1
|
Falade EO, Kouamé KJEP, Zhu Y, Zheng Y, Ye X. A review: Examining the effects of modern extraction techniques on functional and structural properties of cellulose and hemicellulose in Brewer's Spent Grain dietary fiber. Carbohydr Polym 2025; 348:122883. [PMID: 39562135 DOI: 10.1016/j.carbpol.2024.122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
Brewer's Spent Grain (BSG) is a by-product of the brewing industry, rich in dietary fibers that offer various health benefits. This review delves into the molecular and structural transformations of BSG and dietary fibers (arabinoxylan, beta-glucan, cellulose etc.) extracted from BSG, triggered by recent advancements in extraction technologies. Through an analysis of current methodologies, such as advanced solubilization methods and emerging technologies like ultrasonication, this paper discusses their significant improvement in yield of BSG-dietary fiber and impact on the structural and functional properties of BSG-dietary fibers (BSG-DF). The review highlights how these technologies enhance fiber solubilization and modify physicochemical properties, thereby improving their functionality in food applications. Furthermore, the review aims to bridge gaps in current research and suggest future directions for optimizing extraction processes to better exploit these fibers in the food industries.
Collapse
Affiliation(s)
- Ebenezer Ola Falade
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| | - Kouadio Jean Eric-Parfait Kouamé
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Yanyun Zhu
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Yunyun Zheng
- Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Xingqian Ye
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China.
| |
Collapse
|
2
|
Ahuja V, Chauhan S, Purewal SS, Mehariya S, Patel AK, Kumar G, Megharaj M, Yang YH, Bhatia SK. Microbial alchemy: upcycling of brewery spent grains into high-value products through fermentation. Crit Rev Biotechnol 2024; 44:1367-1385. [PMID: 38163946 DOI: 10.1080/07388551.2023.2286430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.
Collapse
Affiliation(s)
- Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Shikha Chauhan
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Sukhvinder Singh Purewal
- University Institute of Biotechnology, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Norway
| | - Mallavarapu Megharaj
- Global Centre for Environmental remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia
| | - Yung-Hun Yang
- Institute for Ubiquitous Information Technology and Applications, Seoul, Republic of Korea
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Institute for Ubiquitous Information Technology and Applications, Seoul, Republic of Korea
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Ruíz Suarez CB, Schalchli Sáez HL, Melo PS, Moreira CDS, Sartori AGDO, de Alencar SM, Scheuermann Salinas ES. Effect of Physical Separation with Ultrasound Application on Brewers' Spent Grain to Obtain Powders for Potential Application in Foodstuffs. Foods 2024; 13:3000. [PMID: 39335928 PMCID: PMC11431214 DOI: 10.3390/foods13183000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Brewers' spent grain (BSG) is the primary by-product of beer production, and its potential use in food products is largely dependent on its processing, given its moisture content of up to 80%. This study aimed to evaluate the effects of physical separation with ultrasound application on the color, total phenolic content (TPC), antioxidant activity, proximate composition, total dietary fibers, and particle size distribution of BSG powders. Wet BSG (W) was subjected to two processes: one without ultrasound (A) and one with ultrasound (B). Both processes included pressing, convective air-drying, sieving, fraction separation (A1 and B1 as coarse with particles ≥ 2.36 mm; A2 and B2 as fine with particles < 2.36 mm), and milling. The total color difference compared to W increased through both processes, ranging from 1.1 (B1 vs. A1) to 5.7 (B1 vs. A2). There was no significant difference in TPC, but process B powders, particularly B2, showed lower antioxidant activity against ABTS•+, likely due to the release of antioxidant compounds into the liquid fraction during pressing after ultrasound treatment. Nonetheless, process B powders exhibited a higher content of soluble dietary fibers. In conclusion, ultrasound application shows potential for further extraction of soluble fibers. However, process A might be more practical for industrial and craft brewers. Further studies on the use of the resulting BSG powders as food ingredients are recommended.
Collapse
Affiliation(s)
- Camila Belén Ruíz Suarez
- Undergraduate Program Chemical Civil Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Temuco CP 4780000, Chile;
| | - Heidi Laura Schalchli Sáez
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco CP 4780000, Chile;
| | - Priscilla Siqueira Melo
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Carolina de Souza Moreira
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Alan Giovanini de Oliveira Sartori
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Severino Matias de Alencar
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Erick Sigisfredo Scheuermann Salinas
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco CP 4780000, Chile;
- Chemical Engineering Department, Universidad de La Frontera, Temuco CP 4780000, Chile
- Center of Food Biotechnology and Bioseparations (BIOREN), Universidad de La Frontera, Temuco CP 4780000, Chile
| |
Collapse
|
4
|
Liu M, Huang S, Yan P, Yin H, Yu J, Wu X, Wang L. Effective Degradation of Brewer Spent Grains by a Novel Thermostable GH10 Xylanase. Appl Biochem Biotechnol 2024; 196:4837-4848. [PMID: 37979082 DOI: 10.1007/s12010-023-04779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Brewer spent grains (BSGs) are one of the most abundant by-products in brewing industry. Due to microbiological instability and high perishability, the efficient degradation of BSGs is of environmental and economic importance. Streptomyces sp. F-3 could grow in the medium with BSGs as the only carbon and nitrogen source. Proteome mass spectrometry revealed that a GH10 xylanase SsXyn10A could be secreted in large quantities. SsXyn10A showed optimum activity at pH 7.0 and 60 °C. SsXyn10A exhibited excellent thermostability which retained approximately 100% and 58% after incubation for 5 h at 50 and 60 °C. SsXyn10A displayed high activity to beechwood xylan (BX) and wheat arabinoxylan (WAX). SsXyn10A is active against xylotetracose (X4), xylopentose (X5), and xylohexose (X6) to produce main products xylobiose (X2) and xylotriose (X3). Ssxyn10A showed synergistic effects with commercial cellulase on BSGs hydrolyzing into soluble sugar. In addition, the steam explosion pretreatment of BSGs as the substrate produced twice as much reducing sugar as the degradation of the original substrate. This study will contribute to efficient utilization of BSGs and provide a thermostable GH10 xylanase which has potential application in biomass hydrolysis.
Collapse
Affiliation(s)
- Mengyu Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong, 266237, China
| | - Shuxia Huang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China
| | - Peng Yan
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China.
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong, 266237, China
| |
Collapse
|
5
|
Sun W, Zhang Z, Li X, Lu X, Liu G, Qin Y, Zhao J, Qu Y. Production of single cell protein from brewer's spent grain through enzymatic saccharification and fermentation enhanced by ammoniation pretreatment. BIORESOURCE TECHNOLOGY 2024; 394:130242. [PMID: 38145760 DOI: 10.1016/j.biortech.2023.130242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Brewer's spent grain (BSG) is a major low-value by-product of beer industry. To realize the high value application of BSG, this work proposed a strategy to produce single cell protein (SCP) with oligosaccharide prebiotics from BSG, via ammoniation pretreatment, enzymatic hydrolysis, and fermentation. The optimum conditions of ammoniation pretreatment obtained by response surface method were 11 % ammonia dosage (w/w), 63 °C for 26 h. Suitable enzyme and yeast were screened to enhance the conversion of cellulose and hemicellulose in BSG into sugars and maximize the SCP yield. It was shown that using lignocellulolytic enzyme SP from Penicillium oxalicum and Trichosporon cutaneum, about 310 g of SCP with 80 g of arabinoxylo-oligosaccharides were obtained from 1000 g of BSG. This process is low cost, high efficiency, and easy to implement, which has good industrial application prospects.
Collapse
Affiliation(s)
- Wan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Xianqin Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Shrestha S, Pandey R, Aryal N, Lohani SP. Recent advances in co-digestion conjugates for anaerobic digestion of food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118785. [PMID: 37611516 DOI: 10.1016/j.jenvman.2023.118785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Anaerobic digestion (AD) is a biological process that breaks down organic waste materials, such as food waste (FW) that produces biogas and digestate. The biogas can be utilized as biofuel, and digestate could be applied as fertilizer. However, AD of FW alone has limitations on optimal degradation, digester stability and biogas yield. Co-digestion of FW along with other organic wastes such as animal manure, agricultural residue, sewage sludge and industrial organic waste, has shown substantial improvement in degradation process with increased biogas yield. The inadequacies in FW for optimum AD, like low carbon-to-nitrogen ratio (C/N ratio), lack of trace elements and irregular particle sizes, can be nullified by adding appropriate co-digestion conjugates. This review aims to describe the characteristic inadequacies of FW and examines the effect on mesophilic co-digestion of FW with animal manure, waste sludge and agricultural wastes for biogas production optimization. A critical review on the impact of pretreatment and co-digestion to enrich the methane (CH4) content in biogas has been performed. The review also examines the microbial community shift due to co-digestion, which is critical for the stability of an anaerobic digester. Finally, it discusses the prospects and challenges for the widespread application of the co-digestion technique as an effective organic waste management practice.
Collapse
Affiliation(s)
- Sujesh Shrestha
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Campus Porsgrunn, Norway; Department of Environmental Science and Engineering, Kathmandu University, Nepal
| | - Rajeev Pandey
- Renewable and Sustainable Energy Laboratory, Department of Mechanical Engineering, Kathmandu University, Nepal
| | - Nabin Aryal
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Campus Porsgrunn, Norway.
| | - Sunil Prasad Lohani
- Renewable and Sustainable Energy Laboratory, Department of Mechanical Engineering, Kathmandu University, Nepal.
| |
Collapse
|
7
|
Lee HW, Jeon HG, Kim KW. Removal of cobalt and strontium by adsorption using Brewer's spent grain formed by pyrolysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7131-7144. [PMID: 37329406 DOI: 10.1007/s10653-023-01655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
One byproduct of brewing beer is Brewer's spent grain (BSG), which is reused in animal feed. However, BSG has valuable potential for other products such as biochar because of its high protein and fiber content. Radioactive waste is one of the biggest concerns in Korea because of the permanent shutdown of the Gori nuclear power plant. In this study, we aimed to use BSG-850, a biochar originating from BSG after pyrolysis at 850 °C, for the adsorption of cobalt (Co) and strontium (Sr), which are two radionuclides that contribute to radioactive waste. The adsorption capacity of Co and Sr was reinforced with increased temperature which are 3.304, 4.659, 5.516 mg/g (Co) and 1.462, 2.54, 3.036 mg/g (Sr) at 298, 308, and 318 K, respectively. The reusability of BSG-850 capacity was 75.3, 47.8, 43.6, 36.2% and 93.6, 84.2, 57.2, and 32.7% after 1, 2, 3, and 4 cycles, for Co and Sr, respectively. In the presence of other competitive ions, the adsorption capacity decreased. The adsorption capacity and properties of BSG-origin biochar for Co and Sr were confirmed and BSG can be a desirable option for solving radioactive waste issue.
Collapse
Affiliation(s)
- Hyung Wook Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Han Gyeol Jeon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kyoung-Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
8
|
Yoosefian SH, Ebrahimi R, Hosseinzadeh Samani B, Maleki A. Digestion of lignocellulosic biomass under an innovative pneu-mechanical system and optimization of process. J Biotechnol 2023; 374:70-79. [PMID: 37541624 DOI: 10.1016/j.jbiotec.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
In this study, an anaerobic pneumatic mechanical digester (PMD) was designed for the first time to investigate the impact of pneumatic agitator on increasing the bioethanol production and compared with a mechanical digester (MD). Fermentation was performed during an optimized pretreatment and hydrolysis process by RSM (Response Surface Method). Ultrasound optimized points (the time values, the acid concentration, and the biomass load) were 30 min, 1.95% v/v, and 6%, and hydrolysis was done within 45 min at the acid concentration of 2.04% v/v and temperature of 148.4 °C. The hydrolysis solutions were poured and the fermentation process took place within 20 days in the PMD and MD. The sampling sequence was every 5 days. According to the results, the PMD could produce bioethanol more than the MD by 27.94%. Besides, CO, H2S and O2 were measured through fermentation. In PMD, the amount of H2S and O2 was lower than the MD, but then the production of CO in the PMD was meaningfully higher. Finally, by the application of the PMD, the amount of harmful mixtures produced throughout the process can be controlled. It can be said that with the new method designed in this study, it is possible to take an important step in the biorefinery and use the biomass produced in nature in an economical and environmentally friendly way.
Collapse
Affiliation(s)
- Seyedeh Hoda Yoosefian
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran
| | - Rahim Ebrahimi
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran.
| | | | - Ali Maleki
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran
| |
Collapse
|
9
|
Ding Z, Kumar V, Sar T, Harirchi S, Dregulo AM, Sirohi R, Sindhu R, Binod P, Liu X, Zhang Z, Taherzadeh MJ, Awasthi MK. Agro waste as a potential carbon feedstock for poly-3-hydroxy alkanoates production: Commercialization potential and technical hurdles. BIORESOURCE TECHNOLOGY 2022; 364:128058. [PMID: 36191751 DOI: 10.1016/j.biortech.2022.128058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The enormous production and widespread applications of non -biodegradable plastics lead to their accumulation and toxicity to animals and humans. The issue can be addressed by the development of eco-friendly strategies for the production of biopolymers by utilization of waste residues like agro residues. This will address two societal issues - waste management and the development of an eco-friendly biopolymer, poly-3-hydroxy alkanoates (PHAs). Strategies adopted for utilization of agro-residues, challenges and future perspectives are discussed in detail in this comprehensive review. The possibility of PHA properties improvements can be increased by preparation of blends.
Collapse
Affiliation(s)
- Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan Province 571101, China
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam 602105, India
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Andrei Mikhailovich Dregulo
- Institute for Regional Economy Problems of the Russian Academy of Sciences (IRES RAS), 38 Serpukhovskaya str, 190013 Saint-Petersburg, Russia
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Xiaodi Liu
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan Province 571101, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
10
|
Naibaho J, Pudło A, Korzeniowska M, Lu Y, Yang B. Alteration of volatile compounds profile of brewers' spent grain by bath-ultrasonication and its combination with conventional water-bath and autoclave treatment. ULTRASONICS SONOCHEMISTRY 2022; 90:106192. [PMID: 36219887 PMCID: PMC9554806 DOI: 10.1016/j.ultsonch.2022.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The study aimed to investigate the capability of bath-ultrasonication and its combination with conventional water-bath and autoclave treatment in modifying the volatile composition of brewers' spent grain (BSG). It was hypothesized that the treatments modified the volatile composition of BSG due to the sonochemical modification. The results demonstrated that the treatments intensified the desirable odor and removed the undesirable one which might allow the possibility of masking and renewing the odor perception of BSG. Besides the influence on odor perception related compounds, it is worth to highlight that the treatments eliminated herbicidal compounds such as (E,E)-2,4-heptadienal and (E)-2-hexenal which might be present from herbicidal treatment. Combination of bath-ultrasonication with autoclave treatment modified the volatile aldehydes while its combination with conventional water-bath generated the same profile as it was in untreated BSG. Time elevation on bath-ultrasonication had no significant impact on the amount of ketones and alkanes, while the fluctuation occurred as an impact of thermal exposures. Moreover, the treatment reduced the amount of alcohol and increased the fatty acids. In conclusion, bath-ultrasonication and its combination with thermal exposure modified the volatile compositions of BSG.
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland.
| | - Anna Pudło
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland.
| | - Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
11
|
Su Y, Wenzel M, Seifert M, Weigand JJ. Surface ion-imprinted brewer's spent grain with low template loading for selective uranyl ions adsorption from simulated wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129682. [PMID: 35939905 DOI: 10.1016/j.jhazmat.2022.129682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Efficient removal of uranyl ions from wastewater requires excellent selectivity of the adsorbents. Herein, we report a new strategy using a high monomer/template molar ratio of 500:1 to prepare surface ion-imprinted brewer's spent grain (IIP-BSG) for selective U(VI) removal using binary functional monomers (2-hydroxyethyl methacrylate and diethyl vinylphosphonate) with high site accessibility and easy template removal. IIP-BSG exhibits a maximum U(VI) adsorption capacity of 165.7 mg/g, a high selectivity toward U(VI) in the presence of an excess amount of Eu(III) (Eu/U molar ratio = 20), a good tolerance of salinity, and a high reusability. In addition, mechanism studies have revealed electrostatic interaction and a coordination of uranyl ions by carboxyl and phosphoryl groups, the predominant contribution of high-energy (specific) sites during selective adsorption, and internal mass transfer as the rate-controlling step of U(VI) adsorption. Furthermore, IIP-BSG shows great potentials to separate U(VI) from lanthanides in simulated nuclear wastewater (pH0 = 3.5) and selectively concentrate U(VI) from simulated mine water (pH0 = 7.1). This study proves that the ion-imprinting effect can be achieved using a very low template amount with reduced production cost and secondary pollution, which benefits large-scale promotion of the ion-imprinted materials for selective uranyl ions removal.
Collapse
Affiliation(s)
- Yi Su
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Marco Wenzel
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Markus Seifert
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
12
|
Lech M, Labus K. The methods of brewers’ spent grain treatment towards the recovery of valuable ingredients contained therein and comprehensive management of its residues. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Nájera-Martínez EF, Melchor-Martínez EM, Sosa-Hernández JE, Levin LN, Parra-Saldívar R, Iqbal HMN. Lignocellulosic residues as supports for enzyme immobilization, and biocatalysts with potential applications. Int J Biol Macromol 2022; 208:748-759. [PMID: 35364201 DOI: 10.1016/j.ijbiomac.2022.03.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/08/2023]
Abstract
Growing demand for agricultural production means a higher quantity of residues produced. The reuse and recycling of agro-industrial wastes reduce worldwide greenhouse emissions. New opportunities are derived from this kind of residuals in the biotechnological field generating valuable products in growing sectors such as transportation, bioenergy, food, and feedstock. The use of natural macromolecules towards biocatalysts offers numerous advantages over free enzymes and friendliness with the environment. Enzyme immobilization improves enzyme properties (stability and reusability), and three types of supports are discussed: inorganic, organic, and hybrid. Several examples of agro-industrial wastes such as coconut wastes, rice husks, corn residues and brewers spent grains (BSG), their properties and potential as supports for enzyme immobilization are described in this work. Before the immobilization, biological and non-biological pretreatments could be performed to enhance the waste potential as a carrier. Additionally, immobilization methods such as covalent binding, adsorption, cross-linking and entrapment are compared to provide high efficiency. Enzymes and biocatalysts for industrial applications offer advantages over traditional chemical processes with respect to sustainability and process efficiency in food, energy, and bioremediation fields. The wastes reviewed in this work demonstrated a high affinity for lipases and laccases and might be used in biodiesel production and textile wastewater treatment, among other applications.
Collapse
Affiliation(s)
| | | | | | - Laura Noemí Levin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. de Biodiversidad y Biología Experimental, Laboratorio de Micología Experimental: INMIBO-CONICET, 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Roberto Parra-Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, NL, Mexico.
| | - Hafiz M N Iqbal
- Tecnológico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, NL, Mexico.
| |
Collapse
|
14
|
Abstract
Brewers’ spent grains constitute a valuable byproduct of the beer industry. They are characterized by a rich nutritional composition consisting of around 70% lignocellulosic fibrous material, 20% proteins, 10% lipids, in addition to vitamins, minerals, amino acids, and phenolic compounds. These spent grains are produced in large amounts all through the year, are cheap, and lack economically feasible applications. Nowadays, 70% of these spent grains are used as animal feed, 10% are used for biogas production, and the remaining 20% are disposed in landfills. Due to the aforementioned facts, alternative uses of the brewers’ spent grains are highly sought-after. In fact, this nutrient-rich industrial by-product makes it a very good candidate for valorization through biotechnological processing, particularly microbial fermentation. After applying the needed pretreatments, using brewers’ spent grains as a substrate in submerged and solid-state fermentation of different microorganisms leads to the production of various value-added compounds such as organic acids, amino acids, volatile fatty acids, enzymes, vitamins, second-generation biofuels and other products.
Collapse
|
15
|
Zeng J, Huang W, Tian X, Hu X, Wu Z. Brewer’s spent grain fermentation improves its soluble sugar and protein as well as enzymatic activities using Bacillus velezensis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Puligundla P, Mok C. Recent advances in biotechnological valorization of brewers' spent grain. Food Sci Biotechnol 2021; 30:341-353. [PMID: 33868745 DOI: 10.1007/s10068-021-00900-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Brewers' spent grain (BSG) is the most abundant by-product of beer-brewing. BSG is rich in nutrients such as protein, fiber, minerals, and vitamins, and therefore it is conventionally used as low-cost animal feed. On the other hand, alternative utilization of BSG has gained increased attention during recent years due to technological progress in its processing and the emergence of the concept of circular economy. The valorization of BSG through biotechnological approaches is environmentally friendly and sustainable. This review was focused on recent advancements in the conversion of BSG into value-added products, including bioenergy (ethanol, butanol, hydrogen, biodiesel, and biogas), organic acids, enzymes, xylitol, oligosaccharides, and single cell protein, via biotechnological approaches. In addition, the potential applications of BSG as immobilization matrices in bioprocesses have been reviewed.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Republic of Korea
| | - Chulkyoon Mok
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|