1
|
Lee M, Kim D, Lee KW, Chang JY. Kimchi Lactic Acid Bacteria Starter Culture: Impact on Fermented Malt Beverage Volatile Profile, Sensory Analysis, and Physicochemical Traits. J Microbiol Biotechnol 2024; 34:1653-1659. [PMID: 39049474 PMCID: PMC11380508 DOI: 10.4014/jmb.2403.03011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
Starter cultures used during the fermentation of malt wort can increase the sensory characteristics of the resulting beverages. This study aimed to explore the aroma composition and flavor recognition of malt wort beverages fermented with lactic acid bacteria (Levilactobacillus brevis WiKim0194) isolated from kimchi, using metabolomic profiling and electronic tongue and nose technologies. Four sugars and five organic acids were detected using high-performance liquid chromatography, with maltose and lactic acid present in the highest amounts. Additionally, e-tongue measurements showed a significant increase in the sourness (AHS), sweetness (ANS), and umami (NMS) sensors, whereas bitterness (SCS) significantly decreased. Furthermore, 20 key aroma compounds were identified using gas chromatography-mass spectrometry and 15 key aroma flavors were detected using an electronic nose. Vanillin, citronellol, and β-damascenone exhibited significant differences in the flavor profile of the beverage fermented by WiKim0194, which correlated with floral, fruity, and sweet notes. Therefore, we suggest that an appropriate starter culture can improve sensory characteristics and predict flavor development in malt wort beverages.
Collapse
Affiliation(s)
- Moeun Lee
- Fermentation regulation research group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daun Kim
- Fermentation regulation research group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Republic of Korea
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Ji Yoon Chang
- Fermentation regulation research group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
- Institute of Smart Farm Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| |
Collapse
|
2
|
Kim YY, Kim JC, Kim S, Yang JE, Kim HM, Park HW. Heterotypic stress-induced adaptive evolution enhances freeze-drying tolerance and storage stability of Leuconostoc mesenteroides WiKim33. Food Res Int 2024; 175:113731. [PMID: 38128991 DOI: 10.1016/j.foodres.2023.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Lactic acid bacteria (LAB) are currently being investigated for their potential use as probiotics and starter cultures. Researchers have developed powdering processes for the commercialization of LAB. Previous studies have focused on identifying innovative cryoprotective agents and freeze-drying (FD) techniques to enhance the stability of LAB. In this study, adaptive laboratory evolution (ALE) was employed to develop a strain with high FD tolerance and enhanced storage stability. Leuconostoc mesenteroids WiKim33 was subjected to heterotypic shock (heat and osmosis shock) to induce the desired phenotype and genotype. An FD-tolerant enhanced Leu. mesenteroides WiKim33 strain (ALE50) was obtained, which harbored a modified fatty acid composition and cell envelope characteristics. Specifically, ALE50 showed a lower unsaturated fatty acid (UFA)/saturated fatty acid (SFA) ratio and a higher cyclic fatty acid (CFA) composition. Moreover, the exopolysaccharide (EPS) thickness increased significantly by 331% compared to that of the wild type (WT). FD tolerance, which was evaluated using viability testing after FD, was enhanced by 33.4%. Overall, we demonstrated the feasibility of ALE to achieve desirable characteristics and provided insights into the mechanisms underlying increased FD tolerance.
Collapse
Affiliation(s)
- Yeong Yeol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Cheol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seulbi Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea; Division of Applied Bioscience & Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| |
Collapse
|
3
|
Wätjen AP, De Vero L, Carmona EN, Sberveglieri V, Huang W, Turner MS, Bang-Berthelsen CH. Leuconostoc performance in soy-based fermentations - Survival, acidification, sugar metabolism, and flavor comparisons. Food Microbiol 2023; 115:104337. [PMID: 37567639 DOI: 10.1016/j.fm.2023.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Leuconostoc spp. is often regarded as the flavor producer, responsible for the production of acetoin and diacetyl in dairy cheese. In this study, we investigate seven plant-derived Leuconostoc strains, covering four species, in their potential as a lyophilized starter culture for flavor production in fermented soy-based cheese alternatives. We show that the process of lyophilization of Leuconostoc can be feasible using a soy-based lyoprotectant, with survivability up to 63% during long term storage. Furthermore, the storage in this media improves the subsequent growth in a soy-based substrate in a strain specific manner. The utilization of individual raffinose family oligosaccharides was strain dependent, with Leuconostoc pseudomesenteroides NFICC99 being the best consumer. Furthermore, we show that all investigated strains were able to produce a range of volatile flavor compounds found in dairy cheese products, as well as remove certain dairy off-flavors from the soy-based substrate like hexanal and 2-pentylfuran. Also here, NFICC99 was strain producing most cheese-related volatile flavor compounds, followed by Leuconostoc mesenteroides NFICC319. These findings provide initial insights into the development of Leuconostoc as a potential starter culture for plant-based dairy alternatives, as well as a promising approach for generation of stable, lyophilized cultures.
Collapse
Affiliation(s)
- Anders Peter Wätjen
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Luciana De Vero
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Estefania Núñez Carmona
- National Research Council, Institute of Bioscience and Bioresources (CNR-IBBR), Via J.F. Kennedy, 17/i, 42124, Reggio Emilia, Italy
| | - Veronica Sberveglieri
- National Research Council, Institute of Bioscience and Bioresources (CNR-IBBR), Via J.F. Kennedy, 17/i, 42124, Reggio Emilia, Italy; Nano Sensor Systems, NASYS Spin-Off University of Brescia, 25125, Brescia, Italy
| | - Wenkang Huang
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mark S Turner
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
4
|
Kim YY, Kim HM, Jeong SG, Yang JE, Kim S, Park HW. Sonochemical application reduces monosaccharide levels and improves cryoprotective effect of Jerusalem artichoke extract on Leuconostoc mesenteroides WiKim33 during freeze-drying. ULTRASONICS SONOCHEMISTRY 2023; 95:106413. [PMID: 37088026 PMCID: PMC10457581 DOI: 10.1016/j.ultsonch.2023.106413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lactic acid bacteria (LAB) are being used for probiotic and starter cultures to prevent global damage to microbial cells. To retain the benefits of LAB in the commercially used powdered form, highly efficient cryoprotective agents are required during the manufacturing process. This study suggests a novel cryoprotective agent derived from Jerusalem artichoke (JA; Helianthus tuberous L.) and describes the mechanism of cryoprotective effect improvement by sonication treatment. The cryoprotective effect of JA extract was verified by examining the viability of Leuconostoc mesenteroides WiKim33 after freeze-drying (FD). Sonication of JA extract improved the cryoprotective effect. Sonication reduced fructose and glucose contents, which increased the induction of critical damage during FD by 15.84% and 46.81%, respectively. The cryoprotective effects of JA and sonication-treated JA extracts were determined using the viable cell count of Leu. mesenteroides WiKim33. Immediately after FD and storage for 24 weeks, the viability of Leu. mesenteroides WiKim33 with JA extract was 82.8% and 76.3%, respectively, while that of the sonication-treated JA extract was 95.2% and 88.8%, respectively. Our results show that reduction in specific monosaccharides was correlated with improved cryoprotective effect. This study adopted sonication as a novel treatment for improving the cryoprotective effect and verified its efficiency.
Collapse
Affiliation(s)
- Yeong Yeol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seul-Gi Jeong
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seulbi Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea; Division of Applied Bioscience & Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| |
Collapse
|
5
|
Kim HM, Jeong SG, Hwang IM, Park HW. Efficient Citrus ( Citrus unshiu) Byproduct Extract-Based Approach for Lactobacillus sakei WiKim31 Shelf-Life Extension. ACS OMEGA 2021; 6:35334-35341. [PMID: 34984265 PMCID: PMC8717389 DOI: 10.1021/acsomega.1c04335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 05/09/2023]
Abstract
Lactic acid bacteria produce various bioactive compounds widely used in human healthcare. However, studies on cryoprotective agents for the efficient storage of lactic acid bacteria after freeze-drying are still lacking. Here, we report the shelf-life extension effects of a highly efficient and eco-friendly cryoprotective agent and a cold adaptation method on Lactobacillus sakei WiKim31. Cold adaptation of L. sakei WiKim31 increased exopolysaccharide expression in response to abiotic stress. As a possible cryoprotective agent, the citrus byproduct (CP) contains a variety of sugars, amino acids, and cations, exhibiting high antioxidant activity. L. sakei WiKim31 powders formulated with CP or a mixture of soy powder (SP) and CP exhibited high cell viability at 58.3 and 76.3%, respectively, after 56 days of storage. These results indicate that CP can be efficiently used as a novel cryoprotective agent either alone or in combination with SP to improve the storage conditions of L. sakei WiKim31 and preserve it longer.
Collapse
|
6
|
Effects of NaOH Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues. ENERGIES 2021. [DOI: 10.3390/en14051297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, the adsorption of herbicides using ground coffee residue biochars without (GCRB) and with NaOH activation (GCRB-N) was compared to provide deeper insights into their adsorption behaviors and mechanisms. The physicochemical characteristics of GCRB and GCRB-N were analyzed using Brunauer–Emmett–Teller surface area, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction and the effects of pH, temperature, ionic strength, and humic acids on the adsorption of herbicides were identified. Moreover, the adsorption kinetics and isotherms were studied. The specific surface area and total pore volume of GCRB-N (405.33 m2/g and 0.293 cm3/g) were greater than those of GCRB (3.83 m2/g and 0.014 cm3/g). The GCBR-N could more effectively remove the herbicides (Qe,exp of Alachlor = 122.71 μmol/g, Qe,exp of Diuron = 166.42 μmol/g, and Qe,exp of Simazine = 99.16 μmol/g) than GCRB (Qe,exp of Alachlor = 11.74 μmol/g, Qe,exp of Diuron = 9.95 μmol/g, and Qe,exp of Simazine = 6.53 μmol/g). These results suggested that chemical activation with NaOH might be a promising option to make the GCRB more practical and effective for removing herbicides in the aqueous solutions.
Collapse
|