1
|
Bruno D, Casartelli M, De Smet J, Gold M, Tettamanti G. Review: A journey into the black soldier fly digestive system: From current knowledge to applied perspectives. Animal 2025:101483. [PMID: 40222868 DOI: 10.1016/j.animal.2025.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
Recent literature on the black soldier fly (BSF) confirms the deep interest in this species for the bioconversion of organic waste, including challenging substrates that contain recalcitrant macromolecules, and highlights the growing trend in new applications for this insect. While protein meal remains the most prominent use of BSF larvae, emerging research is increasingly exploring alternative applications of biomolecules derived from these larvae, including proteins, lipids, chitin, and antimicrobial peptides. Moreover, the high feeding versatility of this insect is being recognised in fields beyond animal feed, such as bioremediation, where its potential ability to degrade contaminants can present significant ecological benefits. Although there is now widespread agreement that a thorough understanding of BSF biology is essential to enlarge the range of applications in which this insect may offer new sustainable solutions, studies on the digestive system are still limited and we are far from having a whole comprehension of the functional features of this complex structure. In fact, the gut is not only the core of the bioconversion process but also represents the first defence barrier against ingested pathogens, and due to the presence of a highly versatile gut microbiota, it may be a potential source of novel microbes and enzymes that could find application in various biotechnological sectors. This review aims to provide a comprehensive overview of the current knowledge on the BSF midgut -the central region of the gut responsible for nutrient digestion and absorption- in both larvae and adults, together with information about mouthparts and the organisation of the alimentary canal. Moreover, starting from the most recent studies on the midgut and its microbiota, we discuss implications for improving larval production, exploiting challenging substrates, and mitigating pollutants in contaminated biomasses.
Collapse
Affiliation(s)
- D Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, 21100 Varese, Italy
| | - M Casartelli
- Department of Biosciences, University of Milano, via Celoria, 26, 20133 Milano, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Piazza Carlo di Borbone, 1, 80055 Portici, Italy
| | - J De Smet
- Department of Microbial and Molecular Systems, KU Leuven Campus Geel, Kleinhoefstraat, 4, 2440 Geel, Belgium
| | - M Gold
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse, 9, 8092 Zürich, Switzerland
| | - G Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, 21100 Varese, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Piazza Carlo di Borbone, 1, 80055 Portici, Italy.
| |
Collapse
|
2
|
Salam M, Bolletta V, Meng Y, Yakti W, Grossule V, Shi D, Hayat F. Exploring the role of the microbiome of the H. illucens (black soldier fly) for microbial synergy in optimizing black soldier fly rearing and subsequent applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125055. [PMID: 39447631 DOI: 10.1016/j.envpol.2024.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
The symbiotic microbiome in the insect's gut is vital to the host insect's development, improvement of health, resistance to disease, and adaptability to the environment. The black soldier fly (BSF) can convert organic substrates into a protein- and fat-rich biomass that is viable for various applications. With the support of a selective microbiome, BSF can digest and recycle different organic waste, reduce the harmful effects of improper disposal, and transform low-value side streams into valuable resources. Molecular and systems-level investigations on the harbored microbial populations may uncover new biocatalysts for organic waste degradation. This article discusses and summarizes the efforts taken toward characterizing the BSF microbiota and analyzing its substrate-dependent shifts. In addition, the review discusses the dynamic insect-microbe relationship from the functional point of view and focuses on how understanding this symbiosis can lead to alternative applications for BSF. Valorization strategies can include manipulating the microbiota to optimize insect growth and biomass production, as well as exploiting the role of BSF microbiota to discover new bioactive compounds based on BSF immunity. Optimizing the BSF application in industrial setup and exploiting its gut microbiota for innovative biotechnological applications are potential developments that could emerge in the coming decade.
Collapse
Affiliation(s)
- Muhammad Salam
- Department of Environmental Science, and Ecology, Chengdu University of Technology, Chengdu, PR China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China.
| | - Viviana Bolletta
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Italy
| | - Ying Meng
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Wael Yakti
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin, Berlin, Germany
| | - Valentina Grossule
- Department of Civil, Architectural and Environmental Engineering, University of Padova, Italy
| | - Dezhi Shi
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China
| | - Faisal Hayat
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| |
Collapse
|
3
|
Shelomi M. Mitigation Strategies against Food Safety Contaminant Transmission from Black Soldier Fly Larva Bioconversion. Animals (Basel) 2024; 14:1590. [PMID: 38891637 PMCID: PMC11171339 DOI: 10.3390/ani14111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The black soldier fly larva, Hermetia illucens, can efficiently convert organic waste into biomatter for use in animal feed. This circularity comes with a risk of contaminating downstream consumers of the larval products with microbes, heavy metals, and other hazards potentially present in the initial substrate. This review examines research on mitigation techniques to manage these contaminants, from pretreatment of the substrate to post-treatment of the larvae. While much research has been done on such techniques, little of it focused on their effects on food safety contaminants. Cheap and low-technology heat treatment can reduce substrate and larval microbial load. Emptying the larval gut through starvation is understudied but promising. Black soldier fly larvae accumulate certain heavy metals like cadmium, and their ability to process certain hazards is unknown, which is why some government authorities are erring on the side of caution regarding how larval bioconversion can be used within feed production. Different substrates have different risks and some mitigation strategies may affect larval rearing performance and the final products negatively, so different producers will need to choose the right strategy for their system to balance cost-effectiveness with sustainability and safety.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, 106319 Taipei, Taiwan
| |
Collapse
|
4
|
Beesigamukama D, Tanga CM, Sevgan S, Ekesi S, Kelemu S. Waste to value: Global perspective on the impact of entomocomposting on environmental health, greenhouse gas mitigation and soil bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166067. [PMID: 37544444 PMCID: PMC10594063 DOI: 10.1016/j.scitotenv.2023.166067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The innovative use of insects to recycle low-value organic waste into value-added products such as food, feed and other products with a low ecological footprint has attracted rapid attention globally. The insect frass (a combination unconsumed substrate, faeces, and exuviae) contains substantial amounts of nutrients and beneficial microbes that could utilised as fertilizer. We analyse research trends and report on the production, nutrient quality, maturity and hygiene status of insect-composted organic fertilizer (ICOF) generated from different organic wastes, and their influence on soil fertility, pest and pathogen suppression, and crop productivity. Lastly, we discuss the impact of entomocomposting on greenhouse gas mitigation and provide critical analysis on the regulatory aspects of entomocomposting, and utilization and commercialisation ICOF products. This information should be critical to inform research and policy decisions aimed at developing and promoting appropriate standards and guidelines for quality production, sustainable utilization, and successful integration of entomocompost into existing fertilizer supply chains and cropping systems.
Collapse
Affiliation(s)
- Dennis Beesigamukama
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| | - Subramanian Sevgan
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - Segenet Kelemu
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
5
|
Wang P, Ma J, Wang L, Li L, Yan X, Zhang R, Cernava T, Jin D. Di-n-butyl phthalate stress induces changes in the core bacterial community associated with nitrogen conversion during agricultural waste composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130695. [PMID: 36587593 DOI: 10.1016/j.jhazmat.2022.130695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) loss during composting reduces the quality of compost products and causes secondary environmental pollution. Phthalate esters (PAEs) are common pollutants in agricultural wastes. However, little information is currently available on how PAEs affect N conversion during agricultural waste composting. This research systematically analyzed the impact of di-n-butyl phthalate (DBP) pollution on the N conversion and its related microbial community during composting. Our results indicated that DBP stress results in a shorter thermophilic phase, and then slower compost maturation during composting. Notably, DBP stress inhibited the conversion of ammonia to nitrate, but increased the release of NH3 and N2O leading to an increased N loss and an elevated greenhouse effect. Furthermore, DBP exposure led to a reduction of bacteria related to NH4+ and NO3- conversion and altered the network complexity of the bacterial community involved in N conversion. It also reduced the abundance of a major nitrification gene (amoA) (P < 0.01) and increased the abundance of denitrification genes (nirK and norB) (P < 0.05). Moreover, DBP affected the overall microbial community composition at all tested concentrations. These findings provide theoretical and methodological basis for improving the quality of PAE-contaminated agricultural waste compost products and reducing secondary environmental pollution.
Collapse
Affiliation(s)
- Ping Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Jing Ma
- Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China; Key Laboratory of Yellow River Sediment Research, MWR, Zhengzhou 450003, China
| | - Lixin Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Linfan Li
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Xinyu Yan
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Ruyi Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
Gorrens E, Lecocq A, De Smet J. The Use of Probiotics during Rearing of Hermetia illucens: Potential, Caveats, and Knowledge Gaps. Microorganisms 2023; 11:245. [PMID: 36838211 PMCID: PMC9960648 DOI: 10.3390/microorganisms11020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Given the novelty of the industrial production of the edible insects sector, research has primarily focused on the zootechnical performances of black soldier fly larvae (BSFL) in response to different substrates and rearing conditions as a basis to optimize yield and quality. However recently, research has started to focus more on the associated microbes in the larval digestive system and their substrates and the effect of manipulating the composition of these communities on insect performance as a form of microbiome engineering. Here we present an overview of the existing literature on the use of microorganisms during rearing of the BSFL to optimize the productivity of this insect. These studies have had variable outcomes and potential explanations for this variation are offered to inspire future research that might lead to a better success rate for microbiome engineering in BSFL.
Collapse
Affiliation(s)
- Ellen Gorrens
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, 2440 Geel, Belgium
| | - Antoine Lecocq
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, 2440 Geel, Belgium
| |
Collapse
|