gas, immobilized on several inert bio-carriers, was evaluated to identify a bio-carrier that provided optimum conditions for the process. Among the several bio-carriers evaluated, perlite and vermiculite were selected due to their high specific surface area and superior water-holding capacity, which result in the retention of nutrients and biomass and higher methane elimination capacity. While perlite showed high biomass holding capacity and methane transport, vermiculite supported a high growth of methanotrophs. LC-4 immobilized on perlite and vermiculite as the bio-carrier showed maximum methane elimination capacity (MEC) of 291.3 g m-2 day-1 and 155.5 g m-2 day-1, respectively. The low bed height of only 0.13 m and a short start-up period of 2-4 days are promising for use as alternate daily cover in a landfill. The recovered biomass had 12% (w/w) fatty acid methyl ester (FAME), with a high fraction of (∼85%) of C14-C18 saturated and monounsaturated fatty acids, suitable for biodiesel production. The combination of perlite and vermiculite increased MEC and FAME content levels. The current study demonstrated a new bio-augmented system designed with a pure methanotroph for methane elimination with a short start-up time and the valorization of the assimilated methane.
Collapse
Affiliation(s)
- Nivedita Sana
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Dali Naidu Arnepalli
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Chandraraj Krishnan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
4
|
Hettiaratchi JPA, Jayasinghe PA, Yarandy TA, Attalage D, Jalilzadeh H, Pokhrel D, Bartholameuz E, Hunte C. Innovative Practices to Maximize Resource Recovery and Minimize Greenhouse Gas Emissions from Landfill Waste Cells: Historical and Recent Developments. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00230-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Seo Y, Cho KS. Effects of Plant and Soil Amendment on Remediation Performance and Methane Mitigation in Petroleum-Contaminated Soil. J Microbiol Biotechnol 2021; 31:104-114. [PMID: 33144544 PMCID: PMC9705697 DOI: 10.4014/jmb.2006.06023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
Petroleum-contaminated soil is considered among the most important potential anthropogenic atmospheric methane sources. Additionally, various rhizoremediation factors can affect methane emissions by altering soil ecosystem carbon cycles. Nonetheless, greenhouse gas emissions from soil have not been given due importance as a potentially relevant parameter in rhizoremediation techniques. Therefore, in this study we sought to investigate the effects of different plant and soil amendments on both remediation efficiencies and methane emission characteristics in dieselcontaminated soil. An indoor pot experiment consisting of three plant treatments (control, maize, tall fescue) and two soil amendments (chemical nutrient, compost) was performed for 95 days. Total petroleum hydrocarbon (TPH) removal efficiency, dehydrogenase activity, and alkB (i.e., an alkane compound-degrading enzyme) gene abundance were the highest in the tall fescue and maize soil system amended with compost. Compost addition enhanced both the overall remediation efficiencies, as well as pmoA (i.e., a methane-oxidizing enzyme) gene abundance in soils. Moreover, the potential methane emission of diesel-contaminated soil was relatively low when maize was introduced to the soil system. After microbial community analysis, various TPH-degrading microorganisms (Nocardioides, Marinobacter, Immitisolibacter, Acinetobacter, Kocuria, Mycobacterium, Pseudomonas, Alcanivorax) and methane-oxidizing microorganisms (Methylocapsa, Methylosarcina) were observed in the rhizosphere soil. The effects of major rhizoremediation factors on soil remediation efficiency and greenhouse gas emissions discussed herein are expected to contribute to the development of sustainable biological remediation technologies in response to global climate change.
Collapse
Affiliation(s)
- Yoonjoo Seo
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea,Corresponding author Phone: +82-2-3277-2393 Fax: +82-2-3277-3275 E-mail:
| |
Collapse
|
6
|
Lee YY, Hong S, Cho KS. Design and shelf stability assessment of bacterial agents for simultaneous removal of methane and odors. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:906-913. [PMID: 31094279 DOI: 10.1080/10934529.2019.1607651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Two types of solid bacterial agents for the simultaneous removal of methane and odor were designed using humic soil (De-MO-1) and the mixture of humic soil and tobermolite (De-MO-2) as biocarriers. The bacterial consortium, having the removability of methane and dimethyl sulfide (DMS), was immobilized in the biocarriers, and then stored at room temperature for 375 days without additional treatment. Although the lag period, of which the incubation time required for removing methane and DMS, tended to increase over the storage period, the removability of methane and DMS was maintained during 375 days in both bacterial agents. Key bacteria associated with the removal of methane and odors (Streptomyces, Promicromonospora, Paracoccus, Lysobacter, Sphingopyxis and Methylosystis) could keep their abundance during the storage period. The richness and evenness values of the bacterial communities in De-MO-1 and De-MO-2 ranged 4.89 ∼ 6.50 and 0.89 ∼ 0.98, respectively, indicating that high bacterial diversity was maintained during the storage period. The results suggest that De-MO-1 and De-MO-2, designed for the simultaneous removal of methane and odors, had shelf stabilities over one year.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Sodaneath Hong
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| |
Collapse
|
7
|
Yun J, Jung H, Choi H, Oh KC, Jeon JM, Ryu HW, Cho KS. Performance evaluation of an on-site biocomplex textile as an alternative daily cover in a sanitary landfill, South Korea. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2018; 36:1137-1145. [PMID: 30376763 DOI: 10.1177/0734242x18806996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The performance of a biocomplex textile prototype was evaluated as an alternative daily cover at an operational landfill site to mitigate odors and methane. The biocomplex textile prototype consisted of two layers of nonwoven fabric and biocarrier immobilized microorganisms and showed excellent removal of odors and methane compared to landfill cover soil. The complex odor intensity (odor dilution ratio (ODR)) on the surface of landfill cover soil was 1,000-10,000 ODR (average of 4,204 ODR), whereas it was 5-250 ODR (average of 55 ODR) on the surface of biocomplex textile. Hydrogen sulfide, which contributes a significant odor intensity, had an average concentration on the biocomplex textile of 8.64 parts-per-billion (ppb), compared to 1733.21 ppb on the landfill cover soil. The biocomplex textile also showed effective methane removal with methane concentrations of 0-1.2% (average of 0.3%) on the biocomplex textile compared to 0-20% (average of 5.3%) on the landfill cover soil. Bacterial community diversity in the biocomplex textile increased with time until an operating period of 66 days, after which diversity indices were maintained at a constant level. The dominant species were the methanotrophs Methylocaldum and Methylobacter, and the non-methanotrophs Acinetobacter, Serpens, Ohtaekwangia, and Actinophytocola. These results demonstrate that on-site biocomplex textile is a suitable alternative daily cover to mitigate odors and methane in landfills.
Collapse
Affiliation(s)
- Jeonghee Yun
- 1 Department of Environmental Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Hyekyeng Jung
- 1 Department of Environmental Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Hyungjoo Choi
- 1 Department of Environmental Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Kyung-Cheol Oh
- 2 Green Environment Complex Center, Suncheon, Republic of Korea
| | - Jun-Min Jeon
- 2 Green Environment Complex Center, Suncheon, Republic of Korea
| | - Hee Wook Ryu
- 3 Department of Chemical Engineering, Soongsil University, Dongjak-gu, Seoul, Republic of Korea
| | - Kyung-Suk Cho
- 1 Department of Environmental Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
8
|
La H, Hettiaratchi JPA, Achari G, Dunfield PF. Biofiltration of methane. BIORESOURCE TECHNOLOGY 2018; 268:759-772. [PMID: 30064899 DOI: 10.1016/j.biortech.2018.07.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
The on-going annual increase in global methane (CH4) emissions can be largely attributed to anthropogenic activities. However, as more than half of these emissions are diffuse and possess a concentration less than 3% (v/v), physical-chemical treatments are inefficient as an abatement technology. In this regard, biotechnologies, such as biofiltration using methane-oxidizing bacteria, or methanotrophs, are a cost-effective and efficient means of combating diffuse CH4 emissions. In this review, a number of abiotic factors including temperature, pH, water content, packing material, empty-bed residence time, inlet gas flow rate, CH4 concentration, as well biotic factors, such as biomass development, are reviewed based on empirical findings on CH4 biofiltration studies that have been performed in the last decades.
Collapse
Affiliation(s)
- Helen La
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada
| | - J Patrick A Hettiaratchi
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada
| | - Gopal Achari
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada.
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada
| |
Collapse
|