1
|
Manna S, Firdous SM. Unravelling the developmental toxicity of heavy metals using zebrafish as a model: a narrative review. Biometals 2025; 38:419-463. [PMID: 39987289 DOI: 10.1007/s10534-025-00671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Developmental toxicity is the disruption of an organism's normal development which may occur in either the parent before conception or in the growing creature itself. Zebrafish (Danio rerio) are being employed as effective vertebrate models to evaluate the safety and toxicity of chemicals because they can breed multiple times in a year so we can observe the toxic effects in the next generation and their development mental stages can be observed and define clearly because their 1 cell stage to prime stage is transparent so we can observe the development of every organ also they have nearly about 80% genetic similarity with humans and shares the similar neuromodulatory structure along with multiple neurotransmitter. The recent research endeavours to examine the harmful outcome of various heavy metals such as cadmium, chromium, nickel, arsenic, lead, mercury, bismuth, iron, manganese, and thallium along with microplastics on zebrafish embryos when subjected to environmentally acceptable levels of every single metal in addition to co-exposure at various points in time. These heavy metals can alter the mRNA expression levels, increase the reactive oxygen species (ROS) generation, decrease antioxidant expression, damage neuronal function, alter neurotransmitter release, alter the expression of several apoptotic proteins, interfere with the different signalling pathways, decrease heat rates, increase malformations like - pericardial oedema, heart oedema, reduce in length tail bending abnormal formation in fins. Thereafter we concluded that due to its involvement in the food chain, it also causes severe effects on human beings.
Collapse
Affiliation(s)
- Sanjib Manna
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
2
|
Hou Y, Cai XW, Liang ZF, Duan DD, Diao XP, Zhang JL. An integrative investigation of developmental toxicities induced by triphenyltin in a larval coral reef fish, Amphiprion ocellaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161487. [PMID: 36638977 DOI: 10.1016/j.scitotenv.2023.161487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Triphenyltin (TPT) is widely distributed on coastlines, which makes coral reef fish a potential target of TPT pollution. However, the negative effects of TPT on coral reef fish remain poorly understood. Therefore, in the present study, the larval coral reef fish Amphiprion ocellaris was used to investigate the developmental toxicities of TPT at environmentally relevant concentrations (0, 1, 10 and 100 ng/L). After TPT exposure for 14 d, the cumulative mortality increased, and growth was suppressed. In addition, TPT exposure inhibited the development of melanophores and xanthophores and delayed white strip formation, which might be responsible for the disruption of the genes (erbb3b, mitfa, kit, xdh, tyr, oca2, itk and trim33) related to pigmentation. TPT exposure also attenuated ossification of head skeletal elements and the vertebral column and inhibited the expression of genes (bmp2, bmp4 and sp7) related to skeletal development. The observed developmental toxicities on growth, pigmentation and skeleton development might be associated with the disruption of thyroid hormones and the genes related to thyroid hormone regulation (tshβ, thrα, thrβ, tg, tpo, dio2, and ttr). In addition, TPT exposure interfered with locomotor and shoaling behavior, and the related genes dbh, avp and avpr1aa. Taken together, our results suggest that TPT pollution might threaten the development of one of the most iconic coral reef fish, which might produce disastrous consequences on the health of coral reef ecosystems.
Collapse
Affiliation(s)
- Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xing-Wei Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, China
| | - Zhi-Fang Liang
- Lingshui Wildlife Conservation Association, Lingshui, Hainan, China
| | - Dan-Dan Duan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xiao-Ping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; Lingshui Wildlife Conservation Association, Lingshui, Hainan, China.
| |
Collapse
|
3
|
Babaei M, Tayemeh MB, Jo MS, Yu IJ, Johari SA. Trophic transfer and toxicity of silver nanoparticles along a phytoplankton-zooplankton-fish food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156807. [PMID: 35750161 DOI: 10.1016/j.scitotenv.2022.156807] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the bioconcentration metrics, organ-specific distribution, and trophic consequences of silver nanoparticles along a Dunaliella salina-Artemia salina-Poecilia reticulata food chain. To this end, accumulation, tissue-specific distribution, bioconcentration and biomagnification factors, and trophic toxicity of AgNPs were quantitatively investigated along di- and tri-trophic food chains. Overall, silver accumulation increased markedly in intestine and liver tissues, carcass, and embryos of guppy fish with rising exposure concentrations and reducing trophic levels. Following trophic and waterborne exposure, AgNPs illustrated a regular tendency in following order: intestine > liver > embryos > carcass. BCF displayed values of 826, 131, and ≈ 1000 for microalgae, brine shrimp, and guppy fish, respectively. Moreover, BMF showed values <1.00 for 48-h post-hatched nauplii and guppy fish received AgNPs-exposed phytoplankton, yet >1.00 for the liver and whole body of guppy fish treated with AgNPs-exposed nauplii through algae and water, indicating that AgNPs could be biomagnified from the second to third trophic level, but not from the first to second or third levels. Furthermore, the waterborne and trophic exposure of AgNPs considerably induced oxidative stress and reproductive toxicity. Together, this study demonstrated that AgNPs could be biomagnified across trophic chain and consequently cause trophic toxicity.
Collapse
Affiliation(s)
- Morteza Babaei
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Mohammad Behzadi Tayemeh
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Mi Seong Jo
- Aerosol Toxicology Research Center, HCTm, Co., Icheon, Republic of Korea.
| | - Il Je Yu
- HCT, Co. Ltd, Icheon, Republic of Korea.
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| |
Collapse
|
4
|
Bernardo RC, Connaughton VP. Transient developmental exposure to tributyltin reduces optomotor responses in larval zebrafish (Danio rerio). Neurotoxicol Teratol 2022; 89:107055. [PMID: 34896240 PMCID: PMC8755603 DOI: 10.1016/j.ntt.2021.107055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
This study determined the effects of transient developmental exposure to tributyltin (TBT), a well-known anti-estrogenic environmental endocrine disrupting compound, on visual system development of larval zebrafish (Danio rerio). Zebrafish were exposed to either 0.2 μg/L or 20 μg/L TBT for 24 h when they were aged 24 h postfertilization (hpf), 72 hpf, or 7 days (d)pf. Immediately after exposure, larvae were transferred to system water for seven days of recovery followed by behavioral testing (startle and optomotor responses) and morphological assessment. TBT-treated larvae displayed age-dependent changes in morphology characterized by delayed/reduced growth and susceptibility to exposure. TBT exposure reduced the number of larvae displaying optomotor responses regardless of age of exposure; eye diameter was also decreased when exposure occurred at 24 hpf or 7 dpf. Startle responses were reduced only in TBT-treated larvae exposed when they were 24 hpf, suggesting transient TBT exposure during the early larval period may cause vision-specific effects.
Collapse
Affiliation(s)
- Rachel C. Bernardo
- Department of Biology, American University, Washington, DC 20016, USA.,Department of Health Studies, American University, Washington, DC 20016, USA
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC 20016, USA.,Corresponding author: VP Connaughton, Dept of Biology, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, 202-885-2188,
| |
Collapse
|
5
|
Coral JA, Heaps S, Glaholt SP, Karty JA, Jacobson SC, Shaw JR, Bondesson M. Arsenic exposure induces a bimodal toxicity response in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117637. [PMID: 34182391 DOI: 10.1016/j.envpol.2021.117637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 05/25/2023]
Abstract
In toxicology, standard sigmoidal concentration-response curves are used to predict effects concentrations and set chemical regulations. However, current literature also establishes the existence of complex, bimodal concentration-response curves, as is the case for arsenic toxicity. This bimodal response has been observed at the molecular level, but not characterized at the whole organism level. This study investigated the effect of arsenic (sodium arsenite) on post-gastrulated zebrafish embryos and elucidated effects of bimodal concentration-responses on different phenotypic perturbations. Six hour post fertilized (hpf) zebrafish embryos were exposed to arsenic to 96 hpf. Hatching success, mortality, and morphometric endpoints were evaluated both in embryos with chorions and dechorionated embryos. Zebrafish embryos exhibited a bimodal response to arsenic exposure. Concentration-response curves for exposed embryos with intact chorions had an initial peak in mortality (88%) at 1.33 mM arsenic, followed by a decrease in toxicity (~20% mortality) at 1.75 mM, and subsequently peaked to 100% mortality at higher concentrations. To account for the bimodal response, two distinct concentration-response curves were generated with estimated LC10 values (and 95% CI) of 0.462 (0.415, 0.508) mM and 1.69 (1.58, 1.78) mM for the 'low concentration' and 'high concentration' peaks, respectively. Other phenotypic analyses, including embryo length, yolk and pericardial edema all produced similar concentration-response patterns. Tests with dechorionated embryos also resulted in a bimodal toxicity response but with lower LC10 values of 0.170 (0.120, 0.220) mM and 0.800 (0.60, 0842) mM, respectively. Similarities in bimodal concentration-responses between with-chorion and dechorionated embryos indicate that the observed effect was not caused by the chorion limiting arsenic availability, thus lending support to other studies such as those that hypothesized a conserved bimodal mechanism of arsenic interference with nuclear receptor activation.
Collapse
Affiliation(s)
- Jason A Coral
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| | - Samuel Heaps
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Stephen P Glaholt
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Joseph R Shaw
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| |
Collapse
|
6
|
Sousa RPCL, Figueira RB, Costa SPG, M. Raposo MM. Optical Fiber Sensors for Biocide Monitoring: Examples, Transduction Materials, and Prospects. ACS Sens 2020; 5:3678-3709. [PMID: 33226221 DOI: 10.1021/acssensors.0c01615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antifouling biocides are toxic to the marine environment impacting negatively on the aquatic ecosystems. These biocides, namely, tributyltin (TBT) and Cu(I) compounds, are used to avoid biofouling; however, their toxicity turns TBT and Cu(I) monitoring an important health issue. Current monitoring methods are expensive and time-consuming. This review provides an overview of the actual state of the art of antifouling paints' biocides, including their impact and toxicity, as well as the reported methods for TBT and Cu(I) detection over the past decade. The principles of optical fiber sensors (OFS) applications, with focus on environmental applications, and the use of organic chemosensors in this type of sensors are debated. The multiplexing ability of OFS and their application on aquatic environments are also discussed.
Collapse
Affiliation(s)
- Rui P. C. L. Sousa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rita B. Figueira
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Susana P. G. Costa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M. Manuela M. Raposo
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Daddiouaissa D, Amid A, Ahmad S, Elnour AAM. Phytochemical analysis of ionic liquid-Graviola (Annona muricata) fruit extract and its acute toxicity on zebrafish early-life stages. ACTA ACUST UNITED AC 2020. [DOI: 10.35118/apjmbb.2020.028.2.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Annona muricata, commonly known as soursop and Graviola, is a member of the Annonaceae family. Some of its phytochemicals were reported to have a neurotoxicity effect causing neurodegenerative diseases. However, different parts of this tree have been used for ages in traditional medicine due to their biological activities, such as anti-inflammatory, antimicrobial, antioxidant and anticancer effects. This study aimed to qualitatively screen the crude ionic liquid-Graviola fruit extract (IL-GFE) phytochemical composition, assess its acute toxicity and determine the lethal concentrations using zebrafish (Danio rerio) embryos. IL-GFE contains acetogenins, alkaloids, phenols, terpenoids, tannins and flavonoids. Acute toxicity effects of IL-GFE on zebrafish embryos were observed from 24 to 120 hours of post fertilisation (hpf). The survival rate, LC50, sublethal endpoints and effect of IL-GFE on the heart rate of zebrafish larvae were assessed. Results showed that the lethal concentration (LC50) of the crude IL-GFE was 173.45 μg/mL. Interestingly, no significant changes on the morphology of the treated zebrafish were observed at a concentration of 125 μg/mL. However, the heart rate of zebrafish larvae at 96 hpf was significantly decreased by 33.76% after treated with crude IL-GFE at 125 µg/mL (119.00 ± 4.72 beats/min) as compared to the untreated group (179.67 ± 4.66 beats/min). This preliminary finding showed that crude ionic liquid-Graviola fruit extract and its phytoconstituents might have the potential to be developed as a food supplement or herbal product. However, further tests need to be conducted to evaluate its medicinal properties and adverse effects on organisms of higher orders.
Collapse
Affiliation(s)
- Djabir Daddiouaissa
- Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), P. O. Box 10, Gombak. 50728 Kuala Lumpur, Malaysia
| | - Azura Amid
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmed A. M. Elnour
- Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), P. O. Box 10, Gombak. 50728 Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Li P, Li ZH. Environmental co-exposure to TBT and Cd caused neurotoxicity and thyroid endocrine disruption in zebrafish, a three-generation study in a simulated environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113868. [PMID: 31887590 DOI: 10.1016/j.envpol.2019.113868] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Although the coexistence of heavy metals and environmental hormones always occur in aquatic environment, the information of the combined impacts remains unclear. To explore the multi-generational toxicity of cadmium (Cd) and tributyltin (TBT), adult zebrafish (Danio rerio) (F0) were exposed to different treated groups (100 ng/l Cd, 100 ng/l TBT and their mixture) for 90 d, with their offspring (F1 and F2) subsequently reared in the same exposure solutions corresponding to their parents. Both developmental neurotoxicity and thyroid disturbances were examined in the three (F0, F1, and F2) generations. Our results showed that co-exposure to Cd and TBT induced the developmental neurotoxicity in F1 and F2 generations, reflected by the significant lower levels of neurotransmitters (dopamine and serotonin) and the inhibited acetylcholinesterase (AChE) activities. And the thyroid endocrine disruption were observed in the two-generations larval offspring by parental exposure to Cd and/or TBT, including the significantly decreasing levels of thyroid hormones and the down-regulated the expression of genes involved in the hypothalamus-pituitary-thyroid axis, compared to the control. Additional, the embryonic toxicity and growth inhibition were also determined in the fish larvae. Overall, this study examined the impacts of parental co-exposure to Cd and TBT, with regard to developmental inhibition, nervous system damage and endocrine disruption, which highlighted that co-exposure influences are complicated and need to be considered for accurate environmental risk assessment.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
9
|
Cabezas-Sanchez P, Rainieri S, Conlledo N, Barranco A, Sanz-Landaluze J, Camara C, Luque-Garcia JL. Impact of selenium co-administration on methylmercury exposed eleutheroembryos and adult zebrafish (Danio rerio): Changes in bioaccumulation and gene expression. CHEMOSPHERE 2019; 236:124295. [PMID: 31319311 DOI: 10.1016/j.chemosphere.2019.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Mercury still represents one of the most hazardous threats for the aquatic ecosystem due to its high toxicity, and the fact that it can be easily incorporated into the food chain by accumulation in fish as MeHg. On the other hand, selenium is a micronutrient that is part of different antioxidant enzymes that regulate the cellular redox state, and whose complex interaction with Hg has been extensively studied from a toxicological point of view. In order to evaluate the protective effect of Se(IV) co-administration against MeHg accumulation and toxicity, we have selected an in-vivo model at two developmental stages: zebrafish eleutheroembryos and adult fish. Embryos were exposed during 48 h to MeHg (5 or 25 μg/l) and a concentration of Se (IV) representing a molar ratio close to one (2.5 or 12.5 μg/l), while adult zebrafish were exposed during 72 h to either 25 μg/l of MeHg alone or co-exposed with 12.5 μg/l of Se (IV). A significant decrease in MeHg bioaccumulation factor was observed in eleutheroembryos co-exposed to Se(IV). A time-dependent accumulation of MeHg was observed in all the analyzed organs and tissues of adult fish, which was significantly reduced in the muscular tissue and the intestine by Se(IV) co-administration. However, such protection against MeHg bioaccumulation was not maintained in the brain and liver. The data derived from the gene expression analysis also demonstrated the protective effect of Se(IV) against MeHg-induced oxidative stress and the activation of different defense mechanisms by Se(IV) co-administration.
Collapse
Affiliation(s)
- Pablo Cabezas-Sanchez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Sandra Rainieri
- Food Research Division, AZTI, Parque Tecnológico de Bizkaia, Astondo Bidea 609, 48160, Derio, Spain
| | - Nadia Conlledo
- Food Research Division, AZTI, Parque Tecnológico de Bizkaia, Astondo Bidea 609, 48160, Derio, Spain
| | - Alejandro Barranco
- Food Research Division, AZTI, Parque Tecnológico de Bizkaia, Astondo Bidea 609, 48160, Derio, Spain
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Carmen Camara
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain.
| |
Collapse
|
10
|
Zarco-Fernández S, García-García A, Sanz-Landaluze J, Pecheyran C, Muñoz-Olivas R. In vivo bioconcentration of a metal mixture by Danio rerio eleutheroembryos. CHEMOSPHERE 2018; 196:87-94. [PMID: 29291518 DOI: 10.1016/j.chemosphere.2017.12.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Exposure to heavy metals has represented one of the most serious health risks of environmental pollution over the last 50 years. Most of the bioconcentration studies that have been carried out to date explored only individual contaminants, unlike the real situations that occur in the environment. In this work, zebrafish eleutheroembryos were exposed to a mixture of CH3Hg(II), iAs(III), Ag(I) and Cd(II), and new BCFs were calculated and compared with those calculated from single metal exposures. In both cases, experimental conditions meet the OECD Test 305 conditions established for aquatic systems. In addition, spatial imaging obtained by laser ablation coupled to inductively plasma mass spectrometry (LA-ICP/MS), has been directly performed in these samples providing complementary information. The new BCF's have revealed some differences compared to single metal exposures when eleutheroembryos were exposed to the metal mixture, especially for iAs(III) and Cd(II). LA-ICP/MS images are in good agreement with the BFC's found, representing an interesting approach to get spatial distribution of metals that reinforces the toxicokinetic information.
Collapse
Affiliation(s)
- S Zarco-Fernández
- Departamento de Química Analítica, Facultad de Químicas, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - A García-García
- Departamento de Química Analítica, Facultad de Químicas, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - J Sanz-Landaluze
- Departamento de Química Analítica, Facultad de Químicas, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - C Pecheyran
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, UMR 5254 CNRS - Université de Pau et des Pays de l'Adour, Pau, France
| | - R Muñoz-Olivas
- Departamento de Química Analítica, Facultad de Químicas, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Zheng J, Lin T, Chen W. Removal of the precursors of N-nitrosodiethylamine (NDEA), an emerging disinfection byproduct, in drinking water treatment process and its toxicity to adult zebrafish (Danio rerio). CHEMOSPHERE 2018; 191:1028-1037. [PMID: 29145131 DOI: 10.1016/j.chemosphere.2017.10.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
N-nitrosodiethylamine (NDEA) is one of the emerging nitrogenous disinfection byproducts with probable cytotoxicity, genotoxicity, and carcinogenesis. Its potential toxicological effects have received extensive attention but remain to be poorly understood. In this study, changes in NDEA precursors in drinking water treatment process were studied using the trial of its formation potential (FP), and the toxicity induced by NDEA to adult zebrafish was investigated. NDEA FP in the raw water of Taihu Lake ranged from 46.9 to 68.3 ng/L. The NDEA precursors were removed effectively by O3/BAC process. Hydrophilic fraction and low-molecular-weight fraction (<1 kDa) had the highest NDEA FP. The toxicity results demonstrated that the acute lethal concentration of NDEA causing 50% mortality in 96 h (96-h LC50) was 210.4 mg/L, and NDEA was more likely to be accumulated in kidney, followed by liver and gill. NDEA induced oxidative stress and antioxidant defense to zebrafish metabolism system at concentrations over 5 μg/L. After a 42-day exposure, a significant DNA damage was observed in zebrafish liver cells at NDEA concentrations beyond 500 μg/L. This study investigated NDEA properties in both engineering prospective and toxicity evaluation, thus providing comprehensive information on its control in drinking water treatment process and its toxicity effect on zebrafish as a model animal.
Collapse
Affiliation(s)
- Jian Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
12
|
Zhang CN, Zhang JL, Ren HT, Zhou BH, Wu QJ, Sun P. Effect of tributyltin on antioxidant ability and immune responses of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:1-8. [PMID: 27987418 DOI: 10.1016/j.ecoenv.2016.12.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 05/21/2023]
Abstract
Tributyltin (TBT) is a toxic compound released into aquatic ecosystems through antifouling paints. This study was designed to examine the effects of TBT on antioxidant ability and immune responses of zebrafish (Danio rerio). Three hundred sixty healthy zebrafish were randomly grouped into four groups and exposed to different doses of TBT (0, 1, 10 and 100ngL-1). At the end of 8 weeks, the fish were sampled, and antioxidant capability, immune parameters and immune-related genes were assessed. The results showed that with an increase in TBT dose, the concentration of malonaldehyde in the liver was significantly increased (p<0.05), whereas the activities of total superoxide dismutase, catalase and glutathione peroxidase were significantly decreased (p<0.05) compared to the control. The activity and expression of lysozyme and the content of immunoglobulin M were significantly decreased compared to those of the fish exposed to 0ngL-1 TBT (p<0.05). However, the expression of the HSP70, HSP90, tumor necrosis factor-α(TNF-α), interleukins (IL-1β, IL-6), and nuclear factor-kappa B p65 (NF-κ B p65) genes were all enhanced with an increase in TBT dose. The results indicated that TBT induced oxidative stress and had immunotoxic effects on zebrafish.
Collapse
Affiliation(s)
- Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China.
| | - Ji-Liang Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Hong-Tao Ren
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Qiu-Jue Wu
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| |
Collapse
|
13
|
Lin T, Zhou D, Dong J, Jiang F, Chen W. Acute toxicity of dichloroacetonitrile (DCAN), a typical nitrogenous disinfection by-product (N-DBP), on zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:97-104. [PMID: 27428706 DOI: 10.1016/j.ecoenv.2016.06.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Dichloroacetonitrile (DCAN) is a typical nitrogenous disinfection by-product (N-DBP) and its toxicity on aquatic animals is investigated for the first time. The present study was designed to investigate the potential adverse effects of DCAN on zebrafish. DCAN could induce developmental toxicity to zebrafish embryos. A significant decrease in hatchability and an increase in malformation and mortality occurred when DCAN concentration was above 100µg/L. Heart function alteration and neuronal function disturbance occurred at concentration higher than 500 and 100µg/L, respectively. Further, DCAN was easily accumulated in adult zebrafish. The rank order of declining bioconcentration factor (BCF) was liver (1240-1670)> gill (1210-1430)> muscle (644-877). DCAN caused acute metabolism damage to adult zebrafish especially at 8 days exposure, at which time the "Integrated Biomarker Response" (IBR) index value reached 798 at 1mg/L DCAN dose. Acute DNA damage was induced to adult zebrafish by DCAN even at 10µg/L dose.
Collapse
Affiliation(s)
- Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Dongju Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jian Dong
- Suzhou City Water Company Limited, China
| | | | - Wei Chen
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
14
|
Lin T, Zhou D, Yu S, Chen W. The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product, in drinking water treatment process and its toxicity on zebrafish. CHEMOSPHERE 2016; 159:403-411. [PMID: 27337431 DOI: 10.1016/j.chemosphere.2016.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in conventional drinking water treatment plant (C-DWTP) and advanced DWTP (ADWTP) was studied with newly maximum formation potential (MFP) process. It was demonstrated that the advanced treatment displayed greater removal efficiency towards DCAcAm formation potential (MFP) than the conventional treatment. The hydrophilic natural organic matter and natural organic matter with molecular weight <1 kDa or >10 kDa leaded to more DCAcAm formation, and the aromatic protein was inferred as one part of DCAcAm precursor. DCAcAm was found to cause delayed development and malformation to zebrafish embryos at embryonic growth stage. Compared with heart toxicity, it caused a significant neuron toxicity. It also could cause the acute DNA damage to adult zebrafish, which should be extremely cautioned.
Collapse
Affiliation(s)
- Tao Lin
- Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Dongju Zhou
- Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Shilin Yu
- Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Chen
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
15
|
Yu H, Cao W. Assessment of pharmaceutical and personal care products (PPCPs) of Dalong Lake in Xuzhou by concentration monitoring and bio-effects monitoring process. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:209-215. [PMID: 27017382 DOI: 10.1016/j.etap.2016.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
The occurrence of six selected pharmaceutical and personal care products (PPCPs) were investigated in dalong lake in Xuzhou. Five sampling sites were selected around the dalong lake. In the six selected PPCPs, caffeine demonstrated highest concentration level at each sampling sites according to concentration monitoring, with highest concentration of 71ng/L. The site E near newly built hospital demonstrated highest PPCP concentration level. The bio-effects monitoring was also performed in this study. The metabolic and genomic damage could be caused to the healthy crucian carps. The damage was acute but not long term. The ecotoxicological and human health risk assessment confirmed that PPCPs detected in each sampling sites posed no potential toxicity. Two PPCPs (17α-ethinylestradiol and sulfamethoxazole) should be seriously considered as candidates for regulatory monitoring in this lake.
Collapse
Affiliation(s)
- Haijing Yu
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Henan 467036, PR China
| | - Wenping Cao
- School of Environmental Engineering, Xuzhou Institute of Technology, Jiangsu 221000, PR China.
| |
Collapse
|
16
|
Olivares CI, Field JA, Simonich M, Tanguay RL, Sierra-Alvarez R. Arsenic (III, V), indium (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint in vivo developmental and behavioral assay. CHEMOSPHERE 2016; 148:361-368. [PMID: 26824274 PMCID: PMC4754138 DOI: 10.1016/j.chemosphere.2016.01.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 05/31/2023]
Abstract
Gallium arsenide (GaAs), indium gallium arsenide (InGaAs) and other III/V materials are finding increasing application in microelectronic components. The rising demand for III/V-based products is leading to increasing generation of effluents containing ionic species of gallium, indium, and arsenic. The ecotoxicological hazard potential of these streams is unknown. While the toxicology of arsenic is comprehensive, much less is known about the effects of In(III) and Ga(III). The embryonic zebrafish was evaluated for mortality, developmental abnormalities, and photomotor response (PMR) behavior changes associated with exposure to As(III), As(V), Ga(III), and In(III). The As(III) lowest observable effect level (LOEL) for mortality was 500 μM at 24 and 120 h post fertilization (hpf). As(V) exposure was associated with significant mortality at 63 μM. The Ga(III)-citrate LOEL was 113 μM at 24 and 120 hpf. There was no association of significant mortality over the tested range of In(III)-citrate (56-900 μM) or sodium citrate (213-3400 μM) exposures. Only As(V) resulted in significant developmental abnormalities with LOEL of 500 μM. Removal of the chorion prior to As(III) and As(V) exposure was associated with increased incidence of mortality and developmental abnormality suggesting that the chorion may normally attenuate mass uptake of these metals by the embryo. Finally, As(III), As(V), and In(III) caused PMR hypoactivity (49-69% of control PMR) at 900-1000 μM. Overall, our results represent the first characterization of multidimensional toxicity effects of III/V ions in zebrafish embryos helping to fill a significant knowledge gap, particularly in Ga(III) and In(III) toxicology.
Collapse
Affiliation(s)
- Christopher I Olivares
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA
| | - Michael Simonich
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR 97333, USA
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR 97333, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA.
| |
Collapse
|
17
|
Yu S, Lin T, Chen W, Tao H. The toxicity of a new disinfection by-product, 2,2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water. CHEMOSPHERE 2015; 139:40-46. [PMID: 26037958 DOI: 10.1016/j.chemosphere.2015.05.079] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The detection method of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in chlorinated drinking water, was established using a gas chromatograph coupled with a micro-electron capture detector. The chlorinated water samples were taken from ten drinking water treatment plants around Yangtze River or Taihu Lake in China. The concentration of DCAcAm was detected ranging from 0.5 to 1.8μg/L in the waterworks around Yangtze River, and 1.5-2.6μg/L around Taihu Lake. The toxicity of DCAcAm on adult zebrafish was assessed by investigating the metabolism damage with multiple metabolic biomarkers and the accumulation capability with bio-concentration factor. The results showed that DCAcAm could cause the acute metabolism damage and was easily accumulated in zebrafish, and should be extremely cautioned.
Collapse
Affiliation(s)
- Shilin Yu
- Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Wei Chen
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hui Tao
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
18
|
López-Serrano Oliver A, Muñoz-Olivas R, Sanz Landaluze J, Rainieri S, Cámara C. Bioaccumulation of ionic titanium and titanium dioxide nanoparticles in zebrafish eleutheroembryos. Nanotoxicology 2015; 9:835-42. [DOI: 10.3109/17435390.2014.980758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Sanz-Landaluze J, Pena-Abaurrea M, Muñoz-Olivas R, Cámara C, Ramos L. Zebrafish (Danio rerio) eleutheroembryo-based procedure for assessing bioaccumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1860-9. [PMID: 25590991 DOI: 10.1021/es504685c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper reports on the development and preliminary evaluation of a new bioaccumulation test based on the use of zebrafish (Danio renio) eleutheroembryos (72 h after hatching, corresponding to 144 h post fertilization, hpf) as an alternative to adult fish-based procedures for regulatory purposes regarding REACH application. The proposed test accomplished the OECD 305 guideline and consists of a 48 h uptake period followed by a 24 h depuration step. Bioaccumulation experiments were performed for a selected of hyper hydrophobic chemicals (log Kow> 7.6), that is, PCB 136 and PBDE 154 at two concentration levels corresponding roughly to 1% and 0.1% the chemicaĺs LC50(nominal concentrations of 4.0 and 12.0 μg/L for PCB 136, and 1.0 and 5.0 μg/L PBDE 154, respectively). Toxicokinetic models were used to calculate the bioconcentration factors (BCFs) based on of the chemical concentrations found in the contaminated eleutheroembryos and their surrounding media. The experimentally determined accumulation profiles show bioaccumulation by zebrafish eleutheroembryos of both chemicals, and that the process is more complex than simple water-lipid partition. Calculated log BCFs using a first-order accumulation model(3.97 and 3.73 for PCB 136, and 3.95 and 4.29 for PBDE 154) were in the range of those previously reported in the literature. The suitability of this new nonprotected life stage bioaccumulation protocol for BCF estimation was evaluated by application to widely divergent micropollutants with different accumulation mechanisms. The results were compared with those in the MITE-NITE database for adult rice fish (Oryzias latipes).
Collapse
Affiliation(s)
- J Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense de Madrid , Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Borges AR, López-Serrano Oliver A, Gallego-Gallegos M, Muñoz-Olivas R, Rodrigues Vale MG, Cámara C. Transformation of tributyltin in zebrafish eleutheroembryos (Danio rerio). Biol Trace Elem Res 2014; 162:317-23. [PMID: 25312380 DOI: 10.1007/s12011-014-0144-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Organotin compounds are highly versatile group of organometallic chemicals used in industrial and agricultural applications. Their endocrine-disrupting effects are well known and their extensive uses as biocide materials, e.g., in antifouling paints, for many years have led to serious environmental problems. So far, attention has mainly been given to tributyltin pollution in water, sediments, and marine organisms because of its highly toxic effects and high accumulation levels at very low concentrations. In this study, we will focus on the conversion of tributyltin after it is absorbed by zebrafish eleutheroembryos, presented here as an alternative model to adult fish for describing bioconcentration. A simplified analytical extraction procedure based on the use of an assisted ultrasonic probe and derivatization by ethylation, followed by gas chromatography with a flame photometric detector (GC-FPD) is proposed. This classical methodology for organotin determination has been validated by inductively coupled plasma mass spectrometry (ICP-MS) and Zeeman graphite furnace atomic absorption spectrometry (ZGF-AAS) in terms of total tin content. The speciation analysis results show that zebrafish eleutheroembryos absorb high amounts of tributyltin and convert it into monobutyltin and likely in inorganic tin.
Collapse
Affiliation(s)
- Aline Rocha Borges
- Institute of Chemistry, Federal University of Rio Grande do Sul Institute, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, RS, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
McCollum CW, Hans C, Shah S, Merchant FA, Gustafsson JÅ, Bondesson M. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:152-163. [PMID: 24768856 DOI: 10.1016/j.aquatox.2014.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/02/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems.
Collapse
Affiliation(s)
- Catherine W McCollum
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Charu Hans
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Shishir Shah
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Fatima A Merchant
- Department of Computer Science, University of Houston, Houston, TX 77204, USA; Department of Engineering Technology, University of Houston, Houston, TX 77204, USA
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
22
|
Meyer A, Strajhar P, Murer C, Da Cunha T, Odermatt A. Species-specific differences in the inhibition of human and zebrafish 11β-hydroxysteroid dehydrogenase 2 by thiram and organotins. Toxicology 2012; 301:72-8. [PMID: 22796344 DOI: 10.1016/j.tox.2012.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/30/2012] [Accepted: 07/04/2012] [Indexed: 11/26/2022]
Abstract
Dithiocarbamates and organotins can inhibit enzymes by interacting with functionally essential sulfhydryl groups. Both classes of chemicals were shown to inhibit human 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), which converts active cortisol into inactive cortisone and has a role in renal and intestinal electrolyte regulation and in the feto-placental barrier to maternal glucocorticoids. In fish, 11β-HSD2 has a dual role by inactivating glucocorticoids and generating the major androgen 11-ketotestosterone. Inhibition of this enzyme may enhance glucocorticoid and diminish androgen effects in fish. Here, we characterized 11β-HSD2 activity of the model species zebrafish. A comparison with human and mouse 11β-HSD2 revealed species-specific substrate preference. Unexpectedly, assessment of the effects of thiram and several organotins on the activity of zebrafish 11β-HSD2 showed weak inhibition by thiram and no inhibition by any of the organotins tested. Sequence comparison revealed the presence of an alanine at position 253 on zebrafish 11β-HSD2, corresponding to cysteine-264 in the substrate-binding pocket of the human enzyme. Substitution of alanine-253 by cysteine resulted in a more than 10-fold increased sensitivity of zebrafish 11β-HSD2 to thiram. Mutating cysteine-264 on human 11β-HSD2 to serine resulted in 100-fold lower inhibitory activity. Our results demonstrate significant species differences in the sensitivity of human and zebrafish 11β-HSD2 to inhibition by thiram and organotins. Site-directed mutagenesis revealed a key role of cysteine-264 in the substrate-binding pocket of human 11β-HSD2 for sensitivity to sulfhydryl modifying agents.
Collapse
Affiliation(s)
- Arne Meyer
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Miniaturized extraction methods of triclosan from aqueous and fish roe samples. Bioconcentration studies in zebrafish larvae (Danio rerio). Anal Bioanal Chem 2012; 403:927-37. [DOI: 10.1007/s00216-012-5713-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/21/2011] [Accepted: 01/04/2012] [Indexed: 11/27/2022]
|