1
|
Xu R, Zhang Z, Deng C, Nie C, Wang L, Shi W, Lyu T, Yang Q. Micropollutant rejection by nanofiltration membranes: A mini review dedicated to the critical factors and modelling prediction. ENVIRONMENTAL RESEARCH 2024; 244:117935. [PMID: 38103781 DOI: 10.1016/j.envres.2023.117935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Nanofiltration (NF) membranes, extensively used in advanced wastewater treatment, have broad application prospects for the removal of emerging trace organic micropollutants (MPs). The treatment performance is affected by several factors, such as the properties of NF membranes, characteristics of target MPs, and operating conditions of the NF system concerning MP rejection. However, quantitative studies on different contributors in this context are limited. To fill the knowledge gap, this study aims to assess critical impact factors controlling MP rejection and develop a feasible model for MP removal prediction. The mini-review firstly summarized membrane pore size, membrane zeta potential, and the normalized molecular size (λ = rs/rp), showeing better individual relationships with MP rejection by NF membranes. The Lindeman-Merenda-Gold model was used to quantitatively assess the relative importance of all summarized impact factors. The results showed that membrane pore size and operating pressure were the high impact factors with the highest relative contribution rates to MP rejection of 32.11% and 25.57%, respectively. Moderate impact factors included membrane zeta potential, solution pH, and molecular radius with relative contribution rates of 10.15%, 8.17%, and 7.83%, respectively. The remaining low impact factors, including MP charge, molecular weight, logKow, pKa and crossflow rate, comprised all the remaining contribution rates of 16.19% through the model calculation. Furthermore, based on the results and data availabilities from references, the machine learning-based random forest regression model was trained with a relatively low root mean squared error and mean absolute error of 12.22% and 6.92%, respectively. The developed model was then successfully applied to predict MPs' rejections by NF membranes. These findings provide valuable insights that can be applied in the future to optimize NF membrane designs, operation, and prediction in terms of removing micropollutants.
Collapse
Affiliation(s)
- Rui Xu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Joint Research Center for Yangtze River Conservation, Beijing, 100012, China
| | - Zeqian Zhang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chenning Deng
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chong Nie
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Joint Research Center for Yangtze River Conservation, Beijing, 100012, China
| | - Lijing Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqing Shi
- School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, United Kingdom.
| | - Queping Yang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Joint Research Center for Yangtze River Conservation, Beijing, 100012, China.
| |
Collapse
|
2
|
Lu YX, Yuan H, Chand H, Wu Y, Yang YL, Liang H, Song HL. Impacts of draw solutes on the fate of tetracycline in an osmotic membrane bioreactor: Role of the combination between membrane fouling and microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132246. [PMID: 37557047 DOI: 10.1016/j.jhazmat.2023.132246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Osmotic membrane bioreactors (OMBRs) are considered a suitable technology for treating wastewater containing tetracycline due to their high rejection and biodegradation efficiency. However, the impact of membrane fouling layer (i.e., chemical composition, microbial composition, and formation) on the filtration and biodegradation of tetracycline is still unclear. Herein, the effects of draw solute concentration and type on the formation of a membrane fouling layer for tetracycline filtration and its relationship with microbial activity were investigated. The results showed that over 99% of tetracycline was retained on the feed side by membrane rejection, and the fouling layer played an important role in tetracycline filtration. Specifically, membrane foulants resulted in a more hydrophilic membrane facilitating tetracycline filtration, while the tetracycline-degrading genera from the fouled membrane promoted tetracycline degradation. The structure equation model showed that tetracycline filtration dominated by electrostatic repulsion between tetracycline and the fouled membrane was more important than tetracycline degradation for tetracycline removal (path coefficient of 0.655 vs. 0.395). This study provided insights into the combined effect of membrane foulants and microorganisms on tetracycline removal.
Collapse
Affiliation(s)
- Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19312, USA
| | - Hameer Chand
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - You Wu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hai-Liang Song
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Salamanca M, Peña M, Hernandez A, Prádanos P, Palacio L. Forward Osmosis Application for the Removal of Emerging Contaminants from Municipal Wastewater: A Review. MEMBRANES 2023; 13:655. [PMID: 37505021 PMCID: PMC10384920 DOI: 10.3390/membranes13070655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Forward osmosis (FO) has attracted special attention in water and wastewater treatment due to its role in addressing the challenges of water scarcity and contamination. The presence of emerging contaminants in water sources raises concerns regarding their environmental and public health impacts. Conventional wastewater treatment methods cannot effectively remove these contaminants; thus, innovative approaches are required. FO membranes offer a promising solution for wastewater treatment and removal of the contaminants in wastewater. Several factors influence the performance of FO processes, including concentration polarization, membrane fouling, draw solute selection, and reverse salt flux. Therefore, understanding and optimizing these factors are crucial aspects for improving the efficiency and sustainability of the FO process. This review stresses the need for research to explore the potential and challenges of FO membranes to meet municipal wastewater treatment requirements, to optimize the process, to reduce energy consumption, and to promote scalability for potential industrial applications. In conclusion, FO shows promising performance for wastewater treatment, dealing with emerging pollutants and contributing to sustainable practices. By improving the FO process and addressing its challenges, we could contribute to improve the availability of water resources amid the global water scarcity concerns, as well as contribute to the circular economy.
Collapse
Affiliation(s)
- Mónica Salamanca
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Mar Peña
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Antonio Hernandez
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
4
|
Koo IK, Lim PT, Chen X, Goh K. How solute-membrane interaction influences foulant formation in polymeric catalytic membrane: competitive and sequential reactions. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
Micropollutant removal capacity and stability of aquaporin incorporated biomimetic thin-film composite membranes. BIOTECHNOLOGY REPORTS 2022; 35:e00745. [PMID: 35719851 PMCID: PMC9204655 DOI: 10.1016/j.btre.2022.e00745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/22/2022]
Abstract
Aquaporins increase the micropollutant removal capacity of TFC nanofiltration membranes. Biomimetic membrane prepared with Halomonas elongata aquaporin is applicable for micropollutant rejection. Aquaporin incorporated membrane is stable for six months period. Type of aquaporin and pore size of the membrane affect micropollutant rejection rates.
Aquaporin incorporated nanofiltration membranes have high potential for future applications on separation processes. In this study, performance of biomimetic thin-film composite membranes containing Halomonas elongata and Escherichia coli aquaporins with different affinity tags for the removal of micropollutants was investigated.% rejection of the membranes for atrazine, terbutryn, triclosan, and diuron varied between 66.7% and 90.3% depending on the type of aquaporin and micropollutant. The highest removal rate was achieved with a membrane containing H. elongata aquaporin for atrazine and terbutryn which have methyl branching in their structure. Electrostatic interactions between micropollutants, thin-film layer of the membrane, and tags of aquaporins may also play important role in rejection of micropollutants. Stability experiments showed that biomimetic membranes can be used for six months period without a remarkable decrease in% rejection. Membrane used 24 times for atrazine removal for a year period lost most of its ability to repel atrazine.
Collapse
|
6
|
Tiruneh Adugna A. Development in nanomembrane-based filtration of emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Recently, the concentration of emerging contaminants is increasing in drinking water sources, industrial wastewater, and reclaimed water. It is not possible to remove the emerging contaminants using conventional methods, and the interest to use nanomembrane-based filtration is getting attention. A nanomembrane-based filtration can be manipulated without the use of any special equipment. Different research findings reported better removal of emerging contaminants has been achieved using nanomembrane-based filtration. Moreover, new developments have been examined and implemented at different levels and are expected to continue. Therefore, this chapter provides a brief overview of recent developments on nanomembrane-based filtration processes in the removal of emerging contaminants from drinking water sources, industrial wastewater, and reclaimed water.
Collapse
Affiliation(s)
- Amare Tiruneh Adugna
- Department of Environmental Engineering , Addis Ababa Science and Technology University, College of Biological and Chemical Engineering , Addis Ababa , Ethiopia
| |
Collapse
|
7
|
Patel A, Mungray AK, Mungray A. A novel concept of Vertical Up-Flow Forward Osmosis reactor: Design, performance and evaluation. CHEMOSPHERE 2021; 281:130741. [PMID: 34015655 DOI: 10.1016/j.chemosphere.2021.130741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Performance of the forward osmosis (FO) process is limited due to the decline in water flux and increase in reverse salt flux. In this study, a novel Vertical Up-Flow Forward Osmosis (VUF-FO) reactor was designed and evaluated for eight different contacting patterns of feed and draw agent (DA). The best contacting pattern was compared with the basic H-shape reactor. Pulsating inlets were used for the recirculation of the feed and DA which helped in improving the performance by reducing the concentration polarization on membrane. Water flux in FO (active layer facing feed side) and PRO (active layer facing draw side) mode was 12.75 and 16.28 L/m2hr (LMH) respectively for the contacting pattern R3 and R5 after 8 h of the process. While the water flux in the H-shape reactor was 9.12 and 12.54 LMH for FO and PRO mode respectively. Diffusional behavior of water flux and reverse salt flux were also evaluated for both the FO reactors. Water flux in the H-shape reactor was declined to more than 60% from its initial value in both the modes (i.e. FO and PRO) due to the concentration polarization on membrane. Only 10% decline in water flux was observed for the VUF-FO reactor. This showed a better consistency of water flux in the VUF-FO reactor. The reverse salt flux in the VUF-FO reactor was less than 85% compared to the H-shape reactor. Therefore, a novel designed reactor improved the overall performance of FO in terms of water flux and reverse salt flux.
Collapse
Affiliation(s)
- Asfak Patel
- Department of Chemical Engineering, S.V. National Institute of Technology Surat, Ichchhanath, Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India.
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, S.V. National Institute of Technology Surat, Ichchhanath, Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India.
| | - Alka Mungray
- Department of Chemical Engineering, S.V. National Institute of Technology Surat, Ichchhanath, Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India.
| |
Collapse
|
8
|
Ghamri W, Loulergue P, Petrinić I, Hélix-Nielsen C, Pontié M, Nasrallah N, Daoud K, Szymczyk A. Impact of sodium hypochlorite on rejection of non-steroidal anti-inflammatory drugs by biomimetic forward osmosis membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
D’Haese A, Bravo JCO, Harmsen D, Vanhaecke L, Verliefde AR, Jeison D, Cornelissen ER. Analysing organic micropollutant accumulation in closed loop FO–RO systems: A pilot plant study. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
|
11
|
Katibi KK, Yunos KF, Che Man H, Aris AZ, bin Mohd Nor MZ, binti Azis RS. Recent Advances in the Rejection of Endocrine-Disrupting Compounds from Water Using Membrane and Membrane Bioreactor Technologies: A Review. Polymers (Basel) 2021; 13:392. [PMID: 33513670 PMCID: PMC7865700 DOI: 10.3390/polym13030392] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Water is a critical resource necessary for life to be sustained, and its availability should be secured, appropriated, and easily obtainable. The continual detection of endocrine-disrupting chemicals (EDCs) (ng/L or µg/L) in water and wastewater has attracted critical concerns among the regulatory authorities and general public, due to its associated public health, ecological risks, and a threat to global water quality. Presently, there is a lack of stringent discharge standards regulating the emerging multiclass contaminants to obviate its possible undesirable impacts. The conventional treatment processes have reportedly ineffectual in eliminating the persistent EDCs pollutants, necessitating the researchers to develop alternative treatment methods. Occurrences of the EDCs and the attributed effects on humans and the environment are adequately reviewed. It indicated that comprehensive information on the recent advances in the rejection of EDCs via a novel membrane and membrane bioreactor (MBR) treatment techniques are still lacking. This paper critically studies and reports on recent advances in the membrane and MBR treatment methods for removing EDCs, fouling challenges, and its mitigation strategies. The removal mechanisms and the operating factors influencing the EDCs remediation were also examined. Membranes and MBR approaches have proven successful and viable to eliminate various EDCs contaminants.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria;
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Material Processing and Technology Laboratory (MPTL), Institute of Advance Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohd Zuhair bin Mohd Nor
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Rabaah Syahidah binti Azis
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
12
|
Kalafatakis S, Zarebska A, Lange L, Hélix-Nielsen C, Skiadas IV, Gavala HN. Biofouling Mitigation Approaches during Water Recovery from Fermented Broth via Forward Osmosis. MEMBRANES 2020; 10:membranes10110307. [PMID: 33121090 PMCID: PMC7693741 DOI: 10.3390/membranes10110307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022]
Abstract
Forward Osmosis (FO) is a promising technology that can offer sustainable solutions in the biorefinery wastewater and desalination fields, via low energy water recovery. However, microbial biomass and organic matter accumulation on membrane surfaces can hinder the water recovery and potentially lead to total membrane blockage. Biofouling development is a rather complex process and can be affected by several factors such as nutrient availability, chemical composition of the solutions, and hydrodynamic conditions. Therefore, operational parameters like cross-flow velocity and pH of the filtration solution have been proposed as effective biofouling mitigation strategies. Nevertheless, most of the studies have been conducted with the use of rather simple solutions. As a result, biofouling mitigation practices based on such studies might not be as effective when applying complex industrial mixtures. In the present study, the effect of cross-flow velocity, pH, and cell concentration of the feed solution was investigated, with the use of complex solutions during FO separation. Specifically, fermentation effluent and crude glycerol were used as a feed and draw solution, respectively, with the purpose of recirculating water by using FO alone. The effect of the abovementioned parameters on (i) ATP accumulation, (ii) organic foulant deposition, (iii) total water recovery, (iv) reverse glycerol flux, and (v) process butanol rejection has been studied. The main findings of the present study suggest that significant reduction of biofouling can be achieved as a combined effect of high-cross flow velocity and low feed solution pH. Furthermore, cell removal from the feed solution prior filtration may further assist the reduction of membrane blockage. These results may shed light on the challenging, but promising field of FO process dealing with complex industrial solutions.
Collapse
Affiliation(s)
- Stavros Kalafatakis
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads 229, 2800 Kgs. Lyngby, Denmark; (S.K.); (L.L.); (I.V.S.)
| | - Agata Zarebska
- Technical University of Denmark (DTU), Department of Environmental Engineering, Miljøvej 113, 2800 Kgs. Lyngby, Denmark; (A.Z.); (C.H.-N.)
| | - Lene Lange
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads 229, 2800 Kgs. Lyngby, Denmark; (S.K.); (L.L.); (I.V.S.)
| | - Claus Hélix-Nielsen
- Technical University of Denmark (DTU), Department of Environmental Engineering, Miljøvej 113, 2800 Kgs. Lyngby, Denmark; (A.Z.); (C.H.-N.)
| | - Ioannis V. Skiadas
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads 229, 2800 Kgs. Lyngby, Denmark; (S.K.); (L.L.); (I.V.S.)
| | - Hariklia N. Gavala
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads 229, 2800 Kgs. Lyngby, Denmark; (S.K.); (L.L.); (I.V.S.)
- Correspondence: or
| |
Collapse
|
13
|
Membrane Removal of Emerging Contaminants from Water: Which Kind of Membranes Should We Use? MEMBRANES 2020; 10:membranes10110305. [PMID: 33113828 PMCID: PMC7692316 DOI: 10.3390/membranes10110305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022]
Abstract
Membrane technologies are nowadays widely used; especially various types of filtration or reverse osmosis in households, desalination plants, pharmaceutical applications etc. Facing water pollution, they are also applied to eliminate emerging contaminants from water. Incomplete knowledge directs the composition of membranes towards more and more dense materials known for their higher selectivity compared to porous constituents. This paper evaluates advantages and disadvantages of well-known membrane materials that separate on the basis of particle size, usually exposed to a large amount of water, versus dense hydrophobic membranes with target transport of emerging contaminants through a selective barrier. In addition, the authors present several membrane processes employing the second type of membrane.
Collapse
|
14
|
Li C, Li H, Yang Y, Hou LA. Removal of pharmaceuticals by fouled forward osmosis membranes: Impact of DOM fractions, Ca 2+ and real water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139757. [PMID: 32516674 DOI: 10.1016/j.scitotenv.2020.139757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
This study systematically investigated the impact of dissolved organic matters (DOM) fractions, Ca2+, membrane orientation and real water matrix on the membrane fouling and the subsequent pharmaceutical retention in forward osmosis (FO). Ca2+ increased the removal of carbamazepine (CBZ) through steric effect, while it reduced sulfamethoxazole (SMZ) removal due to reduced electrostatic repulsion and enhanced external concentration polarization for three organic foulants. The study of operating mode showed that the pharmaceutical removal in pressure retarded osmosis (PRO) mode were lower than those in FO mode for both the baseline and HA fouling, which was attributed to the concentrative internal concentration polarization caused by long-term accumulation of pharmaceuticals or HA in support layer. In terms of the real water tests, the secondary effluent used as feed solution caused higher hydrophilicity and negative charge of fouled FO membrane, leading to increased removal of pharmaceuticals. Seawater used as draw solution also caused severe fouling in the support layer of FO with humic acid-like material as major foulants, increasing the removal of SMZ because of enhanced steric hindrance and electrostatic repulsion. However, the combined effects of increased adsorption and steric effect resulted in little change for the CBZ removal. This study gave implications on the practical application of FO process for pharmaceutical removal.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hangyu Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Xi'an High-Tech Institute, Xi'an 710025, China
| |
Collapse
|
15
|
Nikbakht Fini M, Madsen HT, Sørensen JL, Muff J. Moving from lab to pilot scale in forward osmosis for pesticides rejection using aquaporin membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117672] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Zhang Y, Mu T, Huang M, Chen G, Cai T, Chen H, Meng L, Luo X. Nanofiber composite forward osmosis (NCFO) membranes for enhanced antibiotics rejection: Fabrication, performance, mechanism, and simulation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117425] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Vinardell S, Astals S, Mata-Alvarez J, Dosta J. Techno-economic analysis of combining forward osmosis-reverse osmosis and anaerobic membrane bioreactor technologies for municipal wastewater treatment and water production. BIORESOURCE TECHNOLOGY 2020; 297:122395. [PMID: 31761630 DOI: 10.1016/j.biortech.2019.122395] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The economic feasibility of combining forward osmosis (FO), reverse osmosis (RO) and anaerobic membrane bioreactor (AnMBR) technologies for municipal wastewater treatment with energy and water production was analysed. FO was used to pre-concentrate the AnMBR influent, RO for draw solution regeneration and water production, and AnMBR for wastewater treatment and energy production. The minimum wastewater treatment cost was estimated at 0.81 € m-3, achieved when limiting the FO recovery to 50% in a closed-loop scheme. However, the cost increased to 1.01 and 1.27 € m-3 for FO recoveries of 80% and 90%, respectively. The fresh water production cost was estimated at 0.80 and 1.16 € m-3 for an open-loop scheme maximising water production and a closed-loop scheme, respectively. The low FO membrane fluxes were identified as a limiting factor and a sensitivity analysis revealed that FO membrane fluxes of 10 LMH would significantly improve the competitiveness of FO-RO + AnMBR technology.
Collapse
Affiliation(s)
- Sergi Vinardell
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain.
| | - Sergi Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Mata-Alvarez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Penabad-Peña L, Herrera-Morales J, Betancourt M, Nicolau E. Cellulose Acetate/P4VP- b-PEO Membranes for the Adsorption of Electron-Deficient Pharmaceutical Compounds. ACS OMEGA 2019; 4:22456-22463. [PMID: 31909328 PMCID: PMC6941198 DOI: 10.1021/acsomega.9b03098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 05/28/2023]
Abstract
The prevalence of pharmaceutical compounds in surface and groundwater presents a rising threat to human health. As such, the search for novel materials that serve to avoid their release into the environment or for the remediation once in the water effluent is of utmost importance. The present work describes the fabrication of a cellulose acetate membrane modified with the block copolymer poly(4-vinylpyridine-b-ethylene oxide) (P4VP-b-PEO) crafted for the specific targeting and adsorption of electron-deficient pharmaceuticals (EDPs). The EDPs under study were sulfamethoxazole, sulfadiazine, and omeprazole. The results as part of this work present a thorough characterization of the prepared membranes by FTIR, contact angle measurement, and SEM images. Moreover, results show that the adsorptive character of the membrane correlates with the relative electron deficiency and spatial orientation of the contaminant. Interestingly, the addition of nominal 1% P4VP-b-PEO to the cellulose matrix helps to increase the adsorption efficiency of the membranes by at least 2-fold in most cases. For the compounds studied, the prepared membrane has a higher efficiency toward omeprazole followed by sulfamethoxazole and sulfadiazine. This work may serve to inspire the design and fabrication of selective soft materials for the adsorption and remediation of contaminants of emerging concern.
Collapse
Affiliation(s)
- Laura Penabad-Peña
- Department
of Chemistry, University of Puerto Rico,
Río Piedras Campus, P.O. 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Jairo Herrera-Morales
- Department
of Chemistry, University of Puerto Rico,
Río Piedras Campus, P.O. 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Miguel Betancourt
- Department
of Chemistry, University of Puerto Rico,
Río Piedras Campus, P.O. 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Eduardo Nicolau
- Department
of Chemistry, University of Puerto Rico,
Río Piedras Campus, P.O. 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce
De Leon Avenue, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| |
Collapse
|
20
|
Melnikov S, Shkirskaya S. Transport properties of bilayer and multilayer surface-modified ion-exchange membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Zheng L, Price WE, Nghiem LD. Effects of fouling on separation performance by forward osmosis: the role of specific organic foulants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33758-33769. [PMID: 29766436 DOI: 10.1007/s11356-018-2277-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
In this study, forward osmosis (FO) membranes and fouling solutions were systematically characterized to elucidate the effects of organic fouling on the rejection of two pharmaceutically active compounds, namely, sulfamethoxazole and carbamazepine. Municipal wastewater resulted in a more severe flux decline compared to humic acid and sodium alginate fouling solutions. This result is consistent with the molecular weight distribution of these foulant solutions. Liquid chromatography with organic carbon detection analysis shows that municipal wastewater consists of mostly low molecular weight acids and neutrals, which produce a more compact cake layer on the membrane surface. By contrast, humic acid and sodium alginate consist of large molecular weight humic substances and biopolymers, respectively. The results also show that membrane fouling can significantly alter the membrane surface charge and hydrophobicity as well as the reverse salt flux. In particular, the reverse salt flux of a fouled membrane was significantly higher than that under clean conditions. Although the rejection of sulfamethoxazole and carbamazepine by FO membrane was high, a discernible impact of fouling on their rejection could still be observed. The results show that size exclusion is a major rejection mechanism of both sulfamethoxazole and carbamazepine. However, they respond to membrane fouling differently. Membrane fouling results in an increase in sulfamethoxazole rejection while carbamazepine rejection decreases due to membrane fouling.
Collapse
Affiliation(s)
- Lei Zheng
- Strategic Water Infrastructure Laboratory, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
22
|
Ly QV, Hu Y, Li J, Cho J, Hur J. Characteristics and influencing factors of organic fouling in forward osmosis operation for wastewater applications: A comprehensive review. ENVIRONMENT INTERNATIONAL 2019; 129:164-184. [PMID: 31128437 DOI: 10.1016/j.envint.2019.05.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Wastewater reuse is considered one of the most promising practices for the achievement of sustainable water management on a global scale. In the context of the safe reuse of water, membrane filtration is a competitive technique due to its superior efficiency in several processes. However, membrane fouling by organics is an inevitable challenge that is encountered during the practical application of membrane processes. The resolution of the membrane fouling challenge requires an in-depth understanding of many complex interactions between organic foulants and the membrane. In the last few decades, the forward osmosis (FO) membrane process, which exploits osmosis as a driving force, has emerged as an effective technology for water production with low energy consumption, thus leveraging the water-energy nexus. However, their successful application is severely hampered by membrane fouling, which is caused by such complex fouling mechanisms as cake enhanced osmotic pressure (CEOP), reverse salt diffusion (RSD), internal, and external concentration polarization as well as by the traditional fouling processes encompassing colloids, microbial (biofouling), inorganic, and organic fouling. Of these fouling types, the fouling potential of organic matter in FO has not been given sufficient attention, in particular, when FO is applied to wastewater treatment. This paper aims to provide a comprehensive overview of FO membrane fouling for wastewater applications with a special focus on the identification of the major factors that lead to the unique properties of organic fouling in this filtration process. Based on the critical assessment of organic fouling formation and the governing mechanisms, proposals were advanced for future research aimed at the mitigation of FO membrane fouling to enhance process efficiency in wastewater applications.
Collapse
Affiliation(s)
- Quang Viet Ly
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea; State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Jinwoo Cho
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
23
|
Bao X, Wu Q, Shi W, Wang W, Zhu Z, Zhang Z, Zhang R, Zhang B, Guo Y, Cui F. Dendritic amine sheltered membrane for simultaneous ammonia selection and fouling mitigation in forward osmosis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Bao X, Wu Q, Shi W, Wang W, Yu H, Zhu Z, Zhang X, Zhang Z, Zhang R, Cui F. Polyamidoamine dendrimer grafted forward osmosis membrane with superior ammonia selectivity and robust antifouling capacity for domestic wastewater concentration. WATER RESEARCH 2019; 153:1-10. [PMID: 30684821 DOI: 10.1016/j.watres.2018.12.067] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Developing a forward osmosis (FO) membrane with superior ammonia selectivity and robust antifouling performance is important for treating domestic wastewater (DW) but challenging due to the similar polarities and hydraulic radii of NH4+ and water molecules. Herein, we investigated the feasibility of using polyamidoamine (PAMAM) dendrimer to simultaneously enhance the ammonia rejection rate and antifouling capacity of the thin-film composite (TFC) FO membrane. PAMAM dendrimer with abundant, easily-protonated, terminal amine groups was grafted on TFC-FO membrane surface via covalent bonds, which inspired the TFC-FO membrane surface with appreciable Zeta potential (isoelectric point: pH = 5.5) and outstanding hydrophilicity (water contact angle: 39.83 ± 0.57°). Benefiting from the electrostatic repulsion between the protonated amine layer and NH4+-N as well as the concentration-induced diffusion resistance, the introduction of PAMAM dendrimer endowed the grafted membrane with a superior NH4+-N rejection rate of 98.23% and a significantly reduced the reverse solute flux when using NH4Cl solutions as feed solution. Meanwhile, the perfect balance between the electrostatic repulsion to positively-charged micromoleculer ions (metal ions and NH4+-N) and the electrostatic attraction to negatively-charged macromolecular organic foulants together with the hydrophilic nature of amine groups facilitated the enhancement of the grafted membranes in antifouling capacity and hence the NH4+-N selectivity (rejection rate of 91.81%) during the concentration of raw DW. The overall approach of this work opens up a frontier for preparation of ammonia-selective and antifouling TFC-FO membrane.
Collapse
Affiliation(s)
- Xian Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wenxin Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China; College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Huarong Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhigao Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xinyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiqiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ruijun Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Fuyi Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China; College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
25
|
A Review of Fouling Mechanisms, Control Strategies and Real-Time Fouling Monitoring Techniques in Forward Osmosis. WATER 2019. [DOI: 10.3390/w11040695] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Forward osmosis has gained tremendous attention in the field of desalination and wastewater treatment. However, membrane fouling is an inevitable issue. Membrane fouling leads to flux decline, can cause operational problems and can result in negative consequences that can damage the membrane. Hereby, we attempt to review the different types of fouling in forward osmosis, cleaning and control strategies for fouling mitigation, and the impact of membrane hydrophilicity, charge and morphology on fouling. The fundamentals of biofouling, organic, colloidal and inorganic fouling are discussed with a focus on recent studies. We also review some of the in-situ real-time online fouling monitoring technologies for real-time fouling monitoring that can be applicable to future research on forward osmosis fouling studies. A brief discussion on critical flux and the coupled effects of fouling and concentration polarization is also provided.
Collapse
|
26
|
Blandin G, Rosselló B, Monsalvo VM, Batlle-Vilanova P, Viñas JM, Rogalla F, Comas J. Volatile fatty acids concentration in real wastewater by forward osmosis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Insights into simultaneous ammonia-selective and anti-fouling mechanism over forward osmosis membrane for resource recovery from domestic wastewater. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Jang D, Jeong S, Jang A, Kang S. Relating solute properties of contaminants of emerging concern and their rejection by forward osmosis membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:673-678. [PMID: 29803038 DOI: 10.1016/j.scitotenv.2018.05.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
To elucidate the transport of emerging contaminants (CECs) in forward osmosis (FO) membrane process according to their solute properties, the rejections of CECs with various molecular weight, octanol/water partition coefficient (log Kow), and dissociation constant (pKa) were investigated. Among 12 selected CECs, negatively charged CECs exhibited the highest rejection efficiency than neutral or positively charged CECs due to the electrostatic repulsion between negatively charged CECs and membrane surfaces as well as diffusional hindrance by reversely transported salts from draw stream. The statistical analysis showed that the molecular weight was strongly correlated with the rejection of neutral CECs by size exclusion. Moreover, the correlation between adsorption and log Kow value of neutral CECs was observed due to the hydrophobic interaction. Positively charged CECs exhibited higher adsorption, but lower rejection than the negatively charged CECs due to the locally increased concentration by adsorption, and subsequent migration in FO membrane.
Collapse
Affiliation(s)
- Duksoo Jang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Sanghyun Jeong
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
29
|
Sauchelli M, Pellegrino G, D'Haese A, Rodríguez-Roda I, Gernjak W. Transport of trace organic compounds through novel forward osmosis membranes: Role of membrane properties and the draw solution. WATER RESEARCH 2018; 141:65-73. [PMID: 29778066 DOI: 10.1016/j.watres.2018.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/16/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Forward osmosis (FO) offers to be a very promising technology for the removal of trace organic compounds (TrOCs) from contaminated wastewater, and with the recent developments in FO membranes, the effect of both a higher water flux and reverse salt flux on the rejection of TrOCs needs to be explored. In this study two novel thin-film composite (TFC) membranes with greater water permeability and selectivity than the benchmark cellulose tri-acetate (CTA) membrane were compared at bench-scale in terms of TrOCs permeability. By probing the solute-membrane interactions that dictate the transport of TrOCs through the two membranes in the absence and presence of a draw solution, several conclusions were drawn. Firstly, steric hindrance is the main TrOCs transport -limiting mechanism through TFC membranes unless the negative membrane surface charge is significant, in which case, electrostatic interactions can dominate over steric hindrance. Secondly, the increase in ionic strength induced by the draw solution in the vicinity of and perhaps inside the membrane seems to favour the rejection of TrOCs by "shrinking" the membrane pores or by "shielding" the negative surface charge. Lastly, during FO operation, solute concentration polarisation becomes detrimental when working at high water fluxes, whereas the reverse solute flux has no direct impact on the transport of TrOCs through the membrane.
Collapse
Affiliation(s)
- Marc Sauchelli
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, E17071 Girona, Spain
| | - Giuseppe Pellegrino
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Arnout D'Haese
- Department of Applied Analytical and Physical Chemistry, University of Ghent, Coupure Links 653, B-9000 Ghent, Belgium
| | - Ignasi Rodríguez-Roda
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, E17071 Girona, Spain
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
30
|
Kim J, Kim J, Kim J, Hong S. Osmotically enhanced dewatering-reverse osmosis (OED-RO) hybrid system: Implications for shale gas produced water treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Engelhardt S, Sadek A, Duirk S. Rejection of trace organic water contaminants by an Aquaporin-based biomimetic hollow fiber membrane. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Singh N, Petrinic I, Hélix-Nielsen C, Basu S, Balakrishnan M. Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes. WATER RESEARCH 2018; 130:271-280. [PMID: 29241113 DOI: 10.1016/j.watres.2017.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Treatment of sugarcane molasses distillery wastewater is challenging due to the presence of complex phenolic compounds (melanoidins and polyphenols) having antioxidant properties. Due to zero liquid discharge regulations, Indian distilleries continue to explore effective treatment options. This work examines the concentration of distillery wastewater by forward osmosis (FO) using aquaporin biomimetic membranes and magnesium chloride hexahydrate (MgCl2.6H2O) as draw solution. The operational parameters viz. feed solution and draw solution flow rate and draw solution concentration were optimized using 10% v/v melanoidins model feed solution. This was followed by trials with distillery wastewater. Under the conditions of this work, feed and draw flow rates of 1 L/min and draw solution concentration of 2M MgCl2.6H2O for melanoidins model solution and 3M MgCl2.6H2O for distillery wastewater were optimal for maximum rejection. Rejection of 90% melanoidins, 96% antioxidant activity and 84% COD was obtained with melanoidins model feed, with a corresponding water flux of 6.3 L/m2h. With as-received distillery wastewater, the rejection was similar (85-90%) to the melanoidins solution, but the water flux was lower (2.8 L/m2h). Water recovery from distillery wastewater over 24 h study period was higher with FO (70%) than reported for RO (35-45%). Repeated use of the FO membrane over five consecutive 24 h cycles with fresh feed and draw solutions and periodic cleaning showed consistent average water flux and rejection of the feed constituents.
Collapse
Affiliation(s)
- N Singh
- Department of Energy and Environment, TERI University, Vasant Kunj, New Delhi, 110070, India
| | - I Petrinic
- University of Maribor, Faculty for Chemistry and Chemical Engineering, 2000, Maribor, Slovenia
| | - C Hélix-Nielsen
- University of Maribor, Faculty for Chemistry and Chemical Engineering, 2000, Maribor, Slovenia; Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 114, DK2800, Kgs. Lyngby, Denmark
| | - S Basu
- The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India.
| | - M Balakrishnan
- Department of Energy and Environment, TERI University, Vasant Kunj, New Delhi, 110070, India; The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India
| |
Collapse
|
33
|
Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: Principles, impacts and future directions. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Zhang B, Song X, Nghiem LD, Li G, Luo W. Osmotic membrane bioreactors for wastewater reuse: Performance comparison between cellulose triacetate and polyamide thin film composite membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Forward osmosis as a platform for resource recovery from municipal wastewater - A critical assessment of the literature. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.054] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Luo W, Phan HV, Xie M, Hai FI, Price WE, Elimelech M, Nghiem LD. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal. WATER RESEARCH 2017; 109:122-134. [PMID: 27883917 DOI: 10.1016/j.watres.2016.11.036] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
This study systematically compares the performance of osmotic membrane bioreactor - reverse osmosis (OMBR-RO) and conventional membrane bioreactor - reverse osmosis (MBR-RO) for advanced wastewater treatment and water reuse. Both systems achieved effective removal of bulk organic matter and nutrients, and almost complete removal of all 31 trace organic contaminants investigated. They both could produce high quality water suitable for recycling applications. During OMBR-RO operation, salinity build-up in the bioreactor reduced the water flux and negatively impacted the system biological treatment by altering biomass characteristics and microbial community structure. In addition, the elevated salinity also increased soluble microbial products and extracellular polymeric substances in the mixed liquor, which induced fouling of the forward osmosis (FO) membrane. Nevertheless, microbial analysis indicated that salinity stress resulted in the development of halotolerant bacteria, consequently sustaining biodegradation in the OMBR system. By contrast, biological performance was relatively stable throughout conventional MBR-RO operation. Compared to conventional MBR-RO, the FO process effectively prevented foulants from permeating into the draw solution, thereby significantly reducing fouling of the downstream RO membrane in OMBR-RO operation. Accumulation of organic matter, including humic- and protein-like substances, as well as inorganic salts in the MBR effluent resulted in severe RO membrane fouling in conventional MBR-RO operation.
Collapse
Affiliation(s)
- Wenhai Luo
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hop V Phan
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
37
|
A refined draw solute flux model in forward osmosis: Theoretical considerations and experimental validation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.08.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Luo W, Hai FI, Price WE, Elimelech M, Nghiem LD. Evaluating ionic organic draw solutes in osmotic membrane bioreactors for water reuse. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Xie M, Gray SR. Transport and accumulation of organic matter in forward osmosis-reverse osmosis hybrid system: Mechanism and implications. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.04.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Efficiently Combining Water Reuse and Desalination through Forward Osmosis-Reverse Osmosis (FO-RO) Hybrids: A Critical Review. MEMBRANES 2016; 6:membranes6030037. [PMID: 27376337 PMCID: PMC5041028 DOI: 10.3390/membranes6030037] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022]
Abstract
Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling.
Collapse
|
41
|
Life-cycle assessment of two potable water reuse technologies: MF/RO/UV–AOP treatment and hybrid osmotic membrane bioreactors. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.01.045] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Xie M, Shon HK, Gray SR, Elimelech M. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. WATER RESEARCH 2016; 89:210-21. [PMID: 26674549 DOI: 10.1016/j.watres.2015.11.045] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 05/26/2023]
Abstract
Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities.
Collapse
Affiliation(s)
- Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia.
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology, Sydney, PO Box 129, Broadway, 2007 New South Wales, Australia
| | - Stephen R Gray
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| |
Collapse
|
43
|
She Q, Wang R, Fane AG, Tang CY. Membrane fouling in osmotically driven membrane processes: A review. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.10.040] [Citation(s) in RCA: 525] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Luo W, Hai FI, Price WE, Guo W, Ngo HH, Yamamoto K, Nghiem LD. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system. BIORESOURCE TECHNOLOGY 2016; 200:297-304. [PMID: 26499404 DOI: 10.1016/j.biortech.2015.10.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water.
Collapse
Affiliation(s)
- Wenhai Luo
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hao H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kazuo Yamamoto
- Environmental Science Centre, University of Tokyo, Tokyo 113-0033, Japan
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
45
|
A comprehensive review of hybrid forward osmosis systems: Performance, applications and future prospects. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.09.041] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Liu P, Zhang H, Feng Y, Shen C, Yang F. Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2015; 296:248-255. [PMID: 25966924 DOI: 10.1016/j.jhazmat.2015.04.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/26/2015] [Accepted: 04/16/2015] [Indexed: 05/10/2023]
Abstract
During the rejection of trace pharmaceutical contaminants from wastewater by forward osmosis (FO), disposal of the FO concentrate was still an unsolved issue. In this study, by integrating the advantages of forward osmosis and electrochemical oxidation, a forward osmosis process with the function of electrochemical oxidation (FOwEO) was established for the first time to achieve the aim of rejection of trace antibiotics from wastewater and treatment of the concentrate at the same time. Results demonstrated that FOwEO (current density J=1 mA cm(-2)) exhibited excellent rejections of antibiotics (>98%) regardless of different operation conditions, and above all, antibiotics in the concentrate were well degraded (>99%) at the end of experiment (after 3h). A synergetic effect between forward osmosis and electrochemical oxidation was observed in FOwEO, which lies in that antibiotic rejections by FO were enhanced due to the degradation of antibiotics in the concentrate, while the electrochemical oxidation capacity was improved in the FOwEO channel, of which good mass transfer and the assist of indirect oxidation owing to the reverse NaCl from draw solution were supposed to be the mechanism. This study demonstrated that the FOwEO has the capability to thoroughly remove trace antibiotics from wastewater.
Collapse
Affiliation(s)
- Pengxiao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China; Beijing Aerospace Institute for Metrology and Measurement Technology, China Academy of Launch Vehicle Technology, Beijing 100076, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Chao Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
47
|
Development of anaerobic osmotic membrane bioreactor for low-strength wastewater treatment at mesophilic condition. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.04.032] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Madsen HT, Bajraktari N, Hélix-Nielsen C, Van der Bruggen B, Søgaard EG. Use of biomimetic forward osmosis membrane for trace organics removal. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.11.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Kong FX, Yang HW, Wu YQ, Wang XM, Xie YF. Rejection of pharmaceuticals during forward osmosis and prediction by using the solution–diffusion model. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.11.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Holloway RW, Regnery J, Nghiem LD, Cath TY. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10859-10868. [PMID: 25113310 DOI: 10.1021/es501051b] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.
Collapse
Affiliation(s)
- Ryan W Holloway
- Colorado School of Mines, Golden, Colorado 80401, United States
| | | | | | | |
Collapse
|