1
|
Liu Y, Deng Y, van Loosdrecht MCM, Chen G. Development of nitrification and elemental sulfur-based denitrification/anammox (NS 0DA) process for mainstream nitrogen removal. WATER RESEARCH 2025; 283:123836. [PMID: 40408985 DOI: 10.1016/j.watres.2025.123836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/22/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
The implementation of mainstream anaerobic ammonium oxidation (anammox) can facilitate the realization of carbon-neutral wastewater treatment. However, this technology remains challenging owing to the inability to stably provide nitrite. In this study, we developed a novel nitrification and elemental sulfur-based partial autotrophic denitrification/anammox (NS0DA) process for mainstream nitrogen removal. The NS0DA system consists of a nitrification reactor and a combined elemental sulfur-based denitrification and anammox (S0DA) reactor. Each reactor was independently initiated and optimized before being integrated. At mainstream nitrogen levels (48.5 ± 1.7 mg NH4+-N/L) and 25 °C, the NS0DA system achieved 89.1 ± 5.7 % total nitrogen (TN) removal efficiency, with an effluent TN concentration of 5.4 ± 2.8 mg N/L. The system exhibited a low N2O emission factor (0.23 %), significantly lower than other anammox-based systems. The S0DA reactor achieved a nitrogen removal rate of 0.53 kg N/(m3·d) with a short hydraulic retention time (2 h). Anammox accounted for 87.3 ± 7.0 % of the TN removal in the S0DA reactor. Isotope experiments and kinetic analysis revealed the cooperation between anammox and denitrification for nitrogen removal. Polysulfides formed in the S0DA reactor enhanced the utilization rate of elemental sulfur. High-throughput sequencing identified Thiobacillus and Candidatus Brocadia as the dominant genera of sulfur oxidation and anammox, respectively. The nitrogen and sulfur metabolic pathways were further verified through metagenomic analysis. Overall, the NS0DA process provides a stable and efficient nitrogen removal process, minimizing oxygen demand, eliminating organic carbon requirements, and reducing N2O emissions compared to conventional nitrification/denitrification. This approach offers a promising solution for mainstream nitrogen removal in wastewater treatment.
Collapse
Affiliation(s)
- Yuanjun Liu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen 518000, China
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen 518000, China.
| | | | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
2
|
Li S, Zhao R, Wang S, Yang Y, Diao M, Ji G. Influences of fluctuating nutrient loadings on nitrate-reducing microorganisms in rivers. ISME COMMUNICATIONS 2025; 5:ycae168. [PMID: 39839890 PMCID: PMC11748280 DOI: 10.1093/ismeco/ycae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 01/23/2025]
Abstract
Rivers serve important functions for human society and are significantly impacted by anthropogenic nutrient inputs (e.g. organic and sulfur compounds). Reduced organic and sulfur compounds influence the nitrogen cycle as they are electron donors of microbial nitrate reduction. Water pollution caused by individual nutrients and the mechanisms have been studied, but how the variation in multiple nutrient loadings influences nitrate-reducing microorganisms is less understood. Two sets of microcosms were established and exposed to nitrate, along with either acetate or thiosulfate, at different times. Nutrient concentrations responded to the loading pollutant. The nutrient loading order was more important in shaping microbial community structure and microbial interactions through the exchange of growth-required substances. This indicated that upstream or historical nutrient inflows impacted current nitrate reduction by changing the seeding microbial community, highlighting the importance of river connectivity. Based on metatranscriptome analysis, although the order and type of nutrient loadings were equally important in regulating global transcriptomes, transcripts of enzymes for key metabolisms (nitrate reduction, sulfur oxidation, etc.) more actively responded to the nutrient type. The regulation of a small set of genes was sufficient to make the transition, while most transcripts were not degraded and regenerated. These insights are important for understanding the varying pollution status of rivers and for developing effective solutions, such as remediation.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
- Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Muhe Diao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Fan K, Wang F, Xu X, Shi J, Wang W, Xing D, Ren N, Lee DJ, Chen C. Enterobacter sp. HIT-SHJ4 isolated from wetland with carbon, nitrogen and sulfur co-metabolism and its implication for bioremediation. ENVIRONMENTAL RESEARCH 2024; 260:119593. [PMID: 39002634 DOI: 10.1016/j.envres.2024.119593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Both autotrophic and heterotrophic denitrification are known as important bioprocesses of microbe-mediated nitrogen cycle in natural ecosystems. Actually, mixotrophic denitrification co-driven by organic matter and reduced sulfur substances are also common, especially in hypoxic environments such as estuarine sediments. However, carbon, nitrogen and sulfur co-metabolism during mixotrophic denitrification in natural water ecosystems has rarely been reported in detail. Therefore, this study investigated the co-metabolism of carbon, nitrogen and sulfur using samples collected from four distinct natural water ecosystems. Results demonstrated that samples from various sources all exhibited the ability for co-metabolism of carbon, nitrogen and sulfur. Microbial community analysis showed that Pseudomonas and Paracoccus were dominant bacteria ranging from 65.6% to 75.5% in mixotrophic environment. Enterobacter sp. HIT-SHJ4, a mixotrophic denitrifying strain which owned the capacity for co-metabolism of carbon, nitrogen and sulfur, was isolated and reported here for the first time. The strain preferred methanol as its carbon source and demonstrated remarkable efficiency for removing sulfide and nitrate with below 100 mg/L sulfide. Under weak acid conditions (pH 6.5-7.0), it exhibited enhanced capability in converting sulfide to elemental sulfur. Its bioactivity was evident within a temperature from 25 °C to 40 °C and C/N ratios from 0.75 to 3. This study confirmed the widespread presence of microbial-mediated synergistic carbon, nitrogen and sulfur metabolism in natural aquatic ecosystems. HIT-SHJ4 emerges as a novel strain, shedding light on carbon, nitrogen and sulfur co-metabolism in natural water bodies. Furthermore, it also serves as a promising candidate microorganism for in-situ ecological remediation, particularly in dealing with contamination posed by nitrate, sulfide, and organic matter.
Collapse
Affiliation(s)
- Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Jia Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
4
|
Xu JM, Dong H, Xu HR, Sun YL, Yu Y, Zhang LY, Yi GP, He WK, Wu CM, Wang AJ, Cheng HY. Water flush boosts performance of elemental sulfur-based denitrification packed-bed systems: Optimization and mechanisms. BIORESOURCE TECHNOLOGY 2024; 408:131158. [PMID: 39059589 DOI: 10.1016/j.biortech.2024.131158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Despite the promising potential of elemental sulfur-based denitrification (ESDeN) packed-bed progresses, challenges such as excessive biofilm growth and gas entrapment persist, leading to denitrification deterioration. Water flush (WF) is recognized as an effective strategy, yet its effects remain underexplored. To address this knowledge gap, this study systematically investigated WF effects on ESDeN packed-bed denitrification. Results demonstrated that controlling WF effectively regulated denitrification, achieving superior and stable rates. Compared to no WF (0.45 kgN·m-3·d-1), rates improved by 1.20 ∼ 1.56 times under low-frequency (weekly WF, 0.54 kgN·m-3·d-1) and low-intensity WF (0.54 ∼ 0.70 kgN·m-3·d-1). High-frequency (hours WF) and high-intensity WF (30 & 50 m/h) further amplified denitrification rates by 1.73 ∼ 2.29 times. The enhanced denitrifications under low-frequency/intensity WF were mainly attributed to prolonged actual hydraulic retention time (AHRT), while high-frequency/intensity WF improved both AHRT prolonging and biofilm thinning, facilitating mass transfer. This study offers a promising avenue for fine-tuning denitrification rates via strategic WF adjustments.
Collapse
Affiliation(s)
- Jia-Min Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Heng Dong
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; CSD (Jiangsu) Environmental Construction Co., Ltd., Nanjing 211134, China; CSD Water Service Co., Ltd. R&D Branch, Yixing 214214, China
| | - Hao-Ran Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yi-Lu Sun
- Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yang Yu
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Li-Ying Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Gen-Ping Yi
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wen-Ke He
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Chang-Min Wu
- CSD (Jiangsu) Environmental Construction Co., Ltd., Nanjing 211134, China; CSD Water Service Co., Ltd. R&D Branch, Yixing 214214, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
5
|
Kulshreshtha NM, Chauhan K, Singh A, Soti A, Kumari M, Gupta AB. Intertwining of the C-N-S cycle in passive and aerated constructed wetlands. World J Microbiol Biotechnol 2024; 40:301. [PMID: 39136809 DOI: 10.1007/s11274-024-04102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 10/17/2024]
Abstract
The microbial processes occurring in constructed wetlands (CWs) are difficult to understand owing to the complex interactions occurring between a variety of substrates, microorganisms, and plants under the given physicochemical conditions. This frequently leads to very large unexplained nitrogen losses in these systems. In continuation of our findings on Anammox contributions, our research on full-scale field CWs has suggested the significant involvement of the sulfur cycle in the conventional C-N cycle occurring in wetlands, which might closely explain the nitrogen losses in these systems. This paper explored the possibility of the sulfur-driven autotrophic denitrification (SDAD) pathway in different types of CWs, shallow and deep and passive and aerated systems, by analyzing the metagenomic bacterial communities present within these CWs. The results indicate a higher abundance of SDAD bacteria (Paracoccus and Arcobacter) in deep passive systems compared to shallow systems and presence of a large number of SDAD genera (Paracoccus, Thiobacillus, Beggiatoa, Sulfurimonas, Arcobacter, and Sulfuricurvum) in aerated CWs. The bacteria belonging to the functional category of dark oxidation of sulfur compounds were found to be enriched in deep and aerated CWs hinting at the possible role of the SDAD pathway in total nitrogen removal in these systems. As a case study, the percentage nitrogen removal through SDAD pathway was calculated to be 15-20% in aerated wetlands. The presence of autotrophic pathways for nitrogen removal can prove highly beneficial in terms of reducing sludge generation and hence reducing clogging, making aerated CWs a sustainable wastewater treatment solution.
Collapse
Affiliation(s)
- Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India
- Dr. B. Lal Institute of Biotechnology, 6E-Malaviya Industrial Area, Jaipur, 302017, India
| | - Karishma Chauhan
- Department of Civil Engineering, Manipal University, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, 303007, India
| | - Abhyudaya Singh
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India
| | - Abhishek Soti
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India
- Bluedrop Enviro Private Limited, 101, Vasantha Golden Residency Plot No-521 and 536, Phillu Street, Raja Rajeswari Nagar, Kondapur, Telangana, 500084, India
| | - Meena Kumari
- Dr. B. Lal Institute of Biotechnology, 6E-Malaviya Industrial Area, Jaipur, 302017, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India.
| |
Collapse
|
6
|
Yao S, Zhang K, Yang S, Li Z, Wang Y, Ma F, Chen P, Zhu T. A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification coupled anammox system. Biodegradation 2024; 35:565-582. [PMID: 38844743 DOI: 10.1007/s10532-024-10077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/16/2024] [Indexed: 07/14/2024]
Abstract
A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification (SAD) coupled anaerobic ammonium oxidation (anammox) system was designed, which solved problems of nitrate produced in anammox process and low nitrate conversion rate caused by nitrite accumulation in SAD process. Different filter structures (SAD filter and anammox granular sludge) were investigated to further explore the excellent performance of the novel integrated reactor. The results of sequential batch experiments indicated that nitrite accumulation occurred during SAD, which inhibited the conversion of nitrate to dinitrogen gas. When SAD filter and anammox granular sludge were added to packed bed reactor simultaneously, the nitrate removal rate increased by 37.21% and effluent nitrite concentration decreased by 100% compared to that achieved using SAD. The stratified filter structure solved groove flow. Different proportion influence of SAD filter and anammox granular sludge on the stratified filter structure was evaluated. More suitable ratio of SAD filter to anammox granular sludge was 2:1. Proteobacteria (57.26%), Bacteroidetes (20.12%) and Chloroflexi (9.95%) were the main phyla. The dominant genera of denitrification functional bacteria were Thiobacillus (39.80%), Chlorobaculum (3.99%), norank_f_PHOs-HE36 (2.90%) and Ignavibacterium (2.64%). The dominant genus of anammox bacterium was Candidatus_Kuenenia (3.05%).
Collapse
Affiliation(s)
- Sai Yao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Song Yang
- Liaoning Coning Testing Co., Ltd, No. 603, 16-6, Wensu Street, Hunnan District, Shenyang, 110170, People's Republic of China
| | - Zijun Li
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China
| | - Feng Ma
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China
| | - Pu Chen
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
7
|
Li Y, Chen T, Chen W, Liu H, Xie Q, Zhou Y, Chen D, Zou X. Manganese sulfide-sulfur and limestone autotrophic denitrification system for deep and efficient nitrate removal: Feasibility, performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 403:130874. [PMID: 38782191 DOI: 10.1016/j.biortech.2024.130874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Despite the great potential of sulfur-based autotrophic denitrification, an improvement in nitrate removal rate is still needed. This study used the desulfurized products of Mn ore to develop the MnS-S0-limestone autotrophic denitrification system (MSLAD). The feasibility of MSLAD for denitrification was explored and the possible mechanism was proposed. The nitrate (100 mg/L) was almost removed within 24 h in batch experiment in MSLAD. Also, an average TN removal of 98 % (472.0 mg/L/d) at hydraulic retention time of 1.5 h in column experiment (30 mg/L) was achieved. MnS and S0 could act as coupled electron donors and show synergistic effects for nitrate removal. γ-MnS with smaller particle size and lower crystallinity was more readily utilized by the bacterium and had higher nitrate removal efficiency than that of α-MnS. Thiobacillus and Sulfurimonas were the core functional bacterium in denitrification. Therefore, MnS-S0-limestone bio-denitrification provides an efficient alternative method for nitrate removal in wastewater.
Collapse
Affiliation(s)
- Yaqian Li
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Tianhu Chen
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Weizhe Chen
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Haibo Liu
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Qiaoqin Xie
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Yuefei Zhou
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Dong Chen
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xuehua Zou
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
8
|
Shao B, Niu L, Xie YG, Zhang R, Wang W, Xu X, Sun J, Xing D, Lee DJ, Ren N, Hua ZS, Chen C. Overlooked in-situ sulfur disproportionation fuels dissimilatory nitrate reduction to ammonium in sulfur-based system: Novel insight of nitrogen recovery. WATER RESEARCH 2024; 257:121700. [PMID: 38705068 DOI: 10.1016/j.watres.2024.121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Sulfur-based denitrification is a promising technology in treatments of nitrate-contaminated wastewaters. However, due to weak bioavailability and electron-donating capability of elemental sulfur, its sulfur-to-nitrate ratio has long been low, limiting the support for dissimilatory nitrate reduction to ammonium (DNRA) process. Using a long-term sulfur-packed reactor, we demonstrate here for the first time that DNRA in sulfur-based system is not negligible, but rather contributes a remarkable 40.5 %-61.1 % of the total nitrate biotransformation for ammonium production. Through combination of kinetic experiments, electron flow analysis, 16S rRNA amplicon, and microbial network succession, we unveil a cryptic in-situ sulfur disproportionation (SDP) process which significantly facilitates DNRA via enhancing mass transfer and multiplying 86.7-210.9 % of bioavailable electrons. Metagenome assembly and single-copy gene phylogenetic analysis elucidate the abundant genomes, including uc_VadinHA17, PHOS-HE36, JALNZU01, Thiobacillus, and Rubrivivax, harboring complete genes for ammonification. Notably, a unique group of self-SDP-coupled DNRA microorganism was identified. This study unravels a previously concealed fate of DNRA, which highlights the tremendous potential for ammonium recovery and greenhouse gas mitigation. Discovery of a new coupling between nitrogen and sulfur cycles underscores great revision needs of sulfur-driven denitrification technology.
Collapse
Affiliation(s)
- Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Li Niu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yuan-Guo Xie
- Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, PR China
| | - Ruochen Zhang
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, PR China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
9
|
Du J, Xu B, Ma G, Ma L, Liang J, Li K, Jiao H, Tian B, Li B, Ma L. The impact of benzoic acid and lactic acid on the treatment efficiency and microbial community in the sulfur autotrophic denitrification process. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11056. [PMID: 38825347 DOI: 10.1002/wer.11056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Abstract
Nitrate poses a potential threat to aquatic ecosystems. This study focuses on the sulfur autotrophic denitrification mechanism in the process of water culture wastewater treatment, which has been successfully applied to the degradation of nitrogen in water culture farm effluents. However, the coexistence of organic acids in the treatment process is a common environmental challenge, significantly affecting the activity of denitrifying bacteria. This paper aims to explore the effects of adding benzoic acid and lactic acid on denitrification performance, organic acid removal rate, and microbial population abundance in sulfur autotrophic denitrification systems under optimal operating conditions, sulfur deficiency, and high hydraulic load. In experiments with 50 mg·L-1 of benzoic acid or lactic acid alone, the results show that benzoic acid and lactic acid have a stimulating effect on denitrification activity, with the stimulating effect significantly greater than the inhibitory effect. Under optimal operating conditions, the average denitrification rate of the system remained above 99%; under S/N = 1.5 conditions, the average denitrification rate increased from 88.34% to 91.93% and 85.91%; under HRT = 6 h conditions, the average denitrification rate increased from 75.25% to 97.79% and 96.58%. In addition, the addition of organic acids led to a decrease in microbial population abundance. At the phylum level, Proteobacteria has always been the dominant bacterial genus, and its relative abundance significantly increased after the addition of benzoic acid, from 40.2% to 61.5% and 62.4%. At the genus level, Thiobacillus, Sulfurimonas, Chryseobacterium, and Thermomonas maintained high population abundances under different conditions. PRACTITIONER POINTS: Employing autotrophic denitrification process for treating high-nitrate wastewater. Utilizing organic acids as external carbon sources. Denitrifying bacteria demonstrate high utilization efficiency towards organic acids. Organic acids promote denitrification more than they inhibit it. The promotion is manifested in the enhancement of activity and microbial abundance.
Collapse
Affiliation(s)
- Jiancheng Du
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Bing Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Institute of Resources and Environment, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Ma
- Shandong Environmental Science Society, Jinan, China
| | - Liang Ma
- Shandong Guochen Industrial Group Co., Ltd., Jinan, China
| | - Jinhao Liang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Ke Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Hui Jiao
- Shandong Guochen Industrial Group Co., Ltd., Jinan, China
| | - Binbin Tian
- Shandong Guochen Industrial Group Co., Ltd., Jinan, China
| | - Bingxu Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Linfeng Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
10
|
Visser AN, Martin JD, Osenbrück K, Rügner H, Grathwohl P, Kappler A. In situ incubation of iron(II)-bearing minerals and Fe(0) reveals insights into metabolic flexibility of chemolithotrophic bacteria in a nitrate polluted karst aquifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172062. [PMID: 38554974 DOI: 10.1016/j.scitotenv.2024.172062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Groundwater nitrate pollution is a major reason for deteriorating water quality and threatens human and animal health. Yet, mitigating groundwater contamination naturally is often complicated since most aquifers are limited in bioavailable carbon. Since metabolically flexible microbes might have advantages for survival, this study presents a detailed description and first results on our modification of the BacTrap© method, aiming to determine the prevailing microbial community's potential to utilize chemolithotrophic pathways. Our microbial trapping devices (MTDs) were amended with four different iron sources and incubated in seven groundwater monitoring wells for ∼3 months to promote growth of nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOxB) in a nitrate-contaminated karst aquifer. Phylogenetic analysis based on 16S rRNA gene sequences implies that the identity of the iron source influenced the microbial community's composition. In addition, high throughput amplicon sequencing revealed increased relative 16S rRNA gene abundances of OTUs affiliated to genera such as Thiobacillus, Rhodobacter, Pseudomonas, Albidiferax, and Sideroxydans. MTD-derived enrichments set up with Fe(II)/nitrate/acetate to isolate potential NRFeOxB, were dominated by e.g., Acidovorax spp., Paracoccus spp. and Propionivibrio spp. MTDs are a cost-effective approach for investigating microorganisms in groundwater and our data not only solidifies the MTD's capacity to provide insights into the metabolic flexibility of the aquifer's microbial community, but also substantiates its metabolic potential for anaerobic Fe(II) oxidation.
Collapse
Affiliation(s)
- Anna-Neva Visser
- GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany; Department of Geosciences, University of Tübingen, Germany.
| | - Joseph D Martin
- Department of Biology, Terrestrial Ecology, University of Copenhagen, Denmark
| | - Karsten Osenbrück
- Department of Geosciences, University of Tübingen, Germany; Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Hermann Rügner
- Department of Geosciences, University of Tübingen, Germany
| | | | | |
Collapse
|
11
|
Fu M, Qiu S, Wang J, Zhu Y, Yuan M, Wang L. Tourmaline mediated enhanced autotrophic denitrification: The mechanisms of electron transfer and Paracoccus enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169847. [PMID: 38185169 DOI: 10.1016/j.scitotenv.2023.169847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Autotrophic denitrification (AD) without carbon source is an inevitable choice for denitrification of municipal wastewater under the carbon peaking and carbon neutrality goals. This study first employed sulfur-tourmaline-AD (STAD) as an innovative nitrate removal trial technique in wastewater. STAD demonstrated a 2.23-fold increase in nitrate‑nitrogen (NO3--N) removal rate with reduced nitrite‑nitrogen (NO2--N) accumulation, effectively removing 99 % of nitrogen pollutants compared to sulfur denitrification. Some denitrifiers microorganisms that could secrete tyrosine, tryptophan, and aromatic protein (extracellular polymeric substances (EPS)). Moreover, according to the EPS composition and characteristics analysis, the secretion of loosely bound extracellular polymeric substances (LB-EPS) that bound to the bacterial endogenous respiration and enriched microbial abundance, was produced more in the STAD system, further improving the system stability. Furthermore, the addition of tourmaline (Tm) facilitated the discovery of a new genus (Paracoccus) that enhanced nitrate decomposition. Applying optimal electron donors through metabolic pathways and the microbial community helps to strengthen the AD process and treat low carbon/nitrogen ratio wastewater efficiently.
Collapse
Affiliation(s)
- Mengqi Fu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Shan Qiu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China.
| | - Jue Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Yingshi Zhu
- Zhejiang Environment Technology Co., Ltd, Hangzhou 311100, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mu Yuan
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Liang Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| |
Collapse
|
12
|
Sun YL, Wang JY, Ngo HH, Wei W, Guo W, Zhang XN, Cheng HY, Yang JX, Wang AJ. Inducement mechanism and control of self-acidification in elemental sulfur fluidizing bioreactor. BIORESOURCE TECHNOLOGY 2024; 393:130081. [PMID: 37993067 DOI: 10.1016/j.biortech.2023.130081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/21/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The sulfur fluidizing bioreactor (S0FB) has significant superiorities in treating nitrate-rich wastewater. However, substantial self-acidification has been observed in engineering applications, resulting in frequent start-up failures. In this study, self-acidification was reproduced in a lab-scale S0FB. It was demonstrated that self-acidification was mainly induced by sulfur disproportionation process, accounting for 93.4 % of proton generation. Supplying sufficient alkalinity to both the influent (3000 mg/L) and the bulk (2000 mg/L) of S0FB was essential for achieving a successful start-up. Furthermore, the S0FB reached 10.3 kg-N/m3/d of nitrogen removal rate and 0.13 kg-PO43-/m3/d of phosphate removal rate, respectively, surpassing those of the documented sulfur packing bioreactors by 7-129 times and 26-65 times. This study offers a feasible and practical method to avoid self-acidification during restart of S0FB and highlights the considerable potential of S0FB in the treatment of nitrate-rich wastewater.
Collapse
Affiliation(s)
- Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jia-Yu Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ji-Xian Yang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
13
|
Sun YL, Wang HL, Ngo HH, Guo W, Ni BJ, Zhang XN, Wei W. Adapting to seasonal temperature variations: A dynamic multi-subunit strategy for sulfur autotrophic denitrification bioreactors. ENVIRONMENTAL RESEARCH 2024; 240:117493. [PMID: 37890831 DOI: 10.1016/j.envres.2023.117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Elemental sulfur autotrophic denitrification (S0AD) processes are temperature-sensitive, presenting a substantial challenge for the practical implementation of S0AD bioreactors. In this study, a comprehensive methodology for designing and operating S0AD bioreactors was developed, effectively managing fluctuations in nitrogen removal efficiency caused by seasonal temperature variations. Initially, the nitrate removal rate was correlated with simulated on-site temperature and nitrate loading, revealing correlation coefficients of k1, k2, k3, and A as 5.42×10-4, -0.41, 0.04, and 0.13, respectively, to establish a mathematical model for predicting S0AD efficiency. Subsequently, by considering influence factors such as dissolved oxygen and dynamic sulfur consumption, the model was employed to accurately design a pilot-scale S0AD bioreactor for a case study. By utilizing an alternative multi-subunit operation, a stable effluent nitrate concentration of less than 8 mg-N/L was maintained throughout the year. Importantly, this approach resulted in a substantial reduction of 76.8% in excessive nitrate removal, sulfur consumption, and sulfate production. This study aims to provide an optimal design and operation strategy for the practical application of S0AD bioreactors, thereby enhancing reliability and cost-effectiveness in the face of seasonal temperature changes.
Collapse
Affiliation(s)
- Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Han-Lin Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| |
Collapse
|
14
|
Shao L, Wang D, Chen G, Zhao X, Fan L. Advance in the sulfur-based electron donor autotrophic denitrification for nitrate nitrogen removal from wastewater. World J Microbiol Biotechnol 2023; 40:7. [PMID: 37938419 DOI: 10.1007/s11274-023-03802-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
In the field of wastewater treatment, nitrate nitrogen (NO3--N) is one of the significant contaminants of concern. Sulfur autotrophic denitrification technology, which uses a variety of sulfur-based electron donors to reduce NO3--N to nitrogen (N2) through sulfur autotrophic denitrification bacteria, has emerged as a novel nitrogen removal technology to replace heterotrophic denitrification in the field of wastewater treatment due to its low cost, environmental friendliness, and high nitrogen removal efficiency. This paper reviews the advance of reduced sulfur compounds (such as elemental sulfur, sulfide, and thiosulfate) and iron sulfides (such as ferrous sulfide, pyrrhotite, and pyrite) electron donors for treating NO3--N in wastewater by sulfur autotrophic denitrification technology, including the dominant bacteria types and the sulfur autotrophic denitrification process based on various electron donors are introduced in detail, and their operating costs, nitrogen removal performance and impacts on the ecological environment are analyzed and compared. Moreover, the engineering applications of sulfur-based electron donor autotrophic denitrification technology were comprehensively summarized. According to the literature review, the focus of future industry research were discussed from several aspects as well, which would provide ideas for the application and optimization of the sulfur autotrophic denitrification process for deep and efficient removal of NO3--N in wastewater.
Collapse
Affiliation(s)
- Lixin Shao
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Dexi Wang
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Gong Chen
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China
| | - Xibo Zhao
- Weihai Baike Environmental Protection Engineering Co., Ltd., Weihai, 264200, China
| | - Lihua Fan
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China.
| |
Collapse
|
15
|
Heinze BM, Küsel K, Jehmlich N, von Bergen M, Taubert M. Metabolic versatility enables sulfur-oxidizers to dominate primary production in groundwater. WATER RESEARCH 2023; 244:120426. [PMID: 37597444 DOI: 10.1016/j.watres.2023.120426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023]
Abstract
High rates of CO2 fixation and the genetic potential of various groundwater microbes for autotrophic activity have shown that primary production is an important source of organic C in groundwater ecosystems. However, the contribution of specific chemolithoautotrophic groups such as S-oxidizing bacteria (SOB) to groundwater primary production and their adaptation strategies remain largely unknown. Here, we stimulated anoxic groundwater microcosms with reduced S and sampled the microbial community after 1, 3 and 6 weeks. Genome-resolved metaproteomics was combined with 50at-% 13CO2 stable isotope probing to follow the C flux through the microbial food web and infer traits expressed by active SOB in the groundwater microcosms. Already after 7 days, 90% of the total microbial biomass C in the microcosms was replaced by CO2-derived C, increasing to 97% at the end of incubation. Stable Isotope Cluster Analysis revealed active autotrophs, characterized by a uniform 13C-incorporation of 45% in their peptides, to dominate the microbial community throughout incubation. Mixo- and heterotrophs, characterized by 10 to 40% 13C-incorporation, utilized the primarily produced organic C. Interestingly, obligate autotrophs affiliated with Sulfuricella and Sulfuritalea contained traits enabling the storage of elemental S in globules to maintain primary production under energy limitation. Others related to Sulfurimonas seemed to rapidly utilize substrates for fast proliferation, and most autotrophs further maximized their energy yield via efficient denitrification and the potential for H2 oxidation. Mixotrophic SOB, belonging to Curvibacter or Polaromonas, enhanced metabolic flexibility by using organic compounds to satisfy their C requirements. Time series data spanning eight years further revealed that key taxa of our microcosms composed up to 15% of the microbial groundwater community, demonstrating their in-situ importance. This showed that SOB, by using different metabolic strategies, are able to account for high rates of primary production in groundwater, especially at sites limited to geogenic nutrient sources. The widespread presence of SOB with traits such as S storage, H2 oxidation, and organic C utilization in many aquatic habitats further suggested that metabolic versatility governs S-fueled primary production in the environment.
Collapse
Affiliation(s)
- Beatrix M Heinze
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany; The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Martin von Bergen
- The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany; Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, Leipzig 04318, Germany; Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, Brüderstr. 32, Leipzig 04103, Germany
| | - Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
16
|
Dasi EA, Cunningham JA, Talla E, Ergas SJ. Autotrophic denitrification supported by sphalerite and oyster shells: Chemical and microbiome analysis. BIORESOURCE TECHNOLOGY 2023; 375:128820. [PMID: 36871699 DOI: 10.1016/j.biortech.2023.128820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
This research evaluated the metal-sulfide mineral, sphalerite, as an electron donor for autotrophic denitrification, with and without oyster shells (OS). Batch reactors containing sphalerite simultaneously removed NO3- and PO43- from groundwater. OS addition minimized NO2- accumulation and removed 100% PO43- in approximately half the time compared with sphalerite alone. Further investigation using domestic wastewater revealed that sphalerite and OS removed NO3- at a rate of 0.76 ± 0.36 mg NO3--N/(L · d), while maintaining consistent PO43- removal (∼97%) over 140 days. Increasing the sphalerite and OS dose did not improve the denitrification rate. 16S rRNA amplicon sequencing indicated that sulfur-oxidizing species of Chromatiales, Burkholderiales, and Thiobacillus played a role in N removal during sphalerite autotrophic denitrification. This study provides a comprehensive understanding of N removal during sphalerite autotrophic denitrification, which was previously unknown. Knowledge from this work could be used to develop novel technologies for addressing nutrient pollution.
Collapse
Affiliation(s)
- Erica A Dasi
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA
| | - Jeffrey A Cunningham
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA
| | - Emmanuel Talla
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne (LCB), F-13009, Marseille, France
| | - Sarina J Ergas
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA.
| |
Collapse
|
17
|
Yılmaz T, Sahinkaya E. Performance of sulfur-based autotrophic denitrification process for nitrate removal from permeate of an MBR treating textile wastewater and concentrate of a real scale reverse osmosis process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116827. [PMID: 36442334 DOI: 10.1016/j.jenvman.2022.116827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Textile is one of the industrial sectors generating the highest amount of wastewater with various polluting substances. Lately, water reuse in textile industries, especially, with the reverse osmosis (RO) process following membrane bioreactor (MBR) treatment has been applied more commonly. In this study, an autotrophic sulfur-based denitrifying column performance was evaluated, for the first time, for nitrate reduction from permeate of a lab-scale MBR receiving real textile wastewater and from the concentrate stream of a real scale-RO plant used for recovering water from textile wastewater. Nitrate concentration in the MBR effluent and RO concentrate averaged 35 ± 3 and 12 ± 2 mg-N/L, respectively. With the sulfur-based column bioreactor, quite high (≥90%) denitrification performances were attained both for MBR effluent and RO concentrate up to nitrate loadings of 0.432 and 0.12 g-N/(L.d), respectively. COD present in wastewater was not utilized in the column bioreactor, which illustrates no or minimal contribution of heterotrophic denitrification. Alkalinity concentration in the wastewater was enough to buffer the acid formation during autotrophic denitrification. Sulfate was generated accompanied by nitrate reduction and sulfide was formed at low nitrate loadings. In the batch tests, the denitrification rates for the MBR effluent and RO concentrate were 0.31 and 0.28 g-N/(g-VSS.d), respectively, which were relatively higher than the ones observed for the synthetic nitrate-contaminated groundwater. Autotrophic sulfur-based denitrification is a promising and robust process alternative even for textile RO concentrate with high concentrations of salinity, non-biodegradable COD, and color.
Collapse
Affiliation(s)
- Tülay Yılmaz
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Science and Advanced Technologies Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Erkan Sahinkaya
- Science and Advanced Technologies Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey.
| |
Collapse
|
18
|
Chen S, Zhou B, Chen H, Yuan R. Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review. ENVIRONMENTAL RESEARCH 2023; 216:114687. [PMID: 36356669 DOI: 10.1016/j.envres.2022.114687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In recent years, iron mediated autotrophic denitrification has been a concern because it overcomes the absence of organic carbon and has been successfully used in denitrification for low C/N ratio wastewater. However, there is currently a lack of a more systematic summary of iron-based materials that can be used for denitrification, and no detailed overview about the mechanism of iron mediated autotrophic denitrification has been reported. In this study, the iron materials with different valence states that can be used for denitrification were summarized, and emphasized, as well as the mechanism in different interaction systems were emphasize. In addition, the contribution of various microorganisms in nitrate reduction were analyzed and the effects of operating conditions and water quality were evaluated. Finally, the challenges and shortcomings of the denitrification process were discussed aiming to find better practical engineering applications of iron-based denitrification.
Collapse
Affiliation(s)
- Shaoting Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
19
|
Sun J, Garg S, Xie J, Zhang C, Waite TD. Electrochemical Reduction of Nitrate with Simultaneous Ammonia Recovery Using a Flow Cathode Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17298-17309. [PMID: 36394539 DOI: 10.1021/acs.est.2c06033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The presence of excessive concentrations of nitrate in industrial wastewaters, agricultural runoff, and some groundwaters constitutes a serious issue for both environmental and human health. As a result, there is considerable interest in the possibility of converting nitrate to the valuable product ammonia by electrochemical means. In this work, we demonstrate the efficacy of a novel flow cathode system coupled with ammonia stripping for effective nitrate removal and ammonia generation and recovery. A copper-loaded activated carbon slurry (Cu@AC), made by a simple, low-cost wet impregnation method, is used as the flow cathode in this novel electrochemical reactor. Use of a 3 wt % Cu@AC suspension at an applied current density of 20 mA cm-2 resulted in almost complete nitrate removal, with 97% of the nitrate reduced to ammonia and 70% of the ammonia recovered in the acid-receiving chamber. A mathematical kinetic model was developed that satisfactorily describes the kinetics and mechanism of the overall nitrate electroreduction process. Minimal loss of Cu to solution and maintenance of nitrate removal performance over extended use of Cu@AC flow electrode augers well for long-term use of this technology. Overall, this study sheds light on an efficient, low-cost water treatment technology for simultaneous nitrate removal and ammonia generation and recovery.
Collapse
Affiliation(s)
- Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Jiangzhou Xie
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province214206, P. R. China
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province214206, P. R. China
| |
Collapse
|
20
|
Bi Z, Zhang Q, Xu X, Yuan Y, Ren N, Lee DJ, Chen C. Perspective on inorganic electron donor-mediated biological denitrification process for low C/N wastewaters. BIORESOURCE TECHNOLOGY 2022; 363:127890. [PMID: 36075347 DOI: 10.1016/j.biortech.2022.127890] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Nitrate is the most common water environmental pollutant in the world. Inorganic electron donor-mediated denitrification is a typical process with significant advantages in treating low carbon-nitrogen ratio water and wastewater and has attracted extensive research attention. This review summarizes the denitrification processes using inorganic substances, including hydrogen, reductive sulfur compounds, zero-valent iron, and iron oxides, ammonium nitrogen, and other reductive heavy metal ions as electron donors. Aspects on the functional microorganisms, critical metabolic pathways, limiting factors and mathematical modeling are outlined. Also, the typical inorganic electron donor-mediated denitrification processes and their mechanism, the available microorganisms, process enhancing approaches and the engineering potentials, are compared and discussed. Finally, the prospects of developing the next generation inorganic electron donor-mediated denitrification process is put forward.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
21
|
Yang X, Tang Z, Xiao L, Zhang S, Jin J, Zhang S. Effect of electric current intensity on performance of polycaprolactone/FeS 2-based mixotrophic biofilm-electrode reactor. BIORESOURCE TECHNOLOGY 2022; 361:127757. [PMID: 35952860 DOI: 10.1016/j.biortech.2022.127757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, a bioelectrochemical system consisting of pyrite-based autotrophic denitrification (PAD) and heterotrophic denitrification (HD) was established to polish nitrate wastewater. The loading of electric current (EC) could stimulate the dissolution of pyrite. Appropriate EC (I ≤ 30 mA) was conducive to nitrate removal, too high EC (I = 40 mA) would inhibit nitrate removal and lead to an obvious accumulation of NO2--N and NH4+-N. Microbial analysis revealed that the increase of EC could inhibit the diversity of heterotrophic microbes, but appropriate EC (I = 10 mA) could increase the diversity of autotrophic microbes. The EC loading was conducive to the enrichment of iron autotrophic denitrifiers (Ferritrophicum), pyrite-oxidizing bacteria (Thiobacillus, Sulfurimonas), and sulfur autotrophic denitrifiers (Dechloromonas, Thiobacillus, and Arenimonas). The EC loading enlarged the contribution of PAD, making PAD a dominant pathway in denitrification.
Collapse
Affiliation(s)
- Xin Yang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zhiwei Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Longqu Xiao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Jin
- Yunnan Ningmao Environmental Technology Co., Ltd., Kunming 650000, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
22
|
Xu B, Yang X, Li Y, Yang K, Xiong Y, Yuan N. Pyrite-Based Autotrophic Denitrifying Microorganisms Derived from Paddy Soils: Effects of Organic Co-Substrate Addition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11763. [PMID: 36142037 PMCID: PMC9517464 DOI: 10.3390/ijerph191811763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The presence of organic co-substrate in groundwater and soils is inevitable, and much remains to be learned about the roles of organic co-substrates during pyrite-based denitrification. Herein, an organic co-substrate (acetate) was added to a pyrite-based denitrification system, and the impact of the organic co-substrate on the performance and bacterial community of pyrite-based denitrification processes was evaluated. The addition of organic co-substrate at concentrations higher than 48 mg L-1 inhibited pyrite-based autotrophic denitrification, as no sulfate was produced in treatments with high organic co-substrate addition. In contrast, both competition and promotion effects on pyrite-based autotrophic denitrification occurred with organic co-substrate addition at concentrations of 24 and 48 mg L-1. The subsequent validation experiments suggested that competition had a greater influence than promotion when organic co-substrate was added, even at a low concentration. Thiobacillus, a common chemolithoautotrophic sulfur-oxidizing denitrifier, dominated the system with a relative abundance of 13.04% when pyrite served as the sole electron donor. With the addition of organic co-substrate, Pseudomonas became the dominant genus, with 60.82%, 61.34%, 70.37%, 73.44%, and 35.46% abundance at organic matter concentrations of 24, 48, 120, 240, and 480 mg L-1, respectively. These findings provide an important theoretical basis for the cultivation of pyrite-based autotrophic denitrifying microorganisms for nitrate removal in soils and groundwater.
Collapse
Affiliation(s)
- Baokun Xu
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
- Key Laboratory of River Regulation and Flood Control of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Xiaoxia Yang
- Chongqing Water Resources Bureau, Chongqing 401147, China
| | - Yalong Li
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Kejun Yang
- School of Law, Zhongnan University of Economics and Law, Wuhan 430073, China
- Agricultural and Rural Department of Hubei Province, Wuhan 430070, China
| | - Yujiang Xiong
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Niannian Yuan
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| |
Collapse
|
23
|
Yang Y, Li M, Zheng X, Ma H, Nerenberg R, Chai H. Extracellular DNA plays a key role in the structural stability of sulfide-based denitrifying biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155822. [PMID: 35561912 DOI: 10.1016/j.scitotenv.2022.155822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Sulfide-based biofilm processes are increasingly used for wastewater denitrification, yet little is known about the extracellular polymeric substance (EPS) composition of sulfide-oxidizing biofilms. This can have an important impact on biofilm mechanical strength and stability. In this research, the properties and roles of EPS components in biofilm stability were investigated. Weak biofilm stability characterized by high roughness and numerous "needle" structures was visualized by optical coherence tomography (OCT) and microscopy. A high abundance of extracellular DNA (eDNA) and a low protein to polysaccharide ratio were found in the biofilm. The roles of eDNA, protein and polysaccharide in biofilm cohesion and adhesion were identified through enzyme treatment and atomic force microscopy (AFM). The enzymatic hydrolysis of eDNA increased the elastic modulus of biofilms by 57 times and reduced the adhesion energy by 96%. The hydrolysis of proteins led to an increase of elastic modulus by 27 times and a loss of adhesion energy by 95.5%. The enzymatic hydrolysis of polysaccharides caused minimal changes in elastic modulus and adhesion energy. These results suggest that eDNA was the key EPS component for biofilm cohesion and adhesion, possibly because it provided special binding sites and can form strong cross-linking with magnesium or other multivalent cations. This study provided new insights into the role of eDNA in biofilm stability and shed light on the development of sulfide-based denitrifying biofilms.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mengfei Li
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haiyuan Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
24
|
Yang Y, Perez Calleja P, Liu Y, Nerenberg R, Chai H. Assessing Intermediate Formation and Electron Competition during Thiosulfate-Driven Denitrification: An Experimental and Modeling Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11760-11770. [PMID: 35921133 DOI: 10.1021/acs.est.2c03937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is increasing interest in thiosulfate-driven denitrification for low C/N wastewater treatment, but the denitrification performance varies with the thiosulfate oxidation pathways. Models have been developed to predict the products of denitrification, but few consider thiosulfate reduction to elemental sulfur (S0), an undesirable reaction that can intensify electron competition with denitrifying enzymes. In this study, the model using indirect coupling of electrons (ICE) was developed to predict S0 formation and electron competition during thiosulfate-driven denitrification. Kinetic data were obtained from sulfur-oxidizing bacteria (SOB) dominated by the branched pathway and were used to calibrate and validate the model. Electron competition was investigated under different operating conditions. Modeling results reveal that electrons produced in the first step of thiosulfate oxidation typically prioritize thiosulfate reduction, then nitrate reduction, and finally nitrite reduction. However, the electron consumption rate for S0 formation decreases sharply with the decline of thiosulfate concentration. Thus, a continuous feeding strategy was effective in alleviating the competition between thiosulfate reduction and denitrifying enzymes. Electron competition leads to nitrite accumulation, which could be a reliable substrate for anammox. The model was further evaluated with anammox integration. Results suggested that the branched pathway and continuous supply of thiosulfate are favorable to create a symbiotic relationship between SOB and anammox.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Patricia Perez Calleja
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
25
|
Li S, Jiang Z, Ji G. Effect of sulfur sources on the competition between denitrification and DNRA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119322. [PMID: 35447253 DOI: 10.1016/j.envpol.2022.119322] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The fate of nitrogen is controlled by the competition between nitrate reduction pathways. Denitrification removes nitrogen in the system to the atmosphere, whereas dissimilatory nitrate reduction to ammonia (DNRA) retains nitrate in the form of ammonia. Different microbes specialize in the oxidation of different electron donors, thus electron donors might influence the outcomes of the competition. Here, we investigated the fate of nitrate with five forms of sulfur as electron donors. Chemoautotrophic nitrate reduction did not continue after the passages of the enrichments with sulfide, sulfite and pyrite. Nitrate reduction rate was the highest in the enrichment with thiosulfate. Denitrification was stimulated and no DNRA was observed with thiosulfate, while both denitrification and DNRA were stimulated with elemental sulfur. Metagenomes of the enrichments were assembled and binned into ten genomes. The enriched populations with thiosulfate included Thiobacillus, Lentimicrobium, Sulfurovum and Hydrogenophaga, all of which contained genes involved in sulfur oxidation. Elemental sulfur-based DNRA was performed by Thiobacillus (with NrfA and NirB) and Nocardioides (with only NirB). Our study established a link between sulfur sources, nitrate reduction pathways and microbial populations.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
26
|
Hao W, Li Q, Liu P, Han J, Duan R, Liang P. A new inoculation method of sulfur autotrophic denitrification reactor for accelerated start-up and better low-temperature adaption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153657. [PMID: 35122857 DOI: 10.1016/j.scitotenv.2022.153657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Elemental sulfur (S0) autotrophic denitrification (SAD) has been proved feasible for nitrate removal from aquatic environments. The long start-up period up to weeks of the SAD reactor impedes its industrial application. To accelerate the start-up process, this study employed S0 powder packed sequencing batch reactor operated for 10 days to obtain a seed biofilm, which was inoculated into a regular S0 flake packed bed reactor afterwards. Merely two days after inoculation, the reactor inoculated with seed biofilm was well started up and outperformed the control reactor, which was inoculated with regular anaerobic sludge and operated for more than 10 days, delivering much increased denitrification rate of 126 ± 0.68 mg N/(L·d) and a high nitrate removal efficiency of 93.0%. Batch tests during the start-up period showed that the seed biofilm developed well on S0 flakes and delivered improved nitrate removal performance than the control. Extracellular polymeric substance (EPS) analysis revealed an abundant content of protein in tightly bound EPS in the biofilm developed from the seed biofilm, which was recognized as a major contributor to facilitate the biofilm's attachment and growth onto S0 flakes. After operating under moderate temperature, the reactors were tested at a reduced temperature of 15 °C. Results indicated that the reactor inoculated with seed biofilm showed stronger adaptation ability towards low temperature and sustained better denitrification performance than the control, which was attributed to increased protein content in tightly bound EPS produced by the microbes against low-temperature. Determination of the microbial communities in tested reactors when the whole experiment was closing found that sulfur-related genera were dominating in the packed-bed reactor inculcated with seed biofilm, which played an important role in the S0-based denitrification process.
Collapse
Affiliation(s)
- Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qingcheng Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jinbing Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Rui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
27
|
Guerriero G, Mattei MR, Papirio S, Esposito G, Frunzo L. Modelling the effect of SMP production and external carbon addition on S-driven autotrophic denitrification. Sci Rep 2022; 12:7008. [PMID: 35487960 PMCID: PMC9054823 DOI: 10.1038/s41598-022-10944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to develop a mathematical model to assess the effect of soluble microbial products production and external carbon source addition on the performance of a sulfur-driven autotrophic denitrification (SdAD) process. During SdAD, the growth of autotrophic biomass (AUT) was accompanied by the proliferation of heterotrophic biomass mainly consisting of heterotrophic denitrifiers (HD) and sulfate-reducing bacteria (SRB), which are able to grow on both the SMP derived from the microbial activities and on an external carbon source. The process was supposed to occur in a sequencing batch reactor to investigate the effects of the COD injection on both heterotrophic species and to enhance the production and consumption of SMP. The mathematical model was built on mass balance considerations and consists of a system of nonlinear impulsive differential equations, which have been solved numerically. Different simulation scenarios have been investigated by varying the main operational parameters: cycle duration, day of COD injection and quantity of COD injected. For cycle durations of more than 15 days and a COD injection after the half-cycle duration, SdAD represents the prevailing process and the SRB represent the main heterotrophic family. For shorter cycle duration and COD injections earlier than the middle of the cycle, the same performance can be achieved increasing the quantity of COD added, which results in an increased activity of HD. In all the performed simulation even in the case of COD addition, AUT remain the prevailing microbial family in the reactor.
Collapse
Affiliation(s)
- Grazia Guerriero
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy.
| | - Maria Rosaria Mattei
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Luigi Frunzo
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy
| |
Collapse
|
28
|
Guo G, Li Z, Chen L, Ling Q, Zan F, Isawi H, Hao T, Ma J, Wang Z, Chen G, Lu H. Advances in elemental sulfur-driven bioprocesses for wastewater treatment: From metabolic study to application. WATER RESEARCH 2022; 213:118143. [PMID: 35149365 DOI: 10.1016/j.watres.2022.118143] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Elemental sulfur (S0) is known to be an abundant, non-toxic material with a wide range of redox states (-2 to +6) and may serve as an excellent electron carrier in wastewater treatment. In turn, S0-driven bioprocesses, which employ S0 as electron donor or acceptor, have recently established themselves as cost-effective therefore attractive solutions for wastewater treatment. Numerous related processes have, to date, been developed from laboratory experiments into full-scale applications, including S0-driven autotrophic denitrification for nitrate removal and S0-reducing organic removal. Compared to the conventional activated sludge process, these bioprocesses require only a small amount of organic matter and produce very little sludge. There have been great efforts to characterize chemical and biogenic S0 and related functional microorganisms in order to identify the biochemical pathways, upgrade the bioprocesses, and assess the impact of the operating factors on process performance, ultimately aiming to better understand and to optimize the processes. This paper is therefore a comprehensive overview of emerging S0-driven biotechnologies, including the development of S0-driven autotrophic denitrification and S0-based sulfidogenesis, as well as the associated microbiology and biochemistry. Also reviewed here are the physicochemical characteristics of S0 and the effects that environmental factors such as pH, influent sulfur/nitrate ratio, temperature, S0 particle size and reactor configurations have on the process. Research gaps, challenges of process applications and potential areas for future research are further proposed and discussed.
Collapse
Affiliation(s)
- Gang Guo
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhaoling Li
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lei Chen
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qingshan Ling
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Heba Isawi
- Desert Research Center, Water Resources and Desert Soils Division, Egyptian Desalination Research Center of Excellence (EDRC), Cairo, Egypt
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| | - Jie Ma
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
29
|
Pan H, Cui MH, Zhang C, Liu LY, Li J, Jiang Q, Zhang XD, Zheng ZY, Zhang Y, Liu H. Alkalinity regulation in a sulfur autotrophic denitrifying filter substantially reduced total dissolved solids and sulfate in effluent. BIORESOURCE TECHNOLOGY 2022; 348:126751. [PMID: 35066131 DOI: 10.1016/j.biortech.2022.126751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Sulfur autotrophic denitrification (SAD) filters are considered a promising technology due to their stable and excellent performance in nitrogen removal, affordable costs, and operational advantages. In this work, a novel operational strategy that employed sodium bicarbonate as an alkalinity source in the autotrophic denitrification filter (S-SAD) was established. With the sufficient supply of alkalinity, the S-SAD reached an excellent denitrification performance (98.01%±0.43%) with a nitrate concentration of 10 mg/L in influent and hydraulic retention time of 3 hrs. The total dissolved solids increment and sulfate concentration in effluent were significantly reduced by one-third, compared with that of the traditional SAD process under the same conditions. The analysis of microbial community indicated that Thiobacilhus, typical species with the functions of simultaneous sulfur oxidation and denitrification, was evidently enriched in the S-SAD. Thus, this present work demonstrated a feasible, relatively cost-effective and environmentally friendly approach to operate SAD towards further application.
Collapse
Affiliation(s)
- Hui Pan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Chao Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Lan-Ying Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qian Jiang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xue-Dong Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhi-Yong Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China
| |
Collapse
|
30
|
Zhao F, Xin J, Yuan M, Wang L, Wang X. A critical review of existing mechanisms and strategies to enhance N 2 selectivity in groundwater nitrate reduction. WATER RESEARCH 2022; 209:117889. [PMID: 34936974 DOI: 10.1016/j.watres.2021.117889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
The pollution of nitrate (NO3-) in groundwater has become an environmental problem of general concern and requires immediate remediation because of adverse human and ecological impacts. NO3- removal from groundwater is conducted mainly by chemical, biological, and coupled methods, with the removal efficiency of NO3- considered the sole performance indicator. However, in addition to the harmless form of N2, the reduced NO3- could be transformed into other intermediates, such as nitrite (NO2-), nitrous oxide (N2O), and ammonia (NH4+), which may have direct or indirect negative impacts on the environment. Therefore, increasing N2 selectivity is a significant challenge in reducing NO3- in groundwater, which seriously impedes the large-scale implementation of available remediation technologies. In this work, we comprehensively overview the most recent advances in N2 selectivity regarding the understanding of emerging groundwater NO3- removal technologies. Mechanisms of by-product production and strategies to enhance the selective reduction of NO3- to N2 are discussed in detail. Furthermore, we proposed topics for further research and hope that the total environmental impacts of remediation schemes should be evaluated comprehensively by quantifying all potential intermediate products, and promising strategies should be further developed to enhance N2 selectivity, to improve the feasibility of related technologies in actual remediation.
Collapse
Affiliation(s)
- Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Litao Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
31
|
Kostrytsia A, Papirio S, Khodzhaev M, Morrison L, Collins G, Lens PNL, Ijaz UZ, Esposito G. Biofilm carrier type affects biogenic sulfur-driven denitrification performance and microbial community dynamics in moving-bed biofilm reactors. CHEMOSPHERE 2022; 287:131975. [PMID: 34454228 DOI: 10.1016/j.chemosphere.2021.131975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Autotrophic denitrification with biosulfur (ADBIOS) provides a sustainable technological solution for biological nitrogen removal from wastewater driven by biogenic S0, derived from biogas desulfurization. In this study, the effect of different biofilm carriers (conventional AnoxK™ 1 and Z-200 with a pre-defined maximum biofilm thickness) on ADBIOS performance and microbiomics was investigated in duplicate moving bed-biofilm reactors (MBBRs). The MBBRs were operated parallelly in continuous mode for 309 days, whilst gradually decreasing the hydraulic retention time (HRT) from 72 to 21 h, and biosulfur was either pumped in suspension (days 92-223) or supplied in powder form. Highest nitrate removal rates were approximately 225 (±11) mg/L·d and 180 (±7) mg NO3--N/L·d in the MBBRs operated with K1 and Z-200 carriers, respectively. Despite having the same protected surface area for biofilm development in each MBBR, the biomass attached onto the K1 carrier was 4.8-fold more than that on the Z-200 carrier, with part of the biogenic S0 kept in the biofilm. The microbial communities of K1 and Z-200 biofilms could also be considered similar at cDNA level in terms of abundance (R = 0.953 with p = 0.042). A relatively stable microbial community was formed on K1 carriers, while the active portion of the microbial community varied significantly over time in the MBBRs using Z-200 carriers.
Collapse
Affiliation(s)
- Anastasiia Kostrytsia
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043, Cassino (FR), Italy.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80138, Naples, Italy
| | - Murod Khodzhaev
- IHE Delft Institute for Water Education, PO Box 3015, 2601 DA, Delft, the Netherlands
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N L Lens
- IHE Delft Institute for Water Education, PO Box 3015, 2601 DA, Delft, the Netherlands
| | - Umer Zeeshan Ijaz
- School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT, United Kingdom.
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| |
Collapse
|
32
|
Liang B, Kang F, Yao S, Zhang K, Wang Y, Chang M, Lyu Z, Zhu T. Exploration and verification of the feasibility of the sulfur-based autotrophic denitrification integrated biomass-based heterotrophic denitrification systems for wastewater treatment: From feasibility to application. CHEMOSPHERE 2022; 287:131998. [PMID: 34450373 DOI: 10.1016/j.chemosphere.2021.131998] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The sulfur-based autotrophic denitrification (SAD) and the solid organic carbon-based denitrification processes are both efficient techniques to remove nitrate from wastewater, and the hydrogen ions generated by the SAD process would be consumed in the heterotrophic denitrification process. Therefore, it is possible to improve the denitrification capacity when the solid organic carbon was added into a SAD reactor. In this study, corncob powder and sawdust powder were selected as solid organic carbon sources, and the sulfur-based autotrophic denitrification integrated biomass-based heterotrophic denitrification system was formed (SBD). The laboratory and field experiments showed that SBD could shorten the start-up period, decrease the sulfate productivity, and maintain a good denitrification performance when treated wastewater. According to the field experiment results, when the HRT was 1 h, the effluent total nitrogen (TN) concentration was always lower than 15 mg L-1. In addition, nitrite inhibition was observed when the concentration of nitrite in the reactors reached above 30 mg L-1. The mixture of elemental sulfur powder, shell powder, corncob powder, and sawdust powder with a mass ratio of 6:2:1:1 was the optimal filter for the SBD system, with an average nitrate reduction rate (NAR) of 420 mg NO3-N·L-1·d-1 obtained at the end of the study. During the whole operation, the major autotrophs in the SBD systems were Thermomonas, Ferritrophicum, and Thiobacillus, while the major heterotrophs were Saprospiraceae, Ferruginibacter, Dokdonella, and Simplicispira. Overall, the SBD system was a feasible and practically favorable way to remove nitrate from wastewater.
Collapse
Affiliation(s)
- Baorui Liang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Fei Kang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Sai Yao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Mingdong Chang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Zhenning Lyu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China.
| |
Collapse
|
33
|
Li S, Pang Y, Ji G. Increase of N 2O production during nitrate reduction after long-term sulfide addition in lake sediment microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118231. [PMID: 34571071 DOI: 10.1016/j.envpol.2021.118231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Microbial denitrification is a main source of nitrous oxide (N2O) emissions which have strong greenhouse effect and destroy stratospheric ozone. Though the importance of sulfide driven chemoautotrophic denitrification has been recognized, its contribution to N2O emissions in nature remains elusive. We built up long-term sulfide-added microcosms with sediments from two freshwater lakes. Chemistry analysis confirmed sulfide could drive nitrate respiration in long term. N2O accumulated to over 1.5% of nitrate load in both microcosms after long-term sulfide addition, which was up to 12.9 times higher than N2O accumulation without sulfide addition. Metagenomes were extracted and sequenced during microcosm incubations. 16 S rRNA genes of Thiobacillus and Defluviimonas were gradually enriched. The nitric oxide reductase with c-type cytochromes as electron donors (cNorB) increased in abundance, while the nitric oxide reductase receiving electrons from quinols (qNorB) decreased in abundance. cnorB genes similar to Thiobacillus were enriched in both microcosms. In parallel, enrichment was observed for enzymes involved in sulfur oxidation, which supplied electrons to nitrate respiration, and enzymes involved in Calvin Cycle, which sustained autotrophic cell growth, implying the coupling relationship between carbon, nitrogen and sulfur cycling processes. Our results suggested sulfur pollution considerably increased N2O emissions in natural environments.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Pang Y, Wang J. Various electron donors for biological nitrate removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148699. [PMID: 34214813 DOI: 10.1016/j.scitotenv.2021.148699] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrate (NO3-) pollution in water and wastewater has become a serious global issue. Biological denitrification, which reduces NO3- to N2 (nitrogen gas) by denitrifying microorganisms, is an efficient and economical process for the removal of NO3- from water and wastewater. During the denitrification process, electron donor is required to provide electrons for reduction of NO3-. A variety of electron donors, including organic and inorganic compounds, can be used for denitrification. This paper reviews the state of the art of various electron donors used for biological denitrification. Depending on the types of electron donors, denitrification can be classified into heterotrophic and autotrophic denitrification. Heterotrophic denitrification utilizes organic compounds as electron donors, including low-molecular-weight organics (e.g. acetate, methanol, glucose, benzene, methane, etc.) and high-molecular-weight organics (e.g. cellulose, polylactic acid, polycaprolactone, etc.); while autotrophic denitrification utilizes inorganic compounds as electron donors, including hydrogen (H2), reduced sulfur compounds (e.g. sulfide, element sulfur and thiosulfate), ferrous iron (Fe2+), iron sulfides (e.g. FeS, Fe1-xS and FeS2), arsenite (As(Ш)) and manganese (Mn(II)). The biological denitrification processes and the representative denitrifying microorganisms are summarized based on different electron donors, and their denitrification performance, operating costs and environmental impacts are compared and discussed. The pilot- or full-scale applications were summarized. The concluding remarks and future prospects were provided. The biodegradable polymers mediated heterotrophic denitrification, as well as H2 and sulfur mediated autotrophic denitrification are promising denitrification processes for NO3- removal from various types of water and wastewater.
Collapse
Affiliation(s)
- Yunmeng Pang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
35
|
Wu L, Wang LK, Wei W, Song L, Ni BJ. Sulfur-driven autotrophic denitrification of nitric oxide for efficient nitrous oxide recovery. Biotechnol Bioeng 2021; 119:257-267. [PMID: 34693996 DOI: 10.1002/bit.27970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022]
Abstract
Nitrous oxide (N2 O) was previously deemed as a potent greenhouse gas but is actually an untapped energy source, which can accumulate during the microbial denitrification of nitric oxide (NO). Compared with the organic electron donor required in heterotrophic denitrification, elemental sulfur (S0 ) is a promising electron donor alternative due to its cheap cost and low biomass yield in sulfur-driven autotrophic denitrification. However, no effort has been made to test N2 O recovery from sulfur-driven denitrification of NO so far. Therefore, in this study, batch and continuous experiments were carried out to investigate the NO removal performance and N2 O recovery potential via sulfur-driven NO-based denitrification under various Fe(II)EDTA-NO concentrations. Efficient energy recovery was achieved, as up to 35.5%-40.9% of NO was converted to N2 O under various NO concentrations. N2 O recovery from Fe(II)EDTA-NO could be enhanced by the low bioavailability of sulfur and the acid environment caused by sulfur oxidation. The NO reductase (NOR) and N2 O reductase (N2 OR) were inhibited distinctively at relatively low NO levels, leading to efficient N2 O accumulation, but were suppressed irreversibly at NO level beyond 15 mM in continuous experiments. Such results indicated that the regulation of NO at a relatively low level would benefit the system stability and NO removal capacity during long-term system operation. The continuous operation of the sulfur-driven Fe(II)EDTA-NO-based denitrification reduced the overall microbial diversity but enriched several key microbial community. Thauera, Thermomonas, and Arenimonas that are able to carry out sulfur-driven autotrophic denitrification became the dominant organisms with their relative abundance increased from 25.8% to 68.3%, collectively.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Li-Kun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Huang K, Li Q, Sun H, Zhang XX, Ren H, Ye L. Metagenomic analysis revealed the sulfur- and iron- oxidation capabilities of heterotrophic denitrifying sludge. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1399-1407. [PMID: 33210230 DOI: 10.1007/s10646-020-02307-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Heterotrophic denitrification is widely applied in wastewater treatment processes to remove nitrate. However, the ability of the heterotrophic denitrifying sludge to use inorganic matter as electron donors to perform autotrophic denitrification has rarely been investigated. In this study, we enriched heterotrophic denitrifying sludge and demonstrated its sulfur- and iron- oxidizing abilities and denitrification performance with batch experiments. Based on high-throughput sequencing of 16S rRNA genes, high diversity and abundance of sulfur-oxidizing bacteria (SOB) (e.g., Sulfuritalea, Thiobacillus, and Thiothrix) and iron (II)-oxidizing bacteria (FeOB) (e.g., Azospira and Thiobacillus) were observed. Metagenomic sequencing and genome binning results further suggested that the SOB in the heterotrophic denitrifying sludge were mainly Alphaproteobacteria and Betaproteobacteria instead of Gammaproteobacteria and Epsilonproteobacteria. The similarities of potential iron-oxidizing genes with known sequences were very low (32-51%), indicating potentially novel FeOB species in this system. The findings of this study suggested that the heterotrophic denitrifying sludge harbors diverse mixotrophic denitrifying bacterial species, and based on this finding, we proposed that organic carbon and inorganic electron donors (e.g., sulfur, thiosulfate, and iron) could be jointly used in engineering practices according to the quality and quantity of wastewater to balance the cost and efficiency of the denitrification process.
Collapse
Affiliation(s)
- Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Qiaoling Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
37
|
Zhang L, Qiu YY, Zhou Y, Chen GH, van Loosdrecht MCM, Jiang F. Elemental sulfur as electron donor and/or acceptor: Mechanisms, applications and perspectives for biological water and wastewater treatment. WATER RESEARCH 2021; 202:117373. [PMID: 34243051 DOI: 10.1016/j.watres.2021.117373] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Biochemical oxidation and reduction are the principle of biological water and wastewater treatment, in which electron donor and/or acceptor shall be provided. Elemental sulfur (S0) as a non-toxic and easily available material with low price, possesses both reductive and oxidative characteristics, suggesting that it is a suitable material for water and wastewater treatment. Recent advanced understanding of S0-respiring microorganisms and their metabolism further stimulated the development of S0-based technologies. As such, S0-based biotechnologies have emerged as cost-effective and attractive alternatives to conventional biological methods for water and wastewater treatment. For instance, S0-driven autotrophic denitrification substantially lower the operational cost for nitrogen removal from water and wastewater, compared to the conventional process with exogenous carbon source supplementation. The introduction of S0 can also avoid secondary pollution commonly caused by overdose of organic carbon. S0 reduction processes cost-effectively mineralize organic matter with low sludge production. Biological sulfide production using S0 as electron acceptor is also an attractive technology for metal-laden wastewater treatment, e.g. acid mine drainage. This paper outlines an overview of the fundamentals, characteristics and advances of the S0-based biotechnologies and highlights the functional S0-related microorganisms. In particular, the mechanisms of microorganisms accessing insoluble S0 and feasibility to improve S0 bio-utilization efficiency are critically discussed. Additionally, the research knowledge gaps, current process limitations, and required further developments are identified and discussed.
Collapse
Affiliation(s)
- Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Yan-Ying Qiu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
38
|
Huang S, Yu D, Chen G, Wang Y, Tang P, Liu C, Tian Y, Zhang M. Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: Simultaneous nitrate and sulfur removal. CHEMOSPHERE 2021; 278:130413. [PMID: 33823349 DOI: 10.1016/j.chemosphere.2021.130413] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/28/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The study was based on the removal of nitrate and sulfide, and aimed to nitrite accumulation. The process of autotrophic denitrification driven by sulfide as an electron donor was investigated in a sequencing batch reactor. The research showed that autotrophic denitrification successfully started on day 22, and the removal rates of NO3--N and S2--S were 95.8% and 100%, respectively, when the S/N molar ratio was 1.45. When the S/N ratio was reduced to 0.94, the phenomenon of NO2--N accumulation was observed. NO2--N continuously accumulated, and the maximum accumulation rate was 55.3% when the S/N ratio was 0.8. In the batch test, the study showed that NO2--N accumulation was optimal when the S/N ratio was 0.8, and the NO2--N concentration increased with increasing NO3--N concentration at the same S/N ratio. Microbial communities also changed based on the high-throughput analysis, and Proteobacteria (59.5%-84%) was the main phylum. Arenimonas (11.4%-28.2%) and uncultured_f_ Chromatiaceae (5.7%-27.5%) were the dominant bacteria, which complete denitrification and desulfurization throughout the operating system. Therefore, this study provided a theoretical basis for the simultaneous removal of NO3--N and S2--S, as well as the accumulation of nitrite, and provided material support for anaerobic ammonia oxidation technology.
Collapse
Affiliation(s)
- Shuo Huang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China; Shandong Provincial Building Design Institute, Jinan, 250012, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yanyan Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Peng Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Chengcheng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Yuan Tian
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
39
|
Wang SS, Cheng HY, Zhang H, Su SG, Sun YL, Wang HC, Han JL, Wang AJ, Guadie A. Sulfur autotrophic denitrification filter and heterotrophic denitrification filter: Comparison on denitrification performance, hydrodynamic characteristics and operating cost. ENVIRONMENTAL RESEARCH 2021; 197:111029. [PMID: 33744267 DOI: 10.1016/j.envres.2021.111029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Sulfur autotrophic denitrification (SAD) process, as an alternative to heterotrophic denitrification (HD) filter, receives growing interest in polishing the effluent from secondary sewage treatment. Although individual studies have indicated several advantages of SAD over HD, rare study has compared these two systems under identical condition and by using real secondary effluent. In this study, two small pilot scale filters (SAD and HD) were designed with identical configuration and operated parallelly by feeding the real secondary effluent from a WWTP. The results showed SAD filter can be started up without the addition of soluble electron donor, although the time (14 days) was about 3 times longer than that of HD filter. The nitrate removal rate of SAD filter at HRT of 1.4 h was measured as 0.268 ± 0.047 kg N/(m3∙d). Similar value was observed in HD filter with supplementing 90 mg/L COD. The COD concentration of effluent always kept lower than that of influent in SAD filter but not in HD filter. In addition, SAD filter could maintain a stable denitrification performance without backwash for 15 days, while decline of nitrate removal rate was observed in HD filter just 2 days after stopping the backwash. This different behavior was further confirmed as the SAD filter had a better hydraulic flow pattern. Analysis according to high-throughput 16S rRNA gene-based Illumina MiSeq sequencing clearly showed the microbial community evolution and differentiation among the samples of seed sludge, SAD and HD filters. Finally, the economic assessment was carried out, showing the operation cost of SAD filter was over 50% lower than that of HD filter.
Collapse
Affiliation(s)
- Shu-Sen Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao-Yi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Hao Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Shi-Gang Su
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Hong-Cheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Jing-Long Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Awoke Guadie
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| |
Collapse
|
40
|
Ma Y, Zheng X, Fang Y, Xu K, He S, Zhao M. Autotrophic denitrification in constructed wetlands: Achievements and challenges. BIORESOURCE TECHNOLOGY 2020; 318:123778. [PMID: 32736968 DOI: 10.1016/j.biortech.2020.123778] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The use of constructed wetlands for wastewater treatment is rapidly increasing worldwide due to their advantages of low operating and maintenance costs. Denitrification in constructed wetlands is dependent on the presence of organic carbon sources, and the shortage of organic carbon is the primary hurdle for nitrate removal. Therefore, the use of inorganic electronic donors has emerged as an alternative. This paper provides a comprehensive review of nitrate removal pathways using various inorganic electron donors and the performance and development of autotrophic denitrification in constructed wetlands. The main environmental parameters and operating conditions for nitrate removal in wetlands are discussed, and the challenges currently faced in the application of enhanced autotrophic denitrification wetlands are emphasized. Overall, this review illustrates the need for a deep understanding of the complex interrelationships among environmental and operational parameters and wetland substrates for improving the wastewater treatment performance of constructed wetlands.
Collapse
Affiliation(s)
- Yuhui Ma
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyong Zheng
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325600, China
| | - Yunqing Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Zhao
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325600, China.
| |
Collapse
|
41
|
Wang H, Li Y, Zhang S, Li D, Liu X, Wang W, Liu L, Wang Y, Kang L. Effect of influent feeding pattern on municipal tailwater treatment during a sulfur-based denitrification constructed wetland. BIORESOURCE TECHNOLOGY 2020; 315:123807. [PMID: 32731159 DOI: 10.1016/j.biortech.2020.123807] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
This work studied three parallel pilot-scale constructed wetlands based on sulfur-based autotrophic denitrification (SAD-CWs) with horizontal, vertical-horizontal and integrated vertical inflow for nitrogen removal of municipal tailwater. SAD system played the predominant role for nitrate removal and the integrated vertical inflow pattern was the most efficient pattern with 96.1% NO3--N and 44.3% total phosphorus (TP) removal efficiency, respectively, at the condition of 3.5 h hydraulic retention time (HRT) and 18.5-23.5 °C. Although no great and serious change for microbial community structure was observed among these systems, the diversity in term of abundance of microbes and certain function species was observed. Proteobacteria, Ignavibacterae and Chloroflexi were the dominant phyla and accounted for over 59.1%, 7.5%, and 6.0% in SAD-CWs, respectively. Moreover, the richness and diversity of denitrifies in SAD-CWs with integrated vertical inflow were both higher than that in the other two reactors, especially sulfur autotrophic denitrifying bacteria.
Collapse
Affiliation(s)
- Hongjie Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Yingying Li
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Shengqi Zhang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Duo Li
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Xingchun Liu
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Wenjing Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Ling Liu
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Yali Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China.
| | - Le Kang
- Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| |
Collapse
|
42
|
Zhang L, Sun F, Wu D, Yan W, Zhou Y. Biological conversion of sulfamethoxazole in an autotrophic denitrification system. WATER RESEARCH 2020; 185:116156. [PMID: 33086460 DOI: 10.1016/j.watres.2020.116156] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/08/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Sulfamethoxazole (SMX) is a common antibiotic prescribed for treating infections, which is frequently detected in the effluent of conventional wastewater treatment plants (WWTPs). Its degradation and conversion in a laboratory-scale sulfur-based autotrophic denitrification reactor were for the first time investigated through long-term reactor operation and short-term batch experiments. Co-metabolism of SMX and nitrate by autotrophic denitrifiers was observed in this study. The specific SMX removal rate was 3.7 ± 1.4 μg/g SS-d, which was higher than those reported in conventional wastewater treatment processes. The removal of SMX by the enriched denitrifying sludge was mainly attributed to biodegradation. Four transformation products (three known with structures and one with unknown structure) were identified, of which the structures of the two transformation products (TPs) were altered in the isoxazole ring. Additionally, the presence of SMX significantly shaped the microbial community structures, leading to the dominant denitrifier shifting from Sulfuritalea to Sulfurimonas to maintain the stability of system. Collectively, the sulfur-based autotrophic denitrification process could effectively remove SMX in addition to efficient nitrate removal, and further polish the effluent from conventional WWTPs.
Collapse
Affiliation(s)
- Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Dan Wu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
43
|
Wang JJ, Huang BC, Li J, Jin RC. Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Lu Z, Li D, Jiang L, Chen G, Li K, Liu G. Characterizing the biofilm stoichiometry and kinetics on the media in situ based on pulse-flow respirometer coupling with a new breathing reactor. CHEMOSPHERE 2020; 252:126378. [PMID: 32199161 DOI: 10.1016/j.chemosphere.2020.126378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Biofilm based systems and the hybrid between activated sludge and biofilms have been popularly applied for wastewater treatment. Unlike the suspended biomass, the biofilm concentration and kinetics on the media cannot be easily measured. In this study, a novel and easy-to-use approach has been developed based on pulse-flow respirometer to characterize the biofilm stoichiometry and kinetics in situ. With the new designed breathing reactor, the mutual interference between the magnetic stirring and biofilm media that happened in the conventional breathing reactor was solved. Moreover, Microsoft Excel based programs had been developed to fit the oxygen uptake rate curves with dynamic nonlinear regression. With this new approach, the yield coefficient, maximum oxidation capacity, and half-saturation constant of substrate for the heterotrophic biofilms in a fix bed reactor were determined to be 0.46 g-VSS/g-COD, 67.0 mg-COD/(h·L-media), and 4.4 mg-COD/L, respectively. Those parameters for biofilm ammonia oxidizers from a moving bed biofilm reactor were determined to be 0.17 g-VSS/g-N, 18.6 mg-N/(h·L-media), and 1.2 mg-N/L, respectively, and they were 0.11 g-VSS/g-N, 20.9 mg-N/(h·L-media), and 0.98 mg-N/L for nitrite oxidizers in the same biofilms. This study also found that the maximum specific substrate utilization rate for detached biofilms increased by 3.2 times, indicating that maintaining biofilm integrity was very important in the kinetic tests. Using this approach, the biofilm kinetics on the media can be regularly measured for treatment optimization.
Collapse
Affiliation(s)
- Zichuan Lu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Deyong Li
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Lugao Jiang
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Gaofeng Chen
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Kaibin Li
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Guoqiang Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
45
|
He Q, Cheng Z, Zhang D, Main K, Feng C, Ergas SJ. A sulfur-based cyclic denitrification filter for marine recirculating aquaculture systems. BIORESOURCE TECHNOLOGY 2020; 310:123465. [PMID: 32388206 DOI: 10.1016/j.biortech.2020.123465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen removal from saline wastewater is challenging due to adverse effects of salinity on biological processes. A novel sulfur-autotrophic cyclic denitrification filter (CDF) was tested for marine recirculating aquaculture systems (RAS) under varying conditions. Low ammonia, nitrite and sulfide concentrations were maintained at residence times between 4 and 12 h. After introduction of Poecilia sphenops, concentrations of NH4+-N, NO2--N, NO3--N were maintained below 1, 1, and 60 mg/L, respectively. Fish waste inputs to the CDF contributed to mixotrophic denitrification and low sulfate production. A mass balance showed that 7% of the feed nitrogen was assimilated by fish, 6% was removed by passive denitrification (e.g., in anoxic zones in filters), 60% in the CDF and 27% was discharged during sampling and solids removal. Daily fresh water addition was <2% of fish tank volumes. The results are promising as a low cost alternative for saline wastewater denitrification.
Collapse
Affiliation(s)
- Qiaochong He
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA
| | - Zhang Cheng
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA
| | - Dongqing Zhang
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA
| | - Kevan Main
- Directorate of Fisheries and Aquaculture, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Sarina J Ergas
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA.
| |
Collapse
|
46
|
Huiliñir C, Acosta L, Yanez D, Montalvo S, Esposito G, Retamales G, Levicán G, Guerrero L. Elemental sulfur-based autotrophic denitrification in stoichiometric S 0/N ratio: Calibration and validation of a kinetic model. BIORESOURCE TECHNOLOGY 2020; 307:123229. [PMID: 32247270 DOI: 10.1016/j.biortech.2020.123229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The inclusion of S0 hydrolysis in a kinetic model of autotrophic denitrification has been recently proposed; however the model has not been calibrated or validated yet. Thus, a new methodology was developed and applied to calibrate and validate this kinetic model for the first time. An inoculum adapted from a poultry wastewater treatment plant at stoichiometric S0/NO3- ratio was used. The model was calibrated with batch data (initial nitrate concentrations of 50 and 6.25 mg NO3--N/L) at an S0/N ratio = 2.29 mg S/mg N and validated with seven different batch data. The sensitivity analysis showed that the most sensitive parameters are related to S0 hydrolysis. The kinetic model was successfully calibrated with the new methodology and validated, with Theil inequality coefficient values lower than 0.21. Thus, the proposed model and methodology were proved to be well suited for the simulation of elemental sulfur-based autotrophic denitrification in batch systems.
Collapse
Affiliation(s)
- C Huiliñir
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile.
| | - L Acosta
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - D Yanez
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - S Montalvo
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - G Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - G Retamales
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - G Levicán
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - L Guerrero
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| |
Collapse
|
47
|
Liu Y, Chen N, Tong S, Liang J, Yang C, Feng C. Performance enhancement of H 2S-based autotrophic denitrification with bio-gaseous CO 2 as sole carbon source through new pH adjustment materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110157. [PMID: 31999611 DOI: 10.1016/j.jenvman.2020.110157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/29/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
H2S-based denitrification could achieve synchronous removal of nitrate and H2S and had been regarded as an efficient way for biogas desulfurization and wastewater denitrification. Using CO2 in biogas as carbon source had a potential of saving cost further, but the performance deteriorated due to the drop in pH. Two kinds of nature ore, medical stone and phosphate ore, were added as new pH adjustment materials in this study, and feasibility of using CO2 as sole carbon source for H2S-based denitrification was investigated. As a result, both materials could increase the pH from 4.5 to above 6.0. Compared with medical stone, higher level of pH (up to 6.39) and nitrate removal efficiency (99.1%) were obtained with phosphate ore. In addition, ATP increased more rapidly than the control, reflecting improvement on microbial activities. Therefore, phosphate ore as the pH adjustment material could improve H2S-based denitrification performance obviously.
Collapse
Affiliation(s)
- Yongjie Liu
- Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences, Beijing), Ministry of Education, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shuang Tong
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing, 100068, China
| | - Jing Liang
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chen Yang
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chuanping Feng
- Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences, Beijing), Ministry of Education, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
48
|
Ucar D, Yilmaz T, Di Capua F, Esposito G, Sahinkaya E. Comparison of biogenic and chemical sulfur as electron donors for autotrophic denitrification in sulfur-fed membrane bioreactor (SMBR). BIORESOURCE TECHNOLOGY 2020; 299:122574. [PMID: 31865157 DOI: 10.1016/j.biortech.2019.122574] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Two sulfur-oxidizing membrane bioreactors (SMBRs) performing autotrophic denitrification at different HRTs (6-26 h), one supplemented with biogenic elemental sulfur (S0bio) and the other with chemically-synthesized elemental sulfur (S0chem), were compared in terms of nitrate reduction rates, impact on membrane filtration and microbial community composition. Complete denitrification with higher rates (up to 286 mg N-NO3-/L d) was observed in the SMBR supplemented with S0bio (SMBRbio), while nitrate was never completely reduced in the SMBR fed with S0chem (SMBRchem). Trans membrane pressure was higher for SMBRbio due to smaller particle size and colloidal properties of S0bio. Microbial communities in the two SMBRs were similar and dominated by Proteobacteria, with Pleomorphomonas and Thermomonas being the most abundant genera in both bioreactors. This study reveals that S0bio can be effectively used for nitrate removal in autotrophic denitrifying MBRs and results in higher nitrate reduction rates compared to S0chem.
Collapse
Affiliation(s)
- Deniz Ucar
- Environmental Engineering Department, Harran University, Osmanbey Campus, 63000 Sanliurfa, Turkey.
| | - Tulay Yilmaz
- Environmental Engineering Department, Harran University, Osmanbey Campus, 63000 Sanliurfa, Turkey
| | - Francesco Di Capua
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Erkan Sahinkaya
- Bioengineering Department, Istanbul Medeniyet University, Uskudar, Istanbul, Turkey
| |
Collapse
|
49
|
Tian T, Yu HQ. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. BIORESOURCE TECHNOLOGY 2020; 299:122686. [PMID: 31902635 DOI: 10.1016/j.biortech.2019.122686] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 05/21/2023]
Abstract
Denitrification with non-organic electron donors for treating low C/N ratio wastewater has attracted growing interests. Hydrogen, reduced sulfur compounds and ferrous ions are mainly used in autotrophic denitrification, holding promise for achieving practical applications. Recently, the development of autotrophic denitrification-based processes, such as bioelectrochemically-supported hydrogenotrophic denitrification and sulfur-/iron-based denitrification assisted multi-contaminant removal, provide opportunities for applying these processes in wastewater treatment. Exploration of the autotrophic denitrification process in terms of contaminant removal mechanism, interaction among functional microorganisms, and potential full-scale applications is thus of great importance. Here, an overview of the commonly used non-organic electron donors, e.g., hydrogen, reduced sulfur compounds and ferrous ions, in denitrification for treating low C/N ratio wastewater is provided. Also, the feasibility of applying the combined processes based on autotrophic denitrification with the compounds is discussed. Furthermore, challenges and future possibilities as well as concerns about the practical applications are envisaged in this review.
Collapse
Affiliation(s)
- Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
50
|
Wang T, Guo J, Song Y, Lian J, Li H, Lu C, Han Y, Hou Y. Efficient nitrogen removal in separate coupled-system of anammox and sulfur autotrophic denitrification with a nitrification side-branch under substrate fluctuation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133929. [PMID: 31442718 DOI: 10.1016/j.scitotenv.2019.133929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
In order to achieve efficient nitrogen removal, a separate coupled-system of anaerobic ammonia oxidation (anammox) and sulfur autotrophic denitrification (S0-SADN) was established. In this study, the operational feasibility and stability of the coupled-system under substrate fluctuations were investigated. Results showed that the coupled-system improved the total nitrogen removal efficiency (TNRE) to 99.15 ± 0.68%. The tryptophan-like substances in anammox effluent positively impacted the growth of the S0-SADN biofilm. This positive cooperativity boosted the S0-SADN to achieve rapid 12-day startup and stable operation thereafter. The TNRE was determined at 95.27 ± 1.51% and 93.44 ± 0.96% under excessive nitrite and ammonium, respectively. The coupled-system recovered quickly after 21 days of starvation deterioration. To further treat the excessive ammonium, the nitrification side-branch of the coupled-system improved the TNRE to 99.08 ± 0.68%. Extracellular polymeric substances analysis revealed that the anammox and S0-SADN bacteria secreted protein-like substances to resist substrate fluctuation. Microbial community analysis indicated that the stability of bacterial community supported the stability of the coupled-system. These results collectively suggested that the separate coupled-system exhibited excellent performance and provided a platform for practical wastewater treatment in future.
Collapse
Affiliation(s)
- Tuo Wang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jianbo Guo
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jing Lian
- School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang 050018, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Caicai Lu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|