1
|
Arden S, Anderson M, Blue J, Ma XC, Jahne M, Garland J. Towards the definition of treatment wetland pathogen log reduction credits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177613. [PMID: 39561901 PMCID: PMC11907694 DOI: 10.1016/j.scitotenv.2024.177613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Treatment wetlands have the potential to treat a range of water and wastewater pollutants while using less energy and chemicals than conventional treatment processes, making them a viable option for improving the sustainability of water treatment systems. However, water treatment systems used for water reuse must also be protective of human health. To date, the human health protection benefits of treatment wetlands have not been rigorously quantified in the context of current human health risk frameworks. This study presents a comprehensive review of the ability of treatment wetlands to provide reliable pathogen reduction to meet risk-based treatment targets for water reuse. Following an existing protocol for establishing log reduction credits, we systematically reviewed the documented pathogen reduction performance of major treatment wetland types in terms of core components of that protocol, including pathogen removal mechanisms, identification of target pathogens, and influencing factors. Results of the review point to design and operational conditions under which treatment wetlands could likely be credited with a log reduction value of approximately 0.5 or greater for virus, protozoa and bacteria. These conditions are specified in terms of preliminary operating envelopes, or design and operational parameter windows associated with optimal performance. Important caveats are noted, as are specific and tractable recommendations for future research and data collection efforts that would help refine operating envelopes and define log reduction credits for these promising water treatment technologies. As a resource to other practitioners, we have also included the detailed performance characterization database as Supplemental Information. This database includes a detailed tracking of log reduction values as well as design and operational parameters reported in the literature.
Collapse
Affiliation(s)
- Sam Arden
- Eastern Research Group, Inc. (ERG), Lexington, MA, USA
| | | | - Julie Blue
- Eastern Research Group, Inc. (ERG), Lexington, MA, USA
| | - Xin Cissy Ma
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, USA
| | - Michael Jahne
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, USA.
| | - Jay Garland
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, USA
| |
Collapse
|
2
|
Somayya R, Ahmad K. Prevalence of Resistance Genes Among Multidrug-Resistant Gram-Negative Bacteria Isolated from Waters of Rivers Swat and Kabul, Pakistan. Foodborne Pathog Dis 2024. [PMID: 39435695 DOI: 10.1089/fpd.2023.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The waters of rivers Swat and Kabul are the main water source for domestic and irrigation purposes in the northwestern part of Pakistan. However, this water has been contaminated due to human activities. This study aimed to analyze the water of these rivers for occurrence of antibiotic resistance genes among Gram-negative bacteria. Samples were collected from 10 different locations of these rivers. The samples were processed for the isolation of Gram-negative bacteria. Isolated bacteria were checked against 12 different antibiotics for susceptibility. The isolates were also analyzed for the presence of seven antibiotic resistance genes. A total of 50 bacterial isolates were recovered that belonged to five different bacterial genera, that is, Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa, Raoultella terrigena (Klebsiella terrigena), and Pseudomonas fluorescens. Antibiotic resistance pattern was cefixime 72%, cephalothin 72%, ampicillin 68%, nalidixic acid 68%, kanamycin 54%, streptomycin 42%, sulfamethoxazole-trimethoprim 28%, chloramphenicol 28%, meropenem 8%, gentamicin 8%, amikacin 2%, and tobramycin 2%. The prevalence of bla-TEM gene was 72% (n = 36), aadA gene 34% (n = 17), sul gene 32% (n = 16), bla-CTXM gene 12% (n = 6), int gene 66% (n = 33), and int1 gene 6% (n = 3). This information highlights the need for controlling and monitoring the release of domestic wastes to rivers.
Collapse
Affiliation(s)
- Ramla Somayya
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Kafeel Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
3
|
Zhang L, Yan C, Wen C, Yu Z. Influencing factors of antibiotic resistance genes removal in constructed wetlands: A meta-analysis assisted by multivariate statistical methods. CHEMOSPHERE 2023; 315:137755. [PMID: 36608881 DOI: 10.1016/j.chemosphere.2023.137755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In order to control antibiotic resistance genes (ARGs) diffusion in constructed wetlands, it is critical to explore the main factors influencing ARGs removal and understand its mechanism. Despite the fact that numerous studies have been conducted to determine the factors influencing ARGs removal by constructed wetlands in recent years, attempts to use published data and incorporate them into a comprehensive comparison and analysis are still limited. A framework for literature collection, data extraction and statistical analysis (LDS) was constructed in this study. The main factors influencing antibiotics and ARGs removal by constructed wetlands were identified using this framework. The results showed that nutrients, types of constructed wetlands and hydraulic loading were the principal factors influencing the removal of most antibiotics. The principal factors influencing the most ARGs removal were mobile genetic elements, plants, volume of constructed wetlands and running time. After purification by constructed wetlands, the risk coefficient of antibiotics decreased significantly, while the relative abundance of most ARGs did not change significantly. The analysis results of linear mixed model showed that the relationship between antibiotics and ARGs in effluent was closer than that in influent. LDS framework provides a new platform for the study of influencing factors of pollutant removal based on data mining.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Ce Wen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyue Yu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Huang L, Bao J, Zhao F, Liang Y, Chen Y. New insight for purifying polluted river water using the combination of large-scale rotating biological contactors and integrated constructed wetlands in the cold season. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116433. [PMID: 36352732 DOI: 10.1016/j.jenvman.2022.116433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Ecological treatment technologies, applied to deal with polluted river water in the low temperature season, remain limited. In this study, a new insight was put forward for purifying polluted river water using a combination system (CS) of large-scale rotating biological contactors (RBCs) and integrated constructed wetlands in autumn and winter. The treatment performance, average removal contribution (RC), nitrification and denitrification rates, microbial community structure, and ecosystem service value were considered to estimate the combination system. Results revealed that the average removal efficiencies of ammonium (NH4+-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) reached 93.9%, 20.8%, 36.5%, and 37.1%, respectively. The combination system showed excellent removal efficiency of NH4+-N regardless of the effect of low temperature. The maximum values of nitrification and denitrification rates were 59.57 g N/(m3·d) and 0.78 g N/(m2·d), respectively. Considerable differences in bacterial community diversity, richness and relative abundance of functional microbes were observed in the main treatment units, resulting in different average RC to pollutants. The unit capital cost of CS purifying polluted river water was 260 USD/m3 and the operation and maintenance cost was 0.144 million USD/yr. Meanwhile, the ecosystem service value of the CS was 0.334 million USD in autumn and winter. CS not only possessed excellent pollutant purifying efficiencies, but also achieved high ecological service value in the cold season.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| | - Jun'an Bao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Fang Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| |
Collapse
|
5
|
Zhang L, Yan C, Wang D, Zhen Z. Spatiotemporal dynamic changes of antibiotic resistance genes in constructed wetlands and associated influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119176. [PMID: 35306086 DOI: 10.1016/j.envpol.2022.119176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
A better understanding of the spatiotemporal dynamics and influencing factors of sulfonamide antibiotic resistance genes (ARGs) distribution in subsurface flow constructed wetlands is essential to improve the ARGs removal efficiency. The spatiotemporal dynamics of sulfonamide ARGs were explored in the vertical upflow subsurface flow constructed wetland (VUSFCW). The results showed that the absolute abundance of ARGs presented a trend of bottom layer > middle layer > top layer. The relative abundance of ARGs decreased significantly from the bottom layer to the middle layer, but increased in the top layer. The bottom layer was the main stage to remove ARGs. The absolute abundance of ARGs at each point in summer was significantly higher than that in winter. Based on the spatiotemporal distribution of ARGs, the internal mechanism of ARGs dynamic change was explored by the partial least square path analysis model. The results showed that physical-chemical factors, microorganisms and antibiotics indirectly affected the spatiotemporal distribution of ARGs mainly through mobile genetic elements. The indirect influence coefficients of physical-chemical factors, microorganisms and antibiotics on the spatiotemporal distribution of ARGs were 0.505, 0.221 and 0.98 respectively. The direct influence coefficient of MGEs on the spatiotemporal distribution of ARGs was 0.895. The results of network analysis showed that the potential host species of ARGs in summer were more abundant than those in winter. The selection mode of sulfonamide ARGs to potential hosts was nonspecific. There is a risk of sulfonamide ARGs infecting pathogens in VUSFCW. Fortunately, VUSFCW has proven effective in reducing the absolute abundance of ARGs and the potential risk of pathogens carrying ARGs. These findings provide a model simulation and theoretical basis for effectively reducing the threat of ARGs.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Dapeng Wang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
6
|
García-Prieto JC, Núñez-Núñez CM, Proal-Nájera JB, García-Roig M. Study of coliforms and Clostridium bacteria inactivation in wastewaters by a pilot photolysis process and by the maturation lagoons of a low-cost nature-based WWTP. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35484-35499. [PMID: 35060052 PMCID: PMC9076734 DOI: 10.1007/s11356-021-18184-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The inactivation processes of coliform bacteria (total and fecal) and sulphito-reducing Clostridium bacteria (vegetative species and spores) in water maturation lagoon of a low-cost nature-based wastewater treatment plant using constructed wetlands and through processes of photolysis in a pilot photoreactor have been comparatively studied. The different inactivation mechanisms by photolysis of these bacteria have been studied following the criteria of different statistical and kinetic models. Clostridium disinfection treatments fit models in which two types of bacteria populations coexist, one sensitive (vegetative species) and the other (spores) resistant to the treatment, the sensitive one (94%) with an inactivation rate of k = 0.24 ± 0.07 min-1 and the resistant one (6%) with k = 0.11 ± 0.05 min-1. Total coliform photolytic disinfection also shows two populations with different physiological state. The time required to reduce the first logarithmic decimal cycle of the different types of bacteria (physiological states) are δ1 = 4.2 ± 0.9 and δ2 = 8.3 ± 1.1 min, respectively. For fecal coliform photolytic disinfection, only bacteria population, with k = 1.15 ± 0.19 min-1, is found. The results obtained confirm the photolytic disinfection processes and maturation lagoon are effective systems for Clostridia bacteria removal after water treatment by nature-based systems. Total removal of coliform bacteria is not achieved by maturation lagoons, but their reduction is significant using low doses of cumulative radiation.
Collapse
Affiliation(s)
- Juan Carlos García-Prieto
- Centro de Investigación y Desarrollo Tecnológico del Agua (CIDTA), Universidad de Salamanca, Campus Miguel de Unamuno, Facultad de Farmacia, Campo Charro s/n, 37080 Salamanca, Spain
| | - Cynthia Manuela Núñez-Núñez
- CIIDIR–Unidad Durango, Instituto Politécnico Nacional, Sigma 119, Fracc. 20 de Nov. II, 34220 Durango, Dgo Mexico
| | - José Bernardo Proal-Nájera
- CIIDIR–Unidad Durango, Instituto Politécnico Nacional, Sigma 119, Fracc. 20 de Nov. II, 34220 Durango, Dgo Mexico
| | - Manuel García-Roig
- Centro de Investigación y Desarrollo Tecnológico del Agua (CIDTA), Universidad de Salamanca, Campus Miguel de Unamuno, Facultad de Farmacia, Campo Charro s/n, 37080 Salamanca, Spain
| |
Collapse
|
7
|
Hossain MS, Ali S, Hossain M, Uddin SZ, Moniruzzaman M, Islam MR, Shohael AM, Islam MS, Ananya TH, Rahman MM, Rahman MA, Worth M, Mondal D, Mahmud ZH. ESBL Producing Escherichia coli in Faecal Sludge Treatment Plants: An Invisible Threat to Public Health in Rohingya Camps, Cox's Bazar, Bangladesh. Front Public Health 2022; 9:783019. [PMID: 34976932 PMCID: PMC8714839 DOI: 10.3389/fpubh.2021.783019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction: Human faecal sludge contains diverse harmful microorganisms, making it hazardous to the environment and public health if it is discharged untreated. Faecal sludge is one of the major sources of E. coli that can produce extended-spectrum β-lactamases (ESBLs). Objective: This study aimed to investigate the prevalence and molecular characterization of ESBL-producing E. coli in faecal sludge samples collected from faecal sludge treatment plants (FSTPs) in Rohingya camps, Bangladesh. Methods: ESBL producing E. coli were screened by cultural as well as molecular methods and further characterized for their major ESBL genes, plasmid profiles, pathotypes, antibiotic resistance patterns, conjugation ability, and genetic similarity. Results: Of 296 isolates, 180 were phenotypically positive for ESBL. All the isolates, except one, contained at least one ESBL gene that was tested (blaCTX−M−1, blaCTX−M−2, blaCTX−M−8, blaCTX−M−9, blaCTX−M−15, blaCTX−M−25, blaTEM, and blaSHV). From plasmid profiling, it was observed that plasmids of 1–211 MDa were found in 84% (151/180) of the isolates. Besides, 13% (24/180) of the isolates possessed diarrhoeagenic virulence genes. From the remaining isolates, around 51% (79/156) harbored at least one virulence gene that is associated with the extraintestinal pathogenicity of E. coli. Moreover, 4% (3/156) of the isolates were detected to be potential extraintestinal pathogenic E. coli (ExPEC) strains. Additionally, all the diarrhoeagenic and ExPEC strains showed resistance to three or more antibiotic groups which indicate their multidrug-resistant potential. ERIC-PCR differentiated these pathogenic isolates into seven clusters. In addition to this, 16 out of 35 tested isolates transferred plasmids of 32–112 MDa to E. coli J53 recipient strain. Conclusion: The present study implies that the faecal sludge samples examined here could be a potential origin for spreading MDR pathogenic ESBL-producing E. coli. The exposure of Rohingya individuals, living in overcrowded camps, to these organisms poses a severe threat to their health.
Collapse
Affiliation(s)
- Md Sakib Hossain
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Sobur Ali
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Monir Hossain
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - M Moniruzzaman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | | | - Md Shafiqul Islam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Md Mominur Rahman
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | | | - Martin Worth
- WASH Section, United Nations Children's Fund, Dhaka, Bangladesh
| | - Dinesh Mondal
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | |
Collapse
|
8
|
State-of-the-Art Review on the Application of Membrane Bioreactors for Molecular Micro-Contaminant Removal from Aquatic Environment. MEMBRANES 2022; 12:membranes12040429. [PMID: 35448399 PMCID: PMC9032214 DOI: 10.3390/membranes12040429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022]
Abstract
In recent years, the emergence of disparate micro-contaminants in aquatic environments such as water/wastewater sources has eventuated in serious concerns about humans’ health all over the world. Membrane bioreactor (MBR) is considered a noteworthy membrane-based technology, and has been recently of great interest for the removal micro-contaminants. The prominent objective of this review paper is to provide a state-of-the-art review on the potential utilization of MBRs in the field of wastewater treatment and micro-contaminant removal from aquatic/non-aquatic environments. Moreover, the operational advantages of MBRs compared to other traditional technologies in removing disparate sorts of micro-contaminants are discussed to study the ways to increase the sustainability of a clean water supplement. Additionally, common types of micro-contaminants in water/wastewater sources are introduced and their potential detriments on humans’ well-being are presented to inform expert readers about the necessity of micro-contaminant removal. Eventually, operational challenges towards the industrial application of MBRs are presented and the authors discuss feasible future perspectives and suitable solutions to overcome these challenges.
Collapse
|
9
|
Alufasi R, Parawira W, Stefanakis AI, Lebea P, Chakauya E, Chingwaru W. Internalisation of Salmonella spp. by Typha latifolia and Cyperus papyrus in vitro and implications for pathogen removal in Constructed Wetlands. ENVIRONMENTAL TECHNOLOGY 2022; 43:949-961. [PMID: 32795219 DOI: 10.1080/09593330.2020.1811395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
ABSTRACTFreshwater contamination by enteric pathogens is implicated in the high frequency of diarrhoeal diseases in low to middle income countries, typically due to poor wastewater management. Constructed Wetlands are a cost-effective and sustainable alternative to conventional/mechanical treatment technologies, but the pathogen removal mechanisms in Constructed Wetlands are not fully understood. This study investigated for the first time the internalisation of Salmonella spp. by Typha latifolia and Cyperus papyrus in hydroponic microcosms. Presence of Salmonella spp. within roots, rhizomes and shoots was assayed using agar-based methods over a period of 12 days. Concentration of Salmonella spp. in growth media showed 2.7 and 4.8 log unit reduction with T. latifolia and C. papyrus, respectively, and 1.8 and 6.0 log unit in unplanted units. Salmonella spp. was recovered from root and rhizome tissues of T. latifolia (up to 4.4 logCFU/g) and C. papyrus (up to 3.4 logCFU/g), and the bacteria were highly concentrated in the epidermis and cortex. However, Salmonella spp. was not detected in the stems and leaves of the two plant species. The present study demonstrates for the first time that these macrophytes internalise cells of Salmonella spp., which could be one pathogen removal mechanism employed by wetland plants.
Collapse
Affiliation(s)
- Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, Bindura, Zimbabwe
| | - Wilson Parawira
- Biological Sciences Department, Bindura University of Science Education, Bindura, Zimbabwe
| | | | | | - Ereck Chakauya
- AUDA-NEPAD Southern Africa Network for Biosciences (SANBio) and Council for Scientific and Industrial Research (CSIR) Advanced Agriculture and Food, Pretoria, South Africa
| | - Walter Chingwaru
- Biological Sciences Department, Bindura University of Science Education, Bindura, Zimbabwe
| |
Collapse
|
10
|
Hazra M, Durso LM. Performance Efficiency of Conventional Treatment Plants and Constructed Wetlands towards Reduction of Antibiotic Resistance. Antibiotics (Basel) 2022; 11:114. [PMID: 35052991 PMCID: PMC8773441 DOI: 10.3390/antibiotics11010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022] Open
Abstract
Domestic and industrial wastewater discharges harbor rich bacterial communities, including both pathogenic and commensal organisms that are antibiotic-resistant (AR). AR pathogens pose a potential threat to human and animal health. In wastewater treatment plants (WWTP), bacteria encounter environments suitable for horizontal gene transfer, providing an opportunity for bacterial cells to acquire new antibiotic-resistant genes. With many entry points to environmental components, especially water and soil, WWTPs are considered a critical control point for antibiotic resistance. The primary and secondary units of conventional WWTPs are not designed for the reduction of resistant microbes. Constructed wetlands (CWs) are viable wastewater treatment options with the potential for mitigating AR bacteria, their genes, pathogens, and general pollutants. Encouraging performance for the removal of AR (2-4 logs) has highlighted the applicability of CW on fields. Their low cost of construction, operation and maintenance makes them well suited for applications across the globe, especially in developing and low-income countries. The present review highlights a better understanding of the performance efficiency of conventional treatment plants and CWs for the elimination/reduction of AR from wastewater. They are viable alternatives that can be used for secondary/tertiary treatment or effluent polishing in combination with WWTP or in a decentralized manner.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Lisa M. Durso
- Agroecosystem Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE 68583, USA;
| |
Collapse
|
11
|
Extended Spectrum Beta-Lactamase Escherichia coli in River Waters Collected from Two Cities in Ghana, 2018-2020. Trop Med Infect Dis 2021; 6:tropicalmed6020105. [PMID: 34203078 PMCID: PMC8293421 DOI: 10.3390/tropicalmed6020105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Infections by Extended-Spectrum Beta-Lactamase producing Escherichia coli (ESBL-Ec) are on the increase in Ghana, but the level of environmental contamination with this organism, which may contribute to growing Antimicrobial Resistance (AMR), is unknown. Using the WHO OneHealth Tricycle Protocol, we investigated the contamination of E. coli (Ec) and ESBL-Ec in two rivers in Ghana (Odaw in Accra and Okurudu in Kasoa) that receive effluents from human and animal wastewater hotspots over a 12-month period. Concentrations of Ec, ESBL-Ec and percent ESBL-Ec/Ec were determined per 100 mL sample. Of 96 samples, 94 (98%) were positive for ESBL-Ec. concentrations per 100 mL (MCs100) of ESBL-Ec and %ESBL-Ec from both rivers were 4.2 × 104 (IQR, 3.1 × 103–2.3 × 105) and 2.79 (IQR, 0.96–6.03), respectively. MCs100 were significantly lower in upstream waters: 1.8 × 104 (IQR, 9.0 × 103–3.9 × 104) as compared to downstream waters: 1.9 × 106 (IQR, 3.7 × 105–5.4 × 106). Both human and animal wastewater effluents contributed to the increased contamination downstream. This study revealed high levels of ESBL-Ec in rivers flowing through two cities in Ghana. There is a need to manage the sources of contamination as they may contribute to the acquisition and spread of ESBL-Ec in humans and animals, thereby contributing to AMR.
Collapse
|
12
|
Guo C, Cui Y, Luo Y. Response of solute transport model parameters to the combination of multiple design parameters and their quantitative expression with hydraulic indicators of FWS-constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43283-43295. [PMID: 32737778 DOI: 10.1007/s11356-020-10250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Solute transport models and hydraulic indicators are commonly used to assess the flow pattern of free water surface-constructed wetlands (FWS CWs). However, the relationship between solute transport models and hydraulic performance remains poorly understood. The hybrid model comprised of plug flow with dispersion and continuous stirred tank reactors (PFD + CSTRs) was applied in this study. The variation rules of model parameters, namely the flow ratio of the mixed zone f, volume ratio of the mixed zone z, dispersion number D, and number of mixed tanks N, were obtained by fitting of the normalized tracer data of orthogonal tests. The coefficients of determination (R2) exceeded 0.7 and the correlation coefficient (r) surpassed 0.8. The results demonstrated satisfactory hydraulic performance and purification effect, with high hydraulic and water quality indicators. Water depth was the principal design parameter negatively affecting f and z, whereas the layout of in- and outlet positively influenced D and N. The R2 of the model parameters f, z, and D on most hydraulic indicators were above 0.5. Significantly positive correlations existed between the model parameters f, z, and D and the hydraulic indicators including the short-circuit index φ10, effective volume ratio e, and moment index MI. The quantitative links between model parameters and hydraulic indicators were established. Based on the significant correlations between design parameters, hydraulic indicators, and model parameters, it would be more convenient to evaluate the hydraulic performance of FWS CWs corresponding to specific design parameters. Graphical abstract.
Collapse
Affiliation(s)
- Changqiang Guo
- State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuanlai Cui
- State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| | - Yufeng Luo
- State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
13
|
Devane ML, Moriarty E, Weaver L, Cookson A, Gilpin B. Fecal indicator bacteria from environmental sources; strategies for identification to improve water quality monitoring. WATER RESEARCH 2020; 185:116204. [PMID: 32745743 DOI: 10.1016/j.watres.2020.116204] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
In tropical to temperate environments, fecal indicator bacteria (FIB), such as enterococci and Escherichia coli, can persist and potentially multiply, far removed from their natural reservoir of the animal gut. FIB isolated from environmental reservoirs such as stream sediments, beach sand and vegetation have been termed "naturalized" FIB. In addition, recent research suggests that the intestines of poikilothermic animals such as fish may be colonized by enterococci and E. coli, and therefore, these animals may contribute to FIB concentrations in the aquatic environment. Naturalized FIB that are derived from fecal inputs into the environment, and subsequently adapted to maintain their population within the non-host environment are termed "naturalized enteric FIB". In contrast, an additional theory suggests that some "naturalized" FIB diverged from enteric FIB many millions of years ago and are now normal inhabitants of the environment where they are referred to as "naturalized non-enteric FIB". In the case of the Escherichia genus, the naturalized non-enteric members are identified as E. coli during routine water quality monitoring. An over-estimation of the health risk could result when these naturalized, non-enteric FIB, (that is, not derived from avian or mammalian fecal contamination), contribute to water quality monitoring results. It has been postulated that these environmental FIB belonging to the genera Escherichia and Enterococcus can be differentiated from enteric FIB by genetic methods because they lack some of the genes required for colonization of the host intestine, and have acquired genes that aid survival in the environment. Advances in molecular tools such as next generation sequencing will aid the identification of genes peculiar or "enriched" in particular habitats to discriminate between enteric and environmental FIB. In this appraisal, we have reviewed the research studying "naturalized" FIB, and discussed the techniques for their differentiation from enteric FIB. This differentiation includes the important distinction between enteric FIB derived from fresh and non-recent fecal inputs, and those truly non-enteric environmental microbes, which are currently identified as FIB during routine water quality monitoring. The inclusion of tools for the identification of naturalized FIB (enteric or environmental) would be a valuable resource for future studies assessing water quality.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand.
| | - Elaine Moriarty
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Adrian Cookson
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Brent Gilpin
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| |
Collapse
|
14
|
Rodríguez EA, Aristizábal-Hoyos AM, Morales-Zapata S, Arias L, Jiménez JN. High frequency of gram-negative bacilli harboring bla KPC-2 in the different stages of wastewater treatment plant: A successful mechanism of resistance to carbapenems outside the hospital settings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111046. [PMID: 32778323 DOI: 10.1016/j.jenvman.2020.111046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/09/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) are considered to be a reservoir and a source of bacterial resistance. Worryingly, the presence of carbapenem-resistant Gram-negative bacilli (CRGNB) in WWTPs has recently been reported, but there are still many research gaps regarding its emergence and impact. The distribution of CRGNB in the different stages of a WWTP in Colombia and the relationship between the physicochemical factors involved with their presence are described in this paper. Additionally, given the impact on public health, the CRGNB detected were compared with isolates previously found in hospital patients. Residual water samples were taken from five different stages of a WWTP between January and July 2017. A total of 390 GNB were isolated, and a significant frequency of CRGNB harboring blaKPC-2 (38.2%, n = 149/390) was detected, of which 57% were Enterobacteriaceae, 41.6% Aeromonadaceae, and 1.3% Pseudomonadaceae. The Enterobacteriaceae were more frequent in the raw effluent compared to the Aeromonadaceae, which in turn were more prevalent in the recycled activated sludge and final effluent. Environmental variables such as pH, oxygen, chemical oxygen demand, and temperature were significantly correlated with the quantification of carbapenem-resistant Enterobacteriaceae (CRE) at specific points in the WWTP. Interestingly, isolated K. pneumoniae harboring blaKPC-2 from the WWTPs were diverse and did not relate genetically to the hospital strains with which they were compared. In conclusion, these results confirm the worrying scenario of the dissemination and persistence of emerging contaminants such as CRGNB harboring blaKPC-2, and reinforce the need to establish strategies aimed at containing this problem using multifocal interventions.
Collapse
Affiliation(s)
- E A Rodríguez
- Línea de Epidemiología Molecular y Resistencia Bacteriana. Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia. Postal code: 050010, Medellín, Colombia.
| | - A M Aristizábal-Hoyos
- Línea de Epidemiología Molecular y Resistencia Bacteriana. Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia. Postal code: 050010, Medellín, Colombia
| | - S Morales-Zapata
- Línea de Epidemiología Molecular y Resistencia Bacteriana. Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia. Postal code: 050010, Medellín, Colombia
| | - L Arias
- Grupo de Bioprocesos Microbianos, Escuela de Microbiología, Universidad de Antioquia, Postal code: 050010, Medellín, Colombia
| | - J N Jiménez
- Línea de Epidemiología Molecular y Resistencia Bacteriana. Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia. Postal code: 050010, Medellín, Colombia.
| |
Collapse
|
15
|
Bacterial isolates harboring antibiotics and heavy-metal resistance genes co-existing with mobile genetic elements in natural aquatic water bodies. Saudi J Biol Sci 2020; 27:2660-2668. [PMID: 32994725 PMCID: PMC7499102 DOI: 10.1016/j.sjbs.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/26/2022] Open
Abstract
The rise in antibiotic-resistant bacteria and contamination of water bodies is a serious issue that demands immense attention of scientific acumen. Here, we examined the pervasiveness of ESBL producing bacteria in Dal Lake and Wular Lake of Kashmir valley, India. Isolates were screened for antibiotic, heavy metal resistant elements, and their coexistence with mobile genetic elements. Out of two hundred one isolates screened, thirty-eight were found positive for ESBL production. Antibiotic profiling of ESBL positive isolates with 16 different drugs representing β-lactam or -non-β-lactam, exhibited multidrug resistance phenotype among 55% isolates. Molecular characterization revealed the occurrence of drug resistance determinants blaTEM, AmpC, qnrS, and heavy metal resistance genes (MRGs) merB, merP, merT, silE, silP, silS, and arsC. Furthermore, mobile genetic elements IntI, SulI, ISecp1, TN3, TN21 were also detected. Conjugation assay confirmed the transfer of different ARGs, HMRGs, and mobile elements in recipient Escherichia coli J53 AZR strain. Plasmid incompatibility studies showed blaTEM to be associated with Inc groups B/O, HI1, HI2, I1, N, FIA, and FIB. Co-occurrence of blaTEM, HMRGs, and mobile elements from the aquatic milieu of Kashmir, India has not been reported so far. From this study, the detection of the blaTEM gene in the bacteria Bacillus simplex and Brevibacterium frigoritolerans are found for the first time. Considering all the facts it becomes crucial to conduct studies in natural aquatic environments that could help depict the epidemiological situations in which the resistance mechanism might have clinical relevance.
Collapse
|
16
|
Cho S, Nguyen HAT, McDonald JM, Woodley TA, Hiott LM, Barrett JB, Jackson CR, Frye JG. Genetic Characterization of Antimicrobial-Resistant Escherichia coli Isolated from a Mixed-Use Watershed in Northeast Georgia, USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193761. [PMID: 31591305 PMCID: PMC6801870 DOI: 10.3390/ijerph16193761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
Abstract
In order to determine the role of surface water in the development and spread of antibiotic-resistant (AR) bacteria, water samples were collected quarterly from 2015 to 2016 from a mixed-use watershed in Georgia. In our previous study, 496 Escherichia coli were isolated from surface water, out of which, 34 isolates were resistant to antimicrobials. For the current study, these 34 AR E. coli were characterized using pulsed-field gel electrophoresis, AR gene detection, plasmid replicon typing, class I integron detection, and multi-locus sequence typing. Genes were identified as conferring resistance to azithromycin (mph(A)); β-lactams (blaCMY, blaCTX, blaTEM); chloramphenicol (floR); streptomycin (strA, strB); sulfisoxazole (sul1, sul2); tetracycline (tetA, tetB, tetC); and trimethoprim/sulfamethoxazole (dhfr5, dhfr12). Five ciprofloxacin- and/or nalidixic-resistant isolates contained point mutations in gyrA and/or parC. Most of the isolates (n = 28) carried plasmids and three were positive for class I integrons. Twenty-nine sequence types (ST) were detected, including three epidemic urinary-tract-infection-associated ST131 isolates. One of the ST131 E. coli isolates exhibited an extended-spectrum β-lactamase (ESBL) phenotype and carried blaCTX-M-15 and blaTEM-1. To our knowledge, this is the first study on the emergence of an ESBL-producing E. coli ST131 from environmental water in the USA, which poses a potential risk to human health through the recreational, agricultural, or municipal use of this natural resource. This study identified E. coli with AR mechanisms to commonly used antimicrobials and carrying mobile genetic elements, which could transfer AR genes to other bacteria in the aquatic environment.
Collapse
Affiliation(s)
- Sohyun Cho
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| | - Hoang Anh Thi Nguyen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
- (Present) Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Jacob M McDonald
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.
- Southeast Coast Network, National Park Service, Athens, GA 30605, USA.
| | - Tiffanie A Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
| | - Lari M Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
| | - John B Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
| |
Collapse
|
17
|
Sen K, Berglund T, Soares MA, Taheri B, Ma Y, Khalil L, Fridge M, Lu J, Turner RJ. Antibiotic Resistance of E. coli Isolated From a Constructed Wetland Dominated by a Crow Roost, With Emphasis on ESBL and AmpC Containing E. coli. Front Microbiol 2019; 10:1034. [PMID: 31156579 PMCID: PMC6530415 DOI: 10.3389/fmicb.2019.01034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Information on the dissemination of antibiotic resistance mechanisms in the environment as well as wild life is needed in North America. A constructed wetland (where ∼15,000 American crows roost) was sampled on the University of Washington Bothell Campus for the presence of antibiotic resistant E. coli (ARE). Crow droppings from individual birds and grab samples of water were collected in 2014–2015. E. coli were isolated by selective agar plating. The most frequent antibiotic resistance (AR) of the fecal isolates was to ampicillin (AMP) (53%), followed by amoxicillin-clavulanic acid (AMC) (45%), streptomycin (S) (40%), and nalidixic acid (NA) (33%). Water isolates had similar AR pattern and ∼40% were multidrug resistant. Isolates from water samples collected during storm events showed higher resistance than isolates from no rain days to tetracycline, AMP, AMC, NA, and gentamycin. Extended spectrum beta lactamase (ESBL) containing E. coli with the blactx-M was found in three water and nine fecal isolates while blacmy-2 in 19 water and 16 fecal isolates. Multilocus Sequence Typing analysis (MLST) yielded 13 and 12 different sequence types (STs) amongst fecal and water isolates, many of which could be correlated to livestock, bird, and humans. MLST identified ESBL E. coli belonging to the clinically relevant ST131 clone in six fecal and one water isolate. Three STs found in feces could be found in water on the same dates of collection but not subsequently. Thus, the strains do not appear to survive for long in the wetland. Phylogenetic analysis revealed similar distribution of the water and fecal isolates among the different phylo-groups, with the majority belonging to the commensal B1 phylo-group, followed by the pathogenic B2 phylo-group. This study demonstrates that corvids can be reservoirs and vectors of ARE and pathogenic E. coli, posing a significant environmental threat.
Collapse
Affiliation(s)
- Keya Sen
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Tanner Berglund
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Marilia A Soares
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Babak Taheri
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Yizheng Ma
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Laura Khalil
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Megan Fridge
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Robert J Turner
- School of Interdisciplinary Arts and Sciences, University of Washington, Bothell, WA, United States
| |
Collapse
|
18
|
Vivant AL, Boutin C, Prost-Boucle S, Papias S, Ziebal C, Pourcher AM. Fate of two strains of extended-spectrum beta-lactamase producing Escherichia coli in constructed wetland microcosm sediments: survival and change in antibiotic resistance profiles. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1550-1560. [PMID: 31169513 DOI: 10.2166/wst.2019.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Free water surface constructed wetlands (FWS CW) are efficient technologies to limit the transfer of antibiotic resistant bacteria (ARB) originating from urban effluents into the aquatic environment. However, the decrease in ARB from inflow to outflow through the FWS CW may be explained by their transfer from the water body to the sediment. To investigate the behavior of ARB in the sediment of a FWS CW, we inoculated three microcosms with two strains of extended-spectrum beta-lactamase producing Escherichia coli (ESBL E. coli) belonging to two genotypes. Microcosms were composed of two sediments collected at two locations of an FWS CW from which the strains were isolated. Phragmites were planted in one of the microcosms. The survival curves of the two strains were close regardless of the genotype and the type of sediment. After a rapid decline, both strains were able to survive at low level in the sediments for 50 days. Their fate was not affected by the presence of phragmites. Changes in the bla content and antibiotic resistance of the inoculated strains were observed after three weeks of incubation, indicating that FWS CW sediments are favorable environments for spread of antibiotic resistance genes and for the acquisition of new antibiotic resistance.
Collapse
Affiliation(s)
- Anne-Laure Vivant
- Irstea, UR OPAALE, 17 Avenue de Cucillé-CS 64427, F-35044 Rennes, France and Univ Bretagne Loire, CS 54417, 35044 Rennes, France E-mail:
| | - Catherine Boutin
- Irstea, UR REVERSAAL, 5 rue de la Doua, CS 20244, F-69625, Villeurbanne, France
| | | | - Sandrine Papias
- Irstea, UR REVERSAAL, 5 rue de la Doua, CS 20244, F-69625, Villeurbanne, France
| | - Christine Ziebal
- Irstea, UR OPAALE, 17 Avenue de Cucillé-CS 64427, F-35044 Rennes, France and Univ Bretagne Loire, CS 54417, 35044 Rennes, France E-mail:
| | - Anne-Marie Pourcher
- Irstea, UR OPAALE, 17 Avenue de Cucillé-CS 64427, F-35044 Rennes, France and Univ Bretagne Loire, CS 54417, 35044 Rennes, France E-mail:
| |
Collapse
|
19
|
Bollache L, Bardet E, Depret G, Motreuil S, Neuwirth C, Moreau J, Hartmann A. Dissemination of CTX-M-Producing Escherichia coli in Freshwater Fishes From a French Watershed (Burgundy). Front Microbiol 2019; 9:3239. [PMID: 30671043 PMCID: PMC6331413 DOI: 10.3389/fmicb.2018.03239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/13/2018] [Indexed: 01/13/2023] Open
Abstract
The burden of extended-spectrum β-lactamases producing Escherichia coli (ESBL-Ec), has increased over several decades. Freshwater ecosystems are suspected to play an important ecological and evolutionary role in driving the dissemination of antimicrobial resistance. The aim of our study was to decipher the occurrence of ESBL-Ec in a small watershed (Ouche river, Burgundy, France), targeting environmental matrices and fishes. Among cefotaxime resistant E. coli (ctxR Ec) isolates, we detected and characterized 36 ESBL-Ec from water, biofilm and fish guts. ctxR Ec and ESBL-Ec were found in samples from sites near the first small town, located downstream from the watershed which was studied. Treatment of urban wastewater by waste water treatment plants (WWTP), might therefore be a major potential source of ctxR Ec and thus of ESBL-Ec. Prevalence of total E. coli and ctxR Ec in fish guts ranged between 0 to 92% and 0 to 85%; respectively, depending on the sampling site and the fish species. The diet of fish (predator or omnivore) seems to strongly influence the prevalence of total E. coli and ESBL-Ec. Extended spectrum beta-lactamases produced by the isolates from this study belonged to the CTX-M family (CTX-M group 1 and 9). Moreover, some environmental ESBL-Ec proved to share genotypic features (MLST types) with isolates which originated from 8 WWTP effluents discharged in the Ouche river and with the sequence type ST131, which is widely described in clinical isolates. Ninety-seven % (97%) of ESBL-Ec from the study harbored additional antibiotic resistances and can thus be considered as multi drug resistant (MDR) bacteria. Finally, 53% of the ESBL-Ec strains harbored class 1 integron-integrase (intl1). These results are discussed with the perspective of defining indicators of antibiotic resistance contamination in freshwater ecosystems.
Collapse
Affiliation(s)
- Loic Bollache
- UMR CNRS 6249, Laboratoire Chrono-Environnement, Besançon, France
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon, France
| | - Emeline Bardet
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon, France
| | - Géraldine Depret
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Catherine Neuwirth
- Bacteriology Department, University Hospital, Université de Bourgogne Franche-Comté, Dijon, France
| | - Jérome Moreau
- UMR CNRS 6282 Biogéosciences, Laboratoire Biogéosciences, Dijon, France
| | - Alain Hartmann
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
20
|
Tymensen L, Zaheer R, Cook SR, Amoako KK, Goji N, Read R, Booker CW, Hannon SJ, Neumann N, McAllister TA. Clonal expansion of environmentally-adapted Escherichia coli contributes to propagation of antibiotic resistance genes in beef cattle feedlots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:657-664. [PMID: 29758422 DOI: 10.1016/j.scitotenv.2018.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Livestock wastewater lagoons represent important environmental reservoirs of antibiotic resistance genes (ARGs), although factors contributing to their proliferation within these reservoirs remain poorly understood. Here, we characterized Escherichia coli from feedlot cattle feces and associated wastewater lagoons using CRISPR1 subtyping, and demonstrated that while generic E. coli were genetically diverse, populations were dominated by several 'feedlot-adapted' CRISPR types (CTs) that were widely distributed throughout the feedlot. Moreover, E. coli bearing beta-lactamase genes, which confer reduced susceptibility to third-generation cephalosporin's, predominantly belonged to these feedlot-adapted CTs. Remarkably, the genomic region containing the CRISPR1 allele was more frequently subject to genetic exchange among wastewater isolates compared to fecal isolates, implicating this region in environmental adaptation. This allele is proximal to the mutS-rpoS-nlpD region, which is involved in regulating recombination barriers and adaptive stress responses. There were no loss-of-function mutS or rpoS mutations or beneficial accessory genes present within the mutS-rpoS-nlpD region that would account for increased environmental fitness among feedlot-adapted isolates. However, comparative sequence analysis revealed that protein sequences within this region were conserved among most feedlot-adapted CTs, but not transient fecal CTs, and did not reflect phylogenetic relatedness, implying that adaptation to wastewater environments may be associated with genetic variation related to stress resistance. Collectively, our findings suggest adaptation of E. coli to feedlot environments may contribute to propagation of ARGs in wastewater lagoons.
Collapse
Affiliation(s)
- Lisa Tymensen
- Alberta Agriculture and Forestry, Irrigation and Farm Water Branch, Lethbridge, Alberta T1J 4V6, Canada.
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Shaun R Cook
- Alberta Agriculture and Forestry, Irrigation and Farm Water Branch, Lethbridge, Alberta T1J 4V6, Canada
| | - Kingsley K Amoako
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge, Alberta, Canada
| | - Noriko Goji
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge, Alberta, Canada
| | - Ron Read
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta T1Y 6J4, Canada
| | - Calvin W Booker
- Feedlot Health Management Services, Ltd., Okotoks, Alberta T1S 2A2, Canada
| | - Sherry J Hannon
- Feedlot Health Management Services, Ltd., Okotoks, Alberta T1S 2A2, Canada
| | - Norman Neumann
- School of Public Health, University of Alberta, 3-300 Edmonton Clinic Health Authority, 11405-87 Ave, Edmonton, Alberta T6G 1C9, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
21
|
Wu H, Fan J, Zhang J, Ngo HH, Guo W. Large-scale multi-stage constructed wetlands for secondary effluents treatment in northern China: Carbon dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:933-942. [PMID: 29029835 DOI: 10.1016/j.envpol.2017.09.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Multi-stage constructed wetlands (CWs) have been proved to be a cost-effective alternative in the treatment of various wastewaters for improving the treatment performance as compared with the conventional single-stage CWs. However, few long-term full-scale multi-stage CWs have been performed and evaluated for polishing effluents from domestic wastewater treatment plants (WWTP). This study investigated the seasonal and spatial dynamics of carbon and the effects of the key factors (input loading and temperature) in the large-scale seven-stage Wu River CW polishing domestic WWTP effluents in northern China. The results indicated a significant improvement in water quality. Significant seasonal and spatial variations of organics removal were observed in the Wu River CW with a higher COD removal efficiency of 64-66% in summer and fall. Obvious seasonal and spatial variations of CH4 and CO2 emissions were also found with the average CH4 and CO2 emission rates of 3.78-35.54 mg m-2 d-1 and 610.78-8992.71 mg m-2 d-1, respectively, while the higher CH4 and CO2 emission flux was obtained in spring and summer. Seasonal air temperatures and inflow COD loading rates significantly affected organics removal and CH4 emission, but they appeared to have a weak influence on CO2 emission. Overall, this study suggested that large-scale Wu River CW might be a potential source of GHG, but considering the sustainability of the multi-stage CW, the inflow COD loading rate of 1.8-2.0 g m-2 d-1 and temperature of 15-20 °C may be the suitable condition for achieving the higher organics removal efficiency and lower greenhouse gases (GHG) emission in polishing the domestic WWTP effluent. The obtained knowledge of the carbon dynamics in large-scale Wu River CW will be helpful for understanding the carbon cycles, but also can provide useful field experience for the design, operation and management of multi-stage CW treatments.
Collapse
Affiliation(s)
- Haiming Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Jinlin Fan
- National Engineering Laboratory of Coal-Fired Pollutants Emission Reduction, Shandong University, Jinan 250061, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| |
Collapse
|
22
|
Wu H, Zhang J, Guo W, Liang S, Fan J. Secondary effluent purification by a large-scale multi-stage surface-flow constructed wetland: A case study in northern China. BIORESOURCE TECHNOLOGY 2018; 249:1092-1096. [PMID: 29137931 DOI: 10.1016/j.biortech.2017.10.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Assessment of treatment performance in the large-scale constructed wetland (CW) for secondary effluent purification remains limited. The aim of this case study was to therefore to investigate the long-term treatment capacity of organics and ammonium pollutants in a large-scale multi-stage surface-flow (SF) CW fed with secondary effluents from the wastewater treatment plants (WWTPs) in northern China. The results for two-and-half-year study period indicated that the water quality parameters including chemical oxygen demand (COD) and ammonium (NH4+-N) met the Chinese Grade III of Environmental Quality Standards. The mass reductions of COD and NH4+-N were 53% (4032 kg ha-1 y-1) and 72% (511 kg ha-1 y-1), respectively. However, there was a significant positive correlation between influent loads and treatment performance. The optimal loading of 2.5 g m-2 d-1 for COD and 0.3 g m-2 d-1 for NH4+-N could be recommended for designing the sustainable large-scale multi-stage SF CW wastewater treatments.
Collapse
Affiliation(s)
- Haiming Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Jinlin Fan
- National Engineering Laboratory of Coal-Fired Pollutants Emission Reduction, Shandong University, Jinan 250061, PR China
| |
Collapse
|
23
|
Tymensen L, Booker CW, Hannon SJ, Cook SR, Zaheer R, Read R, McAllister TA. Environmental Growth of Enterococci and Escherichia coli in Feedlot Catch Basins and a Constructed Wetland in the Absence of Fecal Input. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5386-5395. [PMID: 28430425 DOI: 10.1021/acs.est.6b06274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Population structures of fecal indicator bacteria (FIB) isolated from catch basins, a constructed wetland, and feces from a beef cattle feedlot were compared over a two-year period. Enterococcus hirae accounted for 92% of the fecal isolates, whereas secondary environments were characterized by greater relative abundance of environmentally adapted species including Enterococcus casseliflavus. While enterococci densities in the catch basins and wetland were similar under wet and drought conditions, E. hirae predominated during rainy periods, while E. casseliflavus predominated during drought conditions. Environmentally adapted species accounted for almost half of the erythromycin resistant enterococci isolated from the wetland. Densities of Escherichia coli were also comparable during wet versus drought conditions, and the relative abundance of strains from environmentally adapted clades was greater in secondary environments compared to feces. Unlike enterococci, fewer environmentally adapted E. coli strains were isolated on selective media containing ceftriaxone from the wetland compared to feces, suggesting resistance to this antibiotic may not be well maintained in the absence of selective pressure. Overall, these findings suggest that secondary environments select for environmentally adapted FIB. While these species and clades tend to be of limited clinical relevance, they could potentially serve as reservoirs of antimicrobial resistance.
Collapse
Affiliation(s)
- Lisa Tymensen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry , 100, 5401 1st Avenue South, Lethbridge, Alberta, Canada , T1J 4 V6
| | - Calvin W Booker
- Feedlot Health Management Services, Ltd. , Okotoks, Alberta, Canada , T1S 2A2
| | - Sherry J Hannon
- Feedlot Health Management Services, Ltd. , Okotoks, Alberta, Canada , T1S 2A2
| | - Shaun R Cook
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry , 100, 5401 1st Avenue South, Lethbridge, Alberta, Canada , T1J 4 V6
- Agriculture and Agri-Food Canada , Lethbridge, Alberta, Canada , T1J 4B1
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada , Lethbridge, Alberta, Canada , T1J 4B1
| | - Ron Read
- Microbiology, Immunology and Infectious Diseases, University of Calgary , Calgary, Alberta, Canada , T1Y 6J4
| | - Tim A McAllister
- Agriculture and Agri-Food Canada , Lethbridge, Alberta, Canada , T1J 4B1
| |
Collapse
|