1
|
Zhang Z, Fan X, Zhang R, Pan X, Zhang X, Ding Y, Liu Y. Biodegradation characterization and mechanism of low-density polyethylene by the enriched mixed-culture from plastic-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138530. [PMID: 40359754 DOI: 10.1016/j.jhazmat.2025.138530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Plastic pollution poses significant ecological and health risks. In this study, we enriched microbial consortia from plastic-contaminated soil capable of degrading low-density polyethylene (LDPE) film over a 28-day incubation period. Using two kinds of enriched cultures, the mean film weight loss rate (WLR) of 0.27 ± 0.04 % (p < 0.01) was 9 times higher than the control. Scanning electron microscopy (SEM) revealed a average hole occurrence area of 0.67 ± 0.11 μm2 in the topmost sample, while the control had no change. Fourier transform infrared (FTIR) revealed specific changes in hydrophilicity (increased by 5.70 ± 0.02 times) and crystallinity (decreased by 15.73 ± 3.26 %). Meanwhile, FTIR analyses including peak occurrence at 3741 cm-1, carbonyl index and Lambert-Beer law calculations revealed moisture infiltration and predominant aldehyde carbonyl formation (88.69 % in total carbonyl). The results of high-throughput sequencing indicated Brevibacillus, Bacillus and Sporosarcina were dominate genera in the mixed-cultures, and PICRUSt2 implied they could use LDPE as the sole carbon source. Our study aims to provided theoretical basis driving plastic degradation and to mitigate plastic pollution based on microbial resource development.
Collapse
Affiliation(s)
- Zhen Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Xinxin Fan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Rumeng Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Xinghui Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Xuexue Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Yi Ding
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Ying Liu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Newrick BA, Valdés D, Laca A, Laca A, Díaz M. Enhanced biodegradation of high-density polyethylene microplastics: Study of bacterial efficiency and process parameters. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136822. [PMID: 39673947 DOI: 10.1016/j.jhazmat.2024.136822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
As global microplastic (MP) pollution intensifies, sustainable and effective remediation methods are gaining interest due to the growing environmental and health implications. Microorganisms are demonstrating remarkable capabilities to degrade these polymers, offering a promising solution for reducing MP contamination. The aim of this study was to utilize bacteria for the degradation of high-density polyethylene (HDPE) MPs, specifically Comamonas testosteroni NCIMB 8955, Bacillus firmus NCTC 10335 and Paenibacillus macquariensis NCTC 10419. During the incubation, bacterial growth, pH and carbohydrate concentration were monitored, and samples were taken to track MP weight loss and changes in surface morphology and functional groups. Gravimetric analysis revealed degradation efficiencies of 15.30 %, 13.00 %, and 12.29 % for B. firmus NCTC 10335, P. macquariensis NCTC 10419, and C. testosteroni NCIMB 8955, respectively, over 30 days or less. Scanning electron microscopy (SEM) further confirmed degradation, revealing surface deterioration and biofilm formation. Energy dispersive X-ray spectroscopy (EDS) showed changes in the functional groups on the polymer surface, indicating an increase in the O/C molar ratio. Fourier-transform infrared spectroscopy (FTIR) revealed an increase in the carbonyl and vinyl indexes. The influence of temperature, MP size, and concentration on biodegradation was systematically studied using C. testosteroni NCIMB 8955, which demonstrated the highest degradation rate. The best result, i.e., a degradation efficiency of 21.81 %, was achieved at 35 ºC, with MP sizes between 20 and 100 µm, and a concentration of 200 mg/L. These findings highlight the importance of process parameters during biodegradation and the potential of C. testosteroni NCIMB 8955 in developing sustainable bioremediation approaches to mitigate microplastic pollution.
Collapse
Affiliation(s)
- Bess A Newrick
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| | - David Valdés
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| |
Collapse
|
3
|
Xiong Y, Zhao Z, Peng K, Zhai G, Huang X, Zeng H. Microplastic interactions with co-existing pollutants in water environments: Synergistic or antagonistic roles on their removal through current remediation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124355. [PMID: 39933381 DOI: 10.1016/j.jenvman.2025.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
Composite water pollution, caused by microplastics (MPs) and co-occurring pollutants, is an emerging issue that induces synergistic toxicity. Multidimensional interactions occur between MPs and co-existing pollutants in a composite system, which alter the behavior of each component, resulting in unpredictable effects on the treatment processes. However, significant gaps exist in current review papers regarding MP‒pollutant interaction mechanisms and the corresponding synergistic or antagonistic effects on their removal processes. This review comprehensively describes the latest research in composite water pollution caused by MPs and various other pollutants with different compositions and states, systematically discusses their interaction mechanisms, and critically evaluates the impact of co-existing contaminants on the treatment performance of current remediation technologies. Based on current research progress and gaps, opportunities, challenges, and perspectives for future research directions are proposed. This review highlights state-of-the-art research related to composite water pollution caused by MPs and various pollutants, which is expected to inspire new strategies for the effective removal of multiple contaminants from the aquatic environment.
Collapse
Affiliation(s)
- Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China
| | - Gongqi Zhai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
4
|
Ameen F, Al-Shwaiman HA, Almalki R, Al-Sabri AE, Sholkamy EN. Degradation of polyvinyl chloride (PVC) microplastics employing the actinobacterial strain Streptomyces gobitricini. Biodegradation 2025; 36:19. [PMID: 39920407 DOI: 10.1007/s10532-025-10115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
The disposal of plastic materials has resulted in the huge increase of microplastics in the environment. One of the most hazardous plastic waste is polyvinyl chloride (PVC) due to its durability. A tool to remediate PVC microplastic polluted environment might be offered by microorganisms such as Actinobacteria, which has been proven to degrade PVC. Streptomyces gobitricini was isolated from soil polluted by heavy metals and plastic debris and used in a PVC microplastics degradation experiment. Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and scanning electron microscopy (SEM) were used to study the characteristics of microplastic particles. For the incubation, the optimal pH 7.5 was determined in a preliminary experiment where also pH 5.5 and pH 9.5 were included. Three PVC concentrations (200, 400, and 800 mg/L) were incubated in Luria-Bertani broth with S. gobitricini for 90 days. After the incubation, PVC-MP particles were recovered by filtering. The percentual weight loss of microplastics was highest (66%) in 200 mg/L treatment. Relatively high reductions were observed for the higher microplastic concentrations as well (400 mg/L; 65% and 800 mg/L; 60%). The bacterial growth decreased in order 200 mg/L (3.1 ± 0.1 CFU × 105/mL), 400 mg/L (3.0 ± 0.0 CFU × 105/mL) and 800 mg/L treatment (2.7 ± 0.0 CFU × 105/mL). High hydrophobicity was observed in all treatments at the end of the incubation indicating the formation of bacterial biofilm on the surfaces of plastic particles. The highest hydrophobicity (84%) associated with the bacterial strain was observed in 200 mg/L microplastics treatment. The results show that the bacterium S. gobitricini suits for further studies to reduce PVC microplastic waste in the environment.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Hind A Al-Shwaiman
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rania Almalki
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed E Al-Sabri
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Essam N Sholkamy
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Baby MG, Gerritse J, Beltran-Sanahuja A, Wolter H, Rohais S, Romero-Sarmiento MF. Aging of plastics and microplastics in the environment: a review on influencing factors, quantification methods, challenges, and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1009-1042. [PMID: 39725849 DOI: 10.1007/s11356-024-35651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
The ubiquitous presence of fragmented plastic particles needs comprehensive understanding of its fate in the environment. The long-term persistence of microplastics (MPs) in the environment is a significant threat to the ecosystem. Even though various degradation mechanisms (physical, chemical, and biological) of commonly used plastics have been demonstrated, quantifying the degradation of MPs over time to predict the consequence of plastic littering and its persistence in the environment remains a challenge. Different advanced analytical techniques have been used to quantify the degradation of MPs by introducing various parameters such as bond indices, crystallinity, and carbon-oxygen ratio. However, a simple and widely accepted reliable methodology for comparing the environmental factors and their influence on the MP degradation has yet to be developed and validated. This paper reviews a section of relevant literature (n = 38) to synthesize an overview of methods implemented for the quantification of fragmentation and aging of MPs in natural and artificial environment. In addition, the inherent weakness and extrinsic factors affecting the degradation of MPs in the environment is discussed. Finally, it proposes challenges and future scope as guideline for research on MP degradation in the environment.
Collapse
Affiliation(s)
- Merin Grace Baby
- IFP Énergies Nouvelles (IFPEN), Direction Sciences de La Terre Et Technologies de L'Environnement, 1 Et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France.
| | - Jan Gerritse
- Deltares, Unit Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK, Utrecht, The Netherlands
| | - Ana Beltran-Sanahuja
- Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, 03690, Alicante, Spain
| | - Helen Wolter
- The Ocean Cleanup, Coolsingel 6, 3011 AD, Rotterdam, The Netherlands
| | - Sébastien Rohais
- IFP Énergies Nouvelles (IFPEN), Direction Sciences de La Terre Et Technologies de L'Environnement, 1 Et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France
| | - Maria-Fernanda Romero-Sarmiento
- IFP Énergies Nouvelles (IFPEN), Direction Sciences de La Terre Et Technologies de L'Environnement, 1 Et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France
| |
Collapse
|
6
|
Ahmed Dar A, Chen Z, Sardar MF, An C. Navigating the nexus: climate dynamics and microplastics pollution in coastal ecosystems. ENVIRONMENTAL RESEARCH 2024; 252:118971. [PMID: 38642636 DOI: 10.1016/j.envres.2024.118971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Microplastics (MPs) pollution is an emerging environmental health concern, impacting soil, plants, animals, and humans through their entry into the food chain via bioaccumulation. Human activities such as improper solid waste dumping are significant sources that ultimately transport MPs into the water bodies of the coastal areas. Moreover, there is a complex interplay between the coastal climate dynamics, environmental factors, the burgeoning issue of MPs pollution and the complex web of coastal pollution. We embark on a comprehensive journey, synthesizing the latest research across multiple disciplines to provide a holistic understanding of how these inter-connected factors shape and reshape the coastal ecosystems. The comprehensive review also explores the impact of the current climatic patterns on coastal regions, the intricate pathways through which MPs can infiltrate marine environments, and the cascading effects of coastal pollution on ecosystems and human societies in terms of health and socio-economic impacts in coastal regions. The novelty of this review concludes the changes in climate patterns have crucial effects on coastal regions, proceeding MPs as more prevalent, deteriorating coastal ecosystems, and hastening the transfer of MPs. The continuous rising sea levels, ocean acidification, and strong storms result in habitat loss, decline in biodiversity, and economic repercussion. Feedback mechanisms intensify pollution effects, underlying the urgent demand for environmental conservation contribution. In addition, the complex interaction between human, industry, and biodiversity demanding cutting edge strategies, innovative approaches such as remote sensing with artificial intelligence for monitoring, biobased remediation techniques, global cooperation in governance, policies to lessen the negative socioeconomic and environmental effects of coastal pollution.
Collapse
Affiliation(s)
- Afzal Ahmed Dar
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada.
| | | | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| |
Collapse
|
7
|
Awewomom J, Ashie WB, Dzeble F. Microplastics in Ghana: An in-depth review of research, environmental threats, sources, and impacts on ecosystems and human health. Heliyon 2024; 10:e32554. [PMID: 38961990 PMCID: PMC11219484 DOI: 10.1016/j.heliyon.2024.e32554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Microplastics pose significant challenges on a global scale. In Ghana, these tiny pollutants infiltrate diverse ecosystems such as coastal areas, rivers, lakes, and forests, vital to the nation's economy and social well-being. This review examines the current depth of knowledge in research and the escalating concern of microplastics, identifying significant gaps in research and understanding. The findings highlight the limited understanding of the extent and distribution of microplastic pollution across different environmental compartments, primarily focusing on coastal environments. Additionally, detection and quantification techniques for microplastics face several complexities and limitations in the Ghanaian context due to constraints such as infrastructure, resources, and expertise. Despite some research efforts, particularly along the coastline, there is still a distinct lack of attention in various regions and ecosystems within Ghana. This imbalance in research focus hinders the understanding and effective mitigation of microplastics in the country. This therefore necessitates the implementation of systematic policy frameworks, emphasizing the importance of recycling and upcycling as effective strategies to address the challenges of microplastics in Ghana with more targeted research and public engagement. This review serves as a call to action for a strategic approach to research and policy-making on microplastic research and pollution in Ghana.
Collapse
Affiliation(s)
- Jonathan Awewomom
- College of Natural Sciences, Department of Earth and Environmental Sciences, Michigan State University, East Lansing, United States
| | - Winfred Bediakoh Ashie
- Faculty Of Physical and Computational Sciences, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Felicia Dzeble
- Department of Tropical Hydrogeology and Environmental Engineering, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
8
|
Hooda S, Mondal P. Predictive modeling of plastic pyrolysis process for the evaluation of activation energy: Explainable artificial intelligence based comprehensive insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121189. [PMID: 38759553 DOI: 10.1016/j.jenvman.2024.121189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Pyrolysis, a thermochemical conversion approach of transforming plastic waste to energy has tremendous potential to manage the exponentially increasing plastic waste. However, understanding the process kinetics is fundamental to engineering a sustainable process. Conventional analysis techniques do not provide insights into the influence of characteristics of feedstock on the process kinetics. Present study exemplifies the efficacy of using machine learning for predictive modeling of pyrolysis of waste plastics to understand the complexities of the interrelations of predictor variables and their influence on activation energy. The activation energy for pyrolysis of waste plastics was evaluated using machine learning models namely Random Forest, XGBoost, CatBoost, and AdaBoost regression models. Feature selection based on the multicollinearity of data and hyperparameter tuning of the models utilizing RandomizedSearchCV was conducted. Random forest model outperformed the other models with coefficient of determination (R2) value of 0.941, root mean square error (RMSE) value of 14.69 and mean absolute error (MAE) value of 8.66 for the testing dataset. The explainable artificial intelligence-based feature importance plot and the summary plot of the shapely additive explanations projected fixed carbon content, ash content, conversion value, and carbon content as significant parameters of the model in the order; fixed carbon > carbon > ash content > degree of conversion. Present study highlighted the potential of machine learning as a powerful tool to understand the influence of the characteristics of plastic waste and the degree of conversion on the activation energy of a process that is essential for designing the large-scale operations and future scale-up of the process.
Collapse
Affiliation(s)
- Sanjeevani Hooda
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Prasenjit Mondal
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
9
|
Hossain S, Shukri ZNA, Waiho K, Ibrahim YS, Kamaruzzan AS, Rahim AIA, Draman AS, Wahab W, Khatoon H, Kasan NA. Biodegradation of polyethylene (PE), polypropylene (PP), and polystyrene (PS) microplastics by floc-forming bacteria, Bacillus cereus strain SHBF2, isolated from a commercial aquafarm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32225-32245. [PMID: 38644425 DOI: 10.1007/s11356-024-33337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
The ubiquitous proximity of the commonly used microplastic (MP) particles particularly polyethylene (PE), polypropylene (PP), and polystyrene (PS) poses a serious threat to the environment and human health globally. Biological treatment as an environment-friendly approach to counter MP pollution has recent interest when the bio-agent has beneficial functions in their ecosystem. This study aimed to utilize beneficial floc-forming bacteria Bacillus cereus SHBF2 isolated from an aquaculture farm in reducing the MP particles (PE, PP, and PS) from their environment. The bacteria were inoculated for 60 days in a medium containing MP particle as a sole carbon source. On different days of incubation (DOI), the bacterial growth analysis was monitored and the MP particles were harvested to examine their weight loss, surface changes, and alterations in chemical properties. After 60 DOI, the highest weight loss was recorded for PE, 6.87 ± 0.92%, which was further evaluated to daily reduction rate (k), 0.00118 day-1, and half-life (t1/2), 605.08 ± 138.52 days. The OD value (1.74 ± 0.008 Abs.) indicated the higher efficiency of bacteria for PP utilization, and so for the colony formation per define volume (1.04 × 1011 CFU/mL). Biofilm formation, erosions, cracks, and fragments were evident during the observation of the tested MPs using the scanning electron microscope (SEM). The formation of carbonyl and alcohol group due to the oxidation and hydrolysis by SHBF2 strain were confirmed using the Fourier transform infrared spectroscopic (FTIR) analysis. Additionally, the alterations of pH and CO2 evolution from each of the MP type ensures the bacterial activity and mineralization of the MP particles. The findings of this study have confirmed and indicated a higher degree of biodegradation for all of the selected MP particles. B. cereus SHBF2, the floc-forming bacteria used in aquaculture, has demonstrated a great potential for use as an efficient MP-degrading bacterium in the biofloc farming system in the near future to guarantee a sustainable green aquaculture production.
Collapse
Affiliation(s)
- Shahadat Hossain
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Zuhayra Nasrin Ahmad Shukri
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Amyra Suryatie Kamaruzzan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Ideris Abdul Rahim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Shuhaimi Draman
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wahidah Wahab
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Helena Khatoon
- Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
10
|
Ragu Prasath A, Selvam K, Sudhakar C. Biodegradation of low-density polyethylene film by Bacillus gaemokensis strain SSR01 isolated from the guts of earthworm. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:159. [PMID: 38592645 DOI: 10.1007/s10653-024-01925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
In recent years, low-density polyethylene (LDPE) has emerged as an essential component of the routine tasks that people engage in on a daily basis. However, over use of it resulted in environmental buildup that contaminated aquatic habitats and human health. Biodegradation is the most effective way for controlling pollution caused by synthetic plastic waste in a sustainable manner. In the present study, the LDPE degrading bacterial strain was screened from gut of Earthworms collected from plastic waste dumped area Mettur dam, Salem district, Tamil Nadu, India. The LDPE degrading bacterial strain was screened and identified genotypically. The LDPE degrading Bacillus gaemokensis strain SSR01 was submitted in NCBI. The B. gaemokensis strain SSR01 bacterial isolate degraded LDPE film after 14 days of incubation and demonstrated maximum weight loss of up to 4.98%. The study of deteriorated film using attenuated total reflection-Fourier transform infrared revealed the presence of a degraded product. The degradation of LDPE film by B. gaemokensis strain SSR01 was characterized by field-emission scanning electron microscopy analysis for surface alterations. The energy dispersive X-ray spectroscopy test confirmed that the broken-down LDPE film had basic carbon reduction. The present study of LDPE flim biodegradation by B. gaemokensis strain SSR01 has acted as a suitable candidate and will help in decreasing plastic waste.
Collapse
Affiliation(s)
- Arunagiri Ragu Prasath
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637 501, India
| | - Kandasamy Selvam
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637 501, India.
| | - Chinnappan Sudhakar
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637 501, India
| |
Collapse
|
11
|
Herrera DAG, Mojicevic M, Pantelic B, Joshi A, Collins C, Batista M, Torres C, Freitas F, Murray P, Nikodinovic-Runic J, Brennan Fournet M. Exploring Microorganisms from Plastic-Polluted Sites: Unveiling Plastic Degradation and PHA Production Potential. Microorganisms 2023; 11:2914. [PMID: 38138058 PMCID: PMC10745504 DOI: 10.3390/microorganisms11122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The exposure of microorganisms to conventional plastics is a relatively recent occurrence, affording limited time for evolutionary adaptation. As part of the EU-funded project BioICEP, this study delves into the plastic degradation potential of microorganisms isolated from sites with prolonged plastic pollution, such as plastic-polluted forests, biopolymer-contaminated soil, oil-contaminated soil, municipal landfill, but also a distinctive soil sample with plastic pieces buried three decades ago. Additionally, samples from Arthropoda species were investigated. In total, 150 strains were isolated and screened for the ability to use plastic-related substrates (Impranil dispersions, polyethylene terephthalate, terephthalic acid, and bis(2-hydroxyethyl) terephthalate). Twenty isolates selected based on their ability to grow on various substrates were identified as Streptomyces, Bacillus, Enterococcus, and Pseudomonas spp. Morphological features were recorded, and the 16S rRNA sequence was employed to construct a phylogenetic tree. Subsequent assessments unveiled that 5 out of the 20 strains displayed the capability to produce polyhydroxyalkanoates, utilizing pre-treated post-consumer PET samples. With Priestia sp. DG69 and Neobacillus sp. DG40 emerging as the most successful producers (4.14% and 3.34% of PHA, respectively), these strains are poised for further utilization in upcycling purposes, laying the foundation for the development of sustainable strategies for plastic waste management.
Collapse
Affiliation(s)
- Diana A. Garza Herrera
- PRISM Research Institute, Technological University of the Shannon Midlands Midwest, N37HD68 Athlone, Ireland; (D.A.G.H.); (M.B.F.)
| | - Marija Mojicevic
- PRISM Research Institute, Technological University of the Shannon Midlands Midwest, N37HD68 Athlone, Ireland; (D.A.G.H.); (M.B.F.)
| | - Brana Pantelic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (B.P.); (J.N.-R.)
| | - Akanksha Joshi
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland; (A.J.); (C.C.); (P.M.)
| | - Catherine Collins
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland; (A.J.); (C.C.); (P.M.)
| | - Maria Batista
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal; (M.B.); (C.T.); (F.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal
| | - Cristiana Torres
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal; (M.B.); (C.T.); (F.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal
| | - Filomena Freitas
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal; (M.B.); (C.T.); (F.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland; (A.J.); (C.C.); (P.M.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (B.P.); (J.N.-R.)
| | - Margaret Brennan Fournet
- PRISM Research Institute, Technological University of the Shannon Midlands Midwest, N37HD68 Athlone, Ireland; (D.A.G.H.); (M.B.F.)
| |
Collapse
|
12
|
Sun X, Anoopkumar AN, Madhavan A, Binod P, Pandey A, Sindhu R, Awasthi MK. Degradation mechanism of microplastics and potential risks during sewage sludge co-composting: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122113. [PMID: 37379875 DOI: 10.1016/j.envpol.2023.122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/07/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Microplastics (MPs) as a kind of emerging contaminants, widely exists in various kinds of medium, sewage sludge (SS) is no exception. In the sewage treatment process, a large number of microplastics will be deposited in SS. More seriously, microplastics in sewage sludge can migrate to other environmental media and threaten human health. Therefore, it is necessary to remove MPs from SS. Among the various restorations, aerobic composting is emerging as a green microplastic removal method. There are more and more reports of using aerobic compost to degrade microplastics. However, there are few reports on the degradation mechanism of MPs in aerobic composting, hindering the innovation of aerobic composting methods. Therefore, in this paper, the degradation mechanism of MPs in SS is discussed based on the environmental factors such as physical, chemical and biological factors in the composting process. In addition, this paper expounds the MPs in potential hazards, and combined with the problems in the present study were studied the outlook.
Collapse
Affiliation(s)
- Xinwei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China
| | - A N Anoopkumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, 691505, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China.
| |
Collapse
|