1
|
Luo H, Shu G, Guo S, Kuang X, Zhao C, Zhou CA, Wang C, Song L, Ma K, Yue H. Piezo-photocatalytic reduction of nitrates to N 2 over silver dispersed on BaTiO 3@TiO 2. Chem Commun (Camb) 2024; 60:6627-6630. [PMID: 38853580 DOI: 10.1039/d4cc01358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This communication first achieved piezo-photocatalytic reduction of nitrates to N2 through designing an Ag2O/BaTiO3@TiO2 core-shell catalyst. The built-in electric field induced by piezoelectric polarization suppresses photoexcited carrier recombination, and simultaneously causes energy band tilting, leading to the generation of electrons with higher reducibility to directly trigger the NO3- reduction to ˙NO32-, even without hole scavengers.
Collapse
Affiliation(s)
- Hongjie Luo
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Guoqiang Shu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
- Daqing Oilfield Production Technology Institute, Daqing 163453, China
| | - Shanhong Guo
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xia Kuang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Changming Zhao
- Daqing Oilfield Production Technology Institute, Daqing 163453, China
| | - Chang-An Zhou
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Chao Wang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Lei Song
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Kui Ma
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Hairong Yue
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| |
Collapse
|
2
|
Aghabalaei V, Baghdadi M, Goharrizi BA, Noorimotlagh Z. A systematic review of strategies to overcome barrier for nitrate separation systems from drinking water: Focusing on waste streams treatment processes. CHEMOSPHERE 2024; 349:140757. [PMID: 38013022 DOI: 10.1016/j.chemosphere.2023.140757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
By 2030, the UN General Assembly issued the Sustainable Development Goal 6, which calls for the provision of safe drinking water. However, water resources are continuously decreasing in quantity and quality. NO3- is the most widespread pollutant worldwide, threatening both human health and ecosystems. NO3- separation systems (NSS) using IX and membrane-based techniques (MBT) are considered practical and efficient technologies, but the management of IX waste brine (IXWB) and concentrate streams for MBT (CSM), as well as the high salt requirements for IX regeneration, are challenging from both economic and environmental perspectives. It is essential to classify the different waste management strategies in order to examine the current state of research and identify the best option to address these issues. This review provides harmonized information on IXWB/CSM management strategies. This study is the first systematic review of all papers available in the Web of Science, Scopus, and PubMed databases published until February 2023. 75% of the studies focused on the use of biological denitrification (BD) and catalytic denitrification (CD). Although innovative technologies (bio-regeneration and direct CD) have advantages over indirect processes, they are not yet practical for large-scale plants because their reliability is unknown. Moreover, the generation of NH4+ is the major challenge for application large-scale of chemical reduction. An innovative work flow diagram, challenges, and future prospects are presented. The review shows that integrating modified NSS with IXWB/CSM treatment is a promising sustainable solution, as the combination could be economically and environmentally beneficial and remove barriers to NNS application.
Collapse
Affiliation(s)
- Vahid Aghabalaei
- Graduate Faculty of Environment, Department of Environmental Engineering, University of Tehran, Iran.
| | - Majid Baghdadi
- Graduate Faculty of Environment, Department of Environmental Engineering, University of Tehran, Iran.
| | | | - Zahra Noorimotlagh
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
3
|
Yang W, Li X, Chen R, Shen S, Xiao L, Li J, Dong F. Efficient purification of a nitrate and chlorate mixture in water via photoredox activated intermediate coupling-decoupling pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131964. [PMID: 37399724 DOI: 10.1016/j.jhazmat.2023.131964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Nitrate (NO3-) is a widespread contaminant that threatens human health and ecological safety. Meanwhile, the disinfection byproducts chlorate (ClO3-) is generated inevitably in conventional wastewater treatment. Therefore, the contaminants mixture of NO3- and ClO3- are universal in common emission units. Photocatalysis technology is a feasible approach for the synergistic abatement of contaminant mixture, where matching suitable oxidation reactions is a potential strategy to improve the photocatalytic reduction reactions. Herein, formate (HCOOH) oxidation is introduced to facilitate the photocatalytic reduction of the NO3- and ClO3- mixture. As a result, high purification efficiency of NO3- and ClO3- mixture are achieved, evidenced by 84.6% e--dependent removal of the mixture at a reaction time of 30 min, with 94.5% N2 selectivity and 100% Cl- selectivity, respectively. Specifically, by the close combination of in-situ characterizations and theoretical calculations, the detailed reaction mechanism is revealed, in which the intermediate coupling-decoupling route from NO3- reduction and HCOOH oxidation is established by the chlorate-induced photoredox activation, leading to the significantly enhanced efficiency for the wastewater mixture purification. The practical application of this pathway is established for simulated wastewater to show its wide applicability. This work provides new insights into photoredox catalysis technology for its environmental application.
Collapse
Affiliation(s)
- Weiping Yang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xin Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruimin Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shujie Shen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Xiao
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jieyuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
4
|
Liu Z, Haddad M, Sauvé S, Barbeau B. Alleviating the burden of ion exchange brine in water treatment: From operational strategies to brine management. WATER RESEARCH 2021; 205:117728. [PMID: 34619606 DOI: 10.1016/j.watres.2021.117728] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Ion exchange (IX) using synthetic resins is a cost-efficient technology to cope with a wide range of contaminants in water treatment. However, implementing IX processes is constrained by the regeneration of IX resins that generates a highly concentrated brine (i.e., IX brine), the disposal of which is costly and detrimental to ecosystems. In an effort to make the application of IX resins more sustainable in water treatment, substantial research has been conducted on the optimization of IX resins operation and the management of IX brine. The present review critically evaluates the literature surrounding IX operational strategies and IX brine management which can be used to limit the negative impacts arising from IX brine. To this end, we first analyzed the physicochemical characteristics of brines from the regeneration of IX resins. Then, we critically evaluated IX operational strategies that facilitate brine management, including resin selection, contactor selection, operational modes, and regeneration strategies. Furthermore, we analyzed IX brine management strategies, including brine reuse and brine disposal (without or with treatment). Finally, a novel workflow for the IX water treatment plant design that integrates IX operational strategies and IX brine management is proposed, thereby highlighting the areas that make IX technology more sustainable for water treatment.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; NSERC-Industrial Chair on Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| | - Maryam Haddad
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, United States.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada.
| | - Benoit Barbeau
- NSERC-Industrial Chair on Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
5
|
Dixit F, Barbeau B, Mostafavi SG, Mohseni M. Removal of legacy PFAS and other fluorotelomers: Optimized regeneration strategies in DOM-rich waters. WATER RESEARCH 2020; 183:116098. [PMID: 32663697 DOI: 10.1016/j.watres.2020.116098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
We present the first study investigating optimized regeneration strategies for anionic ion exchange (IX) resins during the removal of persistent per- and poly-fluoroalkyl substances (PFAS, including GenX) from surface and treated wastewater effluents. IX regeneration studies are of critical importance from environmental perspectives. Specifically, the knowledge is essential for water utilities who presently operate IX (for PFAS removal) in a single use-and-dispose mode. In this study, legacy PFAS such as PFOA/PFOS were tested along with other harmful short-chained PFAS (PFBA/PFBS) and other toxic perfluorinated substitutes (GenX). Studies were performed on synthetic water (spiked with Suwannee River Natural Organic Matter (SRNOM), Fulvic Acid (SRFA) and Humic Acid (SRHA)), surface water, and wastewater effluents, and the regeneration was performed in batch stirred reactors. The resin service life with and without regeneration was investigated in the presence of background organic matter. In ultra-pure waters, all PFAS (C0 ∼10 μg/L, concentrations similar to that of natural waters) were effectively removed for >100,000 Bed Volume (BV) of operation. This was reduced to ∼23,500 BV in the presence of SRNOM (C0 = 5 mg C/L), 20,500 BV in SRFA and 8500 BV in SRHA, after which the saturated resins required regeneration. More importantly, all resin breakthrough (PFAS> 70 ng/L) corresponded to > 90% resin site saturation (in meqs), an essential information for optimizing IX loading. The competitive dissolved organic matter (DOM) fractions were estimated to be approximately 5-9% of the initial DOC, as estimated by the IAST-EBC model. Finally, it was identified that IX regeneration efficiency improved with increasing brine contact time but effectiveness plateaued for brine concentrations above 10% (W/V). Nonetheless, a regeneration with 10% NaCl solution with a contact time of 2 h was found to be optimal for IX operations in synthetic and natural waters. Therefore, this study provides key knowledge essential for the scientific community and the water industry on optimizing IX operational parameters for DOM and PFAS removal and would be highly valuable for systems which presently operate IX in a use-and-dispose mode.
Collapse
Affiliation(s)
- Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Benoit Barbeau
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Quebec, Canada
| | - Shadan Ghavam Mostafavi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
6
|
Martin BD, De Kock L, Gallot M, Guery E, Stanowski S, MacAdam J, McAdam EJ, Parsons SA, Jefferson B. Quantifying the performance of a hybrid anion exchanger/adsorbent for phosphorus removal using mass spectrometry coupled with batch kinetic trials. ENVIRONMENTAL TECHNOLOGY 2018; 39:2304-2314. [PMID: 28696165 DOI: 10.1080/09593330.2017.1354076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Increasingly stricter phosphorus discharge limits represent a significant challenge for the wastewater industry. Hybrid media comprising anionic exchange resins with dispersions of hydrated ferric oxide nanoparticles have been shown to selectively remove phosphorus from wastewaters, and display greater capacity and operational capability than both conventional treatment techniques and other ferric-based adsorbent materials. Spectrographic analyses of the internal surfaces of a hybrid media during kinetic experiments show that the adsorption of phosphorus is very rapid, utilising 54% of the total capacity of the media within the first 15 min and 95% within the first 60 min. These analyses demonstrate the importance of intraparticle diffusion on the overall rate in relation to the penetration of phosphorus. Operational capacity is a function of the target effluent phosphorus concentration and for 0.1 mg P L-1, this is [Formula: see text], which is 8-13% of the exhaustive capacity. The adsorbed phosphorus can be selectively recovered, offering a potential route to recycle this important nutrient. The main implication of the work is that the ferric nanoparticle adsorbent can provide a highly effective means of achieving a final effluent phosphorus concentration of 0.1 mg P L-1, even when treating sewage effluent at 5 mg P L-1.
Collapse
Affiliation(s)
- Benjamin D Martin
- a Cranfield Water Science Institute , Cranfield University , Bedfordshire , UK
| | - Lueta De Kock
- b Department of Chemical Technology, Nanotechnology Innovation Centre (Water Research Platform) , University of Johannesburg , Doornfontein , South Africa
| | - Maxime Gallot
- c Université Lille 1, Sciences et Technologies , Villeneuve d'Ascq Cedex , France
| | - Elodie Guery
- d Génie Energétique et Environnement , National Applied Institute (INSA) , Lyon , France
| | - Sylvain Stanowski
- e Ecole Nationale Supérieure de Chimie de Montpellier , Montpellier , France
| | - Jitka MacAdam
- a Cranfield Water Science Institute , Cranfield University , Bedfordshire , UK
| | - Ewan J McAdam
- a Cranfield Water Science Institute , Cranfield University , Bedfordshire , UK
| | - Simon A Parsons
- a Cranfield Water Science Institute , Cranfield University , Bedfordshire , UK
| | - Bruce Jefferson
- a Cranfield Water Science Institute , Cranfield University , Bedfordshire , UK
- b Department of Chemical Technology, Nanotechnology Innovation Centre (Water Research Platform) , University of Johannesburg , Doornfontein , South Africa
| |
Collapse
|
7
|
Investigating the significance of coagulation kinetics on maintaining membrane permeability in an MBR following reactive coagulant dosing. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Minimizing brine discharge in a combined biophysical system for nitrate removal from inland groundwater. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Ntougias S, Tsiamis G, Soultani D, Melidis P. Dominance of rumen microorganisms during cheese whey acidification: acidogenesis can be governed by a rare Selenomonas lacticifex-type fermentation. Appl Microbiol Biotechnol 2015. [DOI: 10.1007/s00253-015-6827-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
McLeod A, Jefferson B, McAdam EJ. Biogas upgrading by chemical absorption using ammonia rich absorbents derived from wastewater. WATER RESEARCH 2014; 67:175-186. [PMID: 25277752 DOI: 10.1016/j.watres.2014.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/01/2014] [Accepted: 09/06/2014] [Indexed: 06/03/2023]
Abstract
The use of ammonia (NH3) rich wastewaters as an ecological chemical absorption solvent for the selective extraction of carbon dioxide (CO2) during biogas upgrading to 'biomethane' has been studied. Aqueous ammonia absorbents of up to 10,000 gNH3 m(-3) demonstrated CO2 absorption rates higher than recorded in the literature for packed columns using 20,000-80,000 g NH3 m(-3) which can be ascribed to the process intensification provided by the hollow fibre membrane contactor used in this study to support absorption. Centrifuge return liquors (2325 g m(-3) ionised ammonium, NH4(+)) and a regenerant (477 gNH4(+) m(-3)) produced from a cationic ion exchanger used to harvest NH4(+) from crude wastewater were also tested. Carbon dioxide fluxes measured for both wastewaters compared reasonably with analogue ammonia absorption solvents of equivalent NH3 concentration. Importantly, this demonstrates that ammonia rich wastewaters can facilitate chemically enhanced CO2 separation which eliminates the need for costly exogenic chemicals or complex chemical handling which are critical barriers to implementation of chemical absorption. When testing NH3 analogues, the potential to recover the reaction product ammonium bicarbonate (NH4HCO3) in crystalline form was also illustrated. This is significant as it suggests a new pathway for ammonia separation which avoids biological nitrification and produces ammonia stabilised into a commercially viable fertiliser (NH4HCO3). However, in real ammonia rich wastewaters, sodium bicarbonate and calcium carbonate were preferentially formed over NH4HCO3 although it is proposed that NH4HCO3 can be preferentially formed by manipulating both ion exchange and absorbent chemistry.
Collapse
Affiliation(s)
- Andrew McLeod
- Cranfield Water Science Institute, Building 39, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Bruce Jefferson
- Cranfield Water Science Institute, Building 39, Cranfield University, Bedfordshire, MK43 0AL, UK.
| | - Ewan J McAdam
- Cranfield Water Science Institute, Building 39, Cranfield University, Bedfordshire, MK43 0AL, UK
| |
Collapse
|
11
|
Fouling Issues in Membrane Bioreactors (MBRs) for Wastewater Treatment: Major Mechanisms, Prevention and Control Strategies. Processes (Basel) 2014. [DOI: 10.3390/pr2040795] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Yang T, Doudrick K, Westerhoff P. Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine. WATER RESEARCH 2013; 47:1299-307. [PMID: 23276425 PMCID: PMC4741382 DOI: 10.1016/j.watres.2012.11.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 05/04/2023]
Abstract
Nitrate is often removed from groundwater by ion exchange (IX) before its use as drinking water. Accumulation of nitrate in IX brine reduces the efficiency of IX regeneration and the useful life of the regeneration brine. For the first time, we present a strategy to photocatalytically reduce nitrate in IX brine, thereby extending the use of the brine. Titanium dioxide (Evonik P90), acting as photocatalyst, reduced nitrate effectively in both synthetic brines and sulfate-removed IX brine when formic acid (FA) was used as the hole scavenger (i.e., electron donor) and the initial FA to nitrate molar ratio (IFNR) was 5.6. Increasing the NaCl level in the synthetic brine slowed the nitrate reduction rate without affecting by-product selectivity of ammonium and gaseous N species (e.g., N(2), N(2)O). In a non-modified IX brine, nitrate removal was greatly inhibited owing to the presence of sulfate, which competed with nitrate for active surface sites on P90 and induced aggregation of P90 nanoparticles. After removing sulfate through barium sulfate precipitation, nitrate was effectively reduced; approximately 3.6 × 10(24) photons were required to reduce each mole of nitrate to 83% N Gases and 17% NH(4)(+). To make optimum use of FA and control the residual FA level in treated brine, the IFNR was varied. High IFNRs (e.g., 4, 5.6) were found to be more efficient for nitrate reduction but left higher residual FA in brine. IX column tests were performed to investigate the impact of residual FA for brine reuse. The residual FA in the brine did not significantly affect the nitrate removal capacity of IX resins, and formate contamination of treated water could be eliminated by rinsing with one bed volume of fresh brine.
Collapse
Affiliation(s)
- Ting Yang
- Northwest A&F University, College of Water Resources and Architectural Engineering, Yangling, Shaanxi 712100, PR China
- Arizona State University, School of Sustainable Engineering and The Built Environment, Tempe, AZ 85287-5306, USA
| | - Kyle Doudrick
- Arizona State University, School of Sustainable Engineering and The Built Environment, Tempe, AZ 85287-5306, USA
| | - Paul Westerhoff
- Arizona State University, School of Sustainable Engineering and The Built Environment, Tempe, AZ 85287-5306, USA
- Corresponding author. Tel.: +1 480 965 2885; fax: +1 480 965 0557
| |
Collapse
|
13
|
McAdam E, Cartmell E, Judd S. Comparison of dead-end and continuous filtration conditions in a denitrification membrane bioreactor. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2010.11.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|