1
|
Pan S, Zhang W, Yan F, Ding Y, Hellweger FL, Shang J, Yan Y, Yu F, Li Y. Keystone microbial taxa identified by deep learning reveal mechanisms of phosphorus stoichiometric homeostasis in submerged macrophytes under different hydrodynamic states. WATER RESEARCH 2025; 282:123721. [PMID: 40311292 DOI: 10.1016/j.watres.2025.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/26/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Phosphorus (P) pollution in aquatic ecosystems triggers eutrophication, disrupting ecological processes. Although phytoremediation using submerged macrophytes is promising, its efficacy depends on plant-microbe interactions and stoichiometric homeostasis. A significant knowledge gap exists regarding the assembly and impact of key microbial communities on stoichiometric homeostasis under fluctuating environmental conditions, hindering the optimization of phytoremediation strategies. Given that hydrodynamic fluctuations are a primary source of environmental variability in aquatic systems, this study explored the intricate relationships among stoichiometric homeostasis, microbial community structure, and ecosystem stability, with a specific focus on their impact on rhizosphere P metabolism in Vallisneria natans and Myriophyllum spicatum under different hydrodynamic states. A Deep Learning-based Keystoneness Taxa Identification (DLKTI) framework was developed to identify key microbial taxa. Microbial community stability analysis preceded key taxa determination to enhance result reliability and ecological relevance based on the premise that distinct states provide a more dependable baseline for attributing observed changes to specific perturbations rather than to inherent fluctuations. These findings indicate that the key taxa identified by the DLKTI framework adequately characterized the overall ecological features of the microbial community (average ρ = 0.39, p<0.05). Moreover, including microbial pools and diversity indices of the screened key microbial taxa improved the explanatory power for submerged macrophyte traits (5% and 6%, respectively) and rhizosphere oxidative stress responses (25% and 4%, respectively). Partial least squares path modeling demonstrated the crucial role of stoichiometric homeostasis for P in ecosystem functioning (path coefficient of inhibition of phytoplankton growth = 0.58, p<0.001). The findings elucidating plant-microbe interaction patterns under different hydrodynamic states allow for the development of targeted interventions to enhance rhizosphere P metabolism, thereby increasing the efficiency of phytoremediation for eutrophication management and aquatic ecosystem restoration.
Collapse
Affiliation(s)
- Shenyang Pan
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Wenlong Zhang
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China.
| | - Feng Yan
- Faculty of Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Yanan Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ferdi L Hellweger
- Water Quality Engineering, Technical University of Berlin, Berlin 10623, Germany
| | - Jiahui Shang
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuting Yan
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Yu
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Li
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
2
|
Hemraj DA, Carstensen J. Towards ecosystem-based techniques for tipping point detection. Biol Rev Camb Philos Soc 2025; 100:892-919. [PMID: 39564927 DOI: 10.1111/brv.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
An ecosystem shifts to an alternative stable state when a threshold of accumulated pressure (i.e. direct impact of environmental change or human activities) is exceeded. Detecting this threshold in empirical data remains a challenge because ecosystems are governed by complex interlinkages and feedback loops between their components and pressures. In addition, multiple feedback mechanisms exist that can make an ecosystem resilient to state shifts. Therefore, unless a broad ecological perspective is used to detect state shifts, it remains questionable to what extent current detection methods really capture ecosystem state shifts and whether inferences made from smaller scale analyses can be implemented into ecosystem management. We reviewed the techniques currently used for retrospective detection of state shifts detection from empirical data. We show that most techniques are not suitable for taking a broad ecosystem perspective because approximately 85% do not combine intervariable non-linear relationships and high-dimensional data from multiple ecosystem variables, but rather tend to focus on one subsystem of the ecosystem. Thus, our perception of state shifts may be limited by methods that are often used on smaller data sets, unrepresentative of whole ecosystems. By reviewing the characteristics, advantages, and limitations of the current techniques, we identify methods that provide the potential to incorporate a broad ecosystem-based approach. We therefore provide perspectives into developing techniques better suited for detecting ecosystem state shifts that incorporate intervariable interactions and high-dimensionality data.
Collapse
Affiliation(s)
- Deevesh Ashley Hemraj
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde, DK-4000, Denmark
| | - Jacob Carstensen
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde, DK-4000, Denmark
| |
Collapse
|
3
|
Chen M, Li X, de Klein J, Janssen ABG, Du X, Lei Q, Liu H, Kroeze C. Long-term responses of internal environment dynamics in a freshwater lake to variations in external nutrient inputs: A model simulation approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175514. [PMID: 39147039 DOI: 10.1016/j.scitotenv.2024.175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Lake restoration usually focuses on reducing external nutrient sources. However, when sediments contain nutrients accumulated over multiple years, internal nutrient release can delay restoration progress. In lake restoration and management, it is important to understand the dynamic relationship between nutrient concentrations in a lake and internal and external nutrient sources. In this study, we quantified external nutrient inputs through measurements and compared them with internal sediment release from simulation using the PCLake+ model. Additionally, we evaluated alterations in the internal nutrient release, lake nutrient concentrations, and algae biomass (chlorophyll-a) within the lake following varying degrees of reduction in external nutrient loads. The results demonstrate that the PCLake+ effectively simulated the lake's nutrient concentration and algae biomass. Based on the PCLake+ estimates, internal nutrient loads accounted for 51 % of the total nitrogen (N) and 80 % of the total phosphorus (P) loadings in Lake Erhai in 2019. In 2020, the total contributions were 43 % for TN and 72 % for TP. We simulated four scenarios where external nutrient inputs were reduced to 25 %, 50 %, 75 %, and 99.99 % of their original levels. The 40-year simulation showed that the lake's ecological system initially exhibited a fast internal response but reached equilibrium after eight years. P concentrations took longer to reach equilibrium compared to N concentrations, probably due to the stronger binding characteristics of P. To meet the water quality target in the future, it is necessary to reduce external N and P inputs into Lake Erhai by at least 23 % and 15 %, respectively, under current conditions. Although reducing external nutrient loads can indirectly lower internal nutrient loads, water management should address both external and internal loads simultaneously, as internal release cannot be effectively reduced by external reductions alone. Additionally, the lake's internal release may continue for several years, even with reductions in external inputs.
Collapse
Affiliation(s)
- Meijun Chen
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University & Research, PO Box 47, 6700AA Wageningen, the Netherlands; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Changping Soil Quality National Observation and Research Station, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Earth Systems and Global Change Group, Department of Environmental Sciences, Wageningen University & Research, PO Box 47, 6700AA Wageningen, the Netherlands.
| | - Xiaolin Li
- Southwest Forestry University, College of Soil and Water Conservation, Kunming 519125, China
| | - Jeroen de Klein
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University & Research, PO Box 47, 6700AA Wageningen, the Netherlands
| | - Annette B G Janssen
- Earth Systems and Global Change Group, Department of Environmental Sciences, Wageningen University & Research, PO Box 47, 6700AA Wageningen, the Netherlands
| | - Xinzhong Du
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Changping Soil Quality National Observation and Research Station, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qiuliang Lei
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Changping Soil Quality National Observation and Research Station, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbin Liu
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Changping Soil Quality National Observation and Research Station, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Carolien Kroeze
- Earth Systems and Global Change Group, Department of Environmental Sciences, Wageningen University & Research, PO Box 47, 6700AA Wageningen, the Netherlands
| |
Collapse
|
4
|
Li M, Cai Y, Zhang Y, Carlson PE, Dong R, Gong Z, Zhang Y, Li K. Impacts of habitat alteration on macroinvertebrates in large shallow lakes: An application of a macroinvertebrate-based multimetric index. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2245-2255. [PMID: 38837538 DOI: 10.1002/ieam.4966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Habitat plays a crucial role in shaping the macroinvertebrate community structure in large shallow lakes. In the pursuit of improving the health of freshwater ecosystems, it is imperative to consider their habitat characteristics. To evaluate the impact of habitat variations on lake ecological health, we developed a macroinvertebrate-based multimetric index (MMI) for both the pelagic and littoral zones of Lake Hongze. Additionally, we employed structural equation models to explore the influence of utilization or phytoplankton biomass on ecological health. Historical data served as reference conditions for the pelagic. Seven key attributes were selected for the pelagic MMI, that is, Biological Monitoring Working Party (BMWP), the percentage of Mollusca taxa, the percentage of filter-collector taxa, the percentage of predator taxa, the percentage of gather-collector taxa, and the percentage of sensitive taxa and functional dispersion. The least minimally disturbed conditions and the best attainable conditions were used to develop the littoral. Four key metrics, that is, the percentage of scraper abundance, Mollusca taxa, Biological Pollution Index, and BMWP, were integrated into the littoral MMI. The assessment based on MMI revealed a "poor" health status for the pelagic zone and a "fair" health status for the littoral zone. These findings underscore the high applicability and efficacy of MMIs in assessing and monitoring ecological health in Lake Hongze. Notably, functional feeding groups exhibited heightened sensitivity to disturbance in both zones. Moreover, sediment organic matter strongly influenced the pelagic ecological health, while chlorophyll a and transparency emerged as primary factors influencing the littoral zone, attributable to varying littoral zone utilization. Integr Environ Assess Manag 2024;20:2245-2255. © 2024 SETAC.
Collapse
Affiliation(s)
- Mingjie Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Yongjiu Cai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Ying Zhang
- Water Resources Planning Bureau of Jiangsu Province, Nanjing, China
| | - Peter E Carlson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rui Dong
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Zhijun Gong
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - You Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kuanyi Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Hosseini-Sadabadi SA, Rousseau AN, Laurion I, Behmel S, Sadeghian A, Foulon E, Wauthy M, Cantin AM. Spatiotemporal insights of phytoplankton dynamics in a northern, rural-urban lake using a 3D water quality model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122687. [PMID: 39383741 DOI: 10.1016/j.jenvman.2024.122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
Lake St. Charles, located north of Quebec City, Canada, is a shallow fluvial lake with two distinct basins bridging rural and urban landscapes. Mainly used as a source of drinking water for 300,000 residents, the lake has faced a steady degradation in water quality due to urbanization and the discharge of domestic wastewater. This study introduces a 3D hydrodynamics and water quality model using the Environmental Fluid Dynamics Code to enhance our understanding of algal bloom dynamics in Lake St. Charles. More specifically, we ran simulations for eight years (i.e., a three-year period for calibration, 2015 to 2017; and a five-year period for validation, 2018 to 2022) to reproduce the complex circulation patterns and dynamics of water quality within the system. The simulation results for chlorophyll-a demonstrate seasonal fluctuations in phytoplankton biomass, closely aligning with in situ observations and achieving Relative Root Mean Square Error (RRMSE) values below 50%. (i) In spring, runoff from snowmelt brought phosphorus into the lake, triggering primary production. Diatom growth was initially predominant in the shallow southern basin, then spread to the deeper northern basin due to favorable environmental conditions, including flow- and wind-induced currents, warmer water temperatures and nutrient availability. (ii) In summer, warm water temperatures stimulated biological activity, leading to the growth of cyanobacteria at the expense of diatoms, as well as a drop in phosphorus. (iii) The cyanobacteria persisted into the fall but began to decline in mid-November. (iv) Winter conditions, including the presence of an ice cover, limited the input of phosphorus and minimized phytoplankton production, but diatoms were observed in low concentrations near Des Hurons River inflow. Overall, during the open-water period, the lake-maintained chlorophyll-a concentrations indicative of mesotrophic conditions, with occasional periods when the biomass increased above the eutrophic threshold. Temperature, nutrient levels, and the fluvial dynamics of the lake are the primary factors influencing phytoplankton formation and distribution in lake St. Charles.
Collapse
Affiliation(s)
- Seyed Abbas Hosseini-Sadabadi
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 De La Couronne, Québec City, Québec, G1K 9A9, Canada.
| | - Alain N Rousseau
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 De La Couronne, Québec City, Québec, G1K 9A9, Canada
| | - Isabelle Laurion
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 De La Couronne, Québec City, Québec, G1K 9A9, Canada
| | - Sonja Behmel
- AGIRO, 433 Rue Delage, Québec City, Québec, G3G 1H4, Canada
| | - Amir Sadeghian
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 De La Couronne, Québec City, Québec, G1K 9A9, Canada
| | - Etienne Foulon
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 De La Couronne, Québec City, Québec, G1K 9A9, Canada
| | - Maxime Wauthy
- AGIRO, 433 Rue Delage, Québec City, Québec, G3G 1H4, Canada
| | - Anne-Marie Cantin
- Ville de Québec, Service de La Planification de L'aménagement et de L'environnement, 295 Boul, Québec City, Québec, G1K 3G8, Canada
| |
Collapse
|
6
|
Tigli M, Bak MP, Janse JH, Strokal M, Janssen ABG. The future of algal blooms in lakes globally is in our hands. WATER RESEARCH 2024; 268:122533. [PMID: 39395366 DOI: 10.1016/j.watres.2024.122533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
Lakes are fundamental to society and nature, yet they are currently exposed to excessive nutrients and climate change, resulting in algal blooms. In the future, this may change, but how and where still needs more scientific attention. Here, we explore future trends in algal blooms in lakes globally for >3500 'representative lakes' for the year 2050, considering the attribution of both nutrient and climate factors. We soft-coupled a process-based lake ecosystem model (PCLake+) with a watershed nutrient model (MARINA-Multi) to assess trends in algal blooms in terms of the Trophic State Index for chlorophyll-a (TSI-Chla). Globally between 2010 and 2050, we show a rising trend in algal blooms under fossil-fuelled development (TSI-Chla increase in 91 % of lakes) and a declining trend under sustainable development (TSI-Chla decrease in 63 % of lakes). These changes are significantly attributed to nutrients. While not always significant, climate change attributions point to being unfavourable for lakes in 2050, exacerbating lake water quality. Our study stresses prioritising responsible nutrient and climate management on policy agendas. This implies that the future of algal blooms in lakes is in our hands.
Collapse
Affiliation(s)
- Maddalena Tigli
- UK Centre for Ecology & Hydrology, Penicuik, United Kingdom; Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands.
| | - Mirjam P Bak
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands.
| | - Jan H Janse
- Netherlands Institute of Ecology NIOO-KNAW, P.O. Box 50, 6700AA Wageningen, the Netherlands
| | - Maryna Strokal
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
| | - Annette B G Janssen
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
7
|
Zeng Y, Liu G, Li J, Zhao Y, Yang W. Ecological threshold of phosphorus load in Baiyangdian Lake based on a PCLake model and ecological network analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170091. [PMID: 38224883 DOI: 10.1016/j.scitotenv.2024.170091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Ecological thresholds are a useful indicator for implementing ecological management. Many studies determine the thresholds for nutrient loads in lakes based on the maximum allowable concentration of chlorophyll a (Chla), although this neglects the overall performance of the ecosystem. A PCLake model of Baiyangdian (BYD) Lake in northern China was constructed with six ecological network analysis (ENA) indicators that characterized the ecosystem function, system maturity, and food web structure to quantify the overall status of the BYD ecosystem. To my knowledge, this is the first study on the system level responses of the BYD Lake to phosphorus load interference. Different phosphorus load scenarios were designed to simulate the ecological responses of BYD Lake. The simulated results were employed to calculate the ENA indicators. Ecological thresholds were determined through the driving response relationship between the phosphorus load gradient and the ENA indicators. The results show a non-linear transition response of ENA indicator under phosphorus load gradient. As phosphorus load increases, D/H, SOI, and FCI decreases while A/DC, TPP/TR, and TPP/TB increases. This indicates that the overall structure and function of the ecosystem will deteriorate if phosphorus load increases. The phosphorus load thresholds for the overall performance of BYD Lake were 0.50-1.32 mg m-2 d-1, slightly wider than that of Chla (0.53-1.26 mg m-2 d-1). The model results clearly indicate that there is a time-lag phenomenon at the switch points in the response of ENA indicators compared to that of single functional group. In addition, the A/DC, TPP/TR, SOI, and FCI present more time-lag than that of other ENA indicators. These time-lag effects provide a particular opportunity for biodiversity conservation. Therefore, a possible management strategy is proposed to combine system-level and function group-level thresholds, with the ENA-based threshold as the bottom line and the phytoplankton's threshold as the early-warning indicator. This design is expected to be more precise and efficient, by exploiting the advantages of two thresholds, and may benefit for ecological management practices.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China.
| | - Gaiguo Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Jiaxin Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Zhan Q, de Senerpont Domis LN, Lürling M, Marcé R, Heuts TS, Teurlincx S. Process-based modeling for ecosystem service provisioning: Non-linear responses to restoration efforts in a quarry lake under climate change. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119163. [PMID: 37827081 DOI: 10.1016/j.jenvman.2023.119163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Healthy freshwater ecosystems can provide vital ecosystem services (ESs), and this capacity may be hampered due to water quality deterioration and climate change. In the currently available ES modeling tools, ecosystem processes are either absent or oversimplified, hindering the evaluation of impacts of restoration measures on ES provisioning. In this study, we propose an ES modeling tool that integrates lake physics, ecology and service provisioning into a holistic modeling framework. We applied this model to a Dutch quarry lake, to evaluate how nine ESs respond to technological-based (phosphorus (P) reduction) and nature-based measures (wetland restoration). As climate change might be affecting the future effectiveness of restoration efforts, we also studied the climate change impacts on the outcome of restoration measures and provisioning of ESs, using climate scenarios for the Netherlands in 2050. Our results indicate that both phosphorus reduction and wetland restoration mitigated eutrophication symptoms, resulting in increased oxygen concentrations and water transparency, and decreased phytoplankton biomass. Delivery of most ESs was improved, including swimming, P retention, and macrophyte habitat, whereas the ES provisioning that required a more productive system was impaired (sport fishing and bird watching). However, our modeling results suggested hampered effectiveness of restoration measures upon exposure to future climate conditions, which may require intensification of restoration efforts in the future to meet restoration targets. Importantly, ESs provisioning showed non-linear responses to increasing intensity of restoration measures, indicating that effectiveness of restoration measures does not necessarily increase proportionally. In conclusion, the ecosystem service modeling framework proposed in this study, provides a holistic evaluation of lake restoration measures on ecosystem services provisioning, and can contribute to development of climate-robust management strategies.
Collapse
Affiliation(s)
- Qing Zhan
- Aquatic Knowledge Centre Wageningen (AKWA), Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO-Box 50, 6700AB, Wageningen, the Netherlands; Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, PO-Box 47, 6700 AA, Wageningen, the Netherlands.
| | - Lisette N de Senerpont Domis
- Aquatic Knowledge Centre Wageningen (AKWA), Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO-Box 50, 6700AB, Wageningen, the Netherlands; Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, PO-Box 47, 6700 AA, Wageningen, the Netherlands; Department of Pervasive Systems, Faculty of EEMCS, University of Twente, PO-Box 217, 7500 AE, Enschede, the Netherlands; Department of Water Resources, Faculty of Geo-Information Science and Earth Observation, University of Twente, PO-Box 217, 7500 AE, Enschede, the Netherlands
| | - Miquel Lürling
- Aquatic Knowledge Centre Wageningen (AKWA), Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO-Box 50, 6700AB, Wageningen, the Netherlands; Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, PO-Box 47, 6700 AA, Wageningen, the Netherlands
| | - Rafael Marcé
- Integrative Freshwater Ecology Group, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Cala St. Francesc 14, 17300 Blanes, Spain
| | - Tom S Heuts
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, PO-Box 9010, 6500 GL, Nijmegen, the Netherlands
| | - Sven Teurlincx
- Aquatic Knowledge Centre Wageningen (AKWA), Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO-Box 50, 6700AB, Wageningen, the Netherlands
| |
Collapse
|
9
|
Zargar UR, Khanday SA, Rather MI, Dar SA, Zargar NH, Mir AH. Accelerated eutrophication alters fish and aquatic health: a quantitative assessment by using integrative multimarker, hydrochemical, and GIS modelling method in an urban lake. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:40. [PMID: 38097852 DOI: 10.1007/s10661-023-12213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
The ramifications of anthropogenic activities on the environment and the welfare of aquatic life in lakes worldwide are becoming increasingly alarming. There is a lack of research in the Indian Himalayas on fish biomarker responses to stressful aquatic conditions and the use of environmetric modelling in GIS. Our research evaluates the environmental health of urban lakes in multiple basins using multi-biomarker endpoints (13 features) in Schizothorax niger and hydrochemical characterization (9 features) of water. The study covers 31 grids, each at a distance of 1 km2. This study demonstrated a statistically significant (P = 0.001) increase in white blood cells (WBC), mean cell size (MCH), helminth infection, and health assessment index score (HAIS) score in fish from a highly eutrophic cluster or basin compared to a reference cluster, which is indicative of environmental stress in fish. Based on hydrochemical similarities, the lake water datasets were divided into three categories using hierarchical cluster analysis (HCA). In the PCA analysis, the first three principal components were responsible for 78.1% of the data's variance. The first principal component (PC1) accounted for 57.4% of the variance and had a strong positive loading from ammonia, total phosphate, pH, nitrates, and total alkalinity for water quality parameters. Additionally, PC1 had a favourable loading from WBC, helminth infection (%), and the health assessment index score (HAIS) for biological endpoints. These findings are in alignment with the results of the multivariate analysis. The trophic state index (TSI) showed a significant (P < 0.05) increase in Cluster 1, which includes the peripheral areas of Hazratbal and Gagribal side (> 70), compared to the reference cluster. The multiple regression model indicates that ammonia, phosphate, and nitrate significantly impact the general health of fish (R2 > 0.7). A novel methodology for monitoring water quality fluctuations across different basins and clusters is presented in this study. By integrating fish health biomarkers and GIS technology, we have developed a comprehensive approach to evaluate the overall well-being of aquatic habitat. This technique may prove beneficial in the management of urban lentic water bodies in the Kashmir Himalayas and other comparable water systems around the globe, while also supporting sustainable practices.
Collapse
Affiliation(s)
- Ummer Rashid Zargar
- Department of Zoology, Government Degree College Dooru (Affiliated to University of Kashmir), Anantnag, India.
| | | | - Mohmmad Irshad Rather
- Centre for Climate Change and Sustainability, Azim Premji University, Bengaluru, India
| | - Sabzar Ahmad Dar
- Department of Zoology, Government Degree College Uttersoo (Affiliated to University of Kashmir), Anantnag, India
| | - Nuzhat Hassan Zargar
- Sher-E-Kashmir University of Agricultural Sciences and Technology Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, India
| | - Altaf Hussain Mir
- Department of Geography, Government Degree College Anantnag (Affiliated to University of Kashmir), Anantnag, India
| |
Collapse
|
10
|
Wei Z, Yu Y, Yi Y. Analysis of future nitrogen and phosphorus loading in watershed and the risk of lake blooms under the influence of complex factors: Implications for management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118662. [PMID: 37480666 DOI: 10.1016/j.jenvman.2023.118662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
For the management of eutrophic lakes, watershed nitrogen and phosphorus control is oriented to future water quality. Assessing future nutrient dynamics and the risk of lake eutrophication is necessary. However, current assessments often lack integrated consideration of socioeconomic and climatic factors, which reduces the reference value of the results. In this study, a typical large shallow lake Chaohu, which is highly influenced by human activities, was selected as the study area, and the current and future total nitrogen (TN) and total phosphorus (TP) loading in the basin were analysed using the improved MARINA model, and the risk of water bloom were assessed. The results showed that socioeconomic factors alone varied future TN and TP loading by -24% to 32% and -40% to 34%, respectively, under different development patterns. After considering the effect of increased precipitation, the changes of TN and TP loading became -10% to 163% and -29% to 108%, respectively. The effect on loading reduction under the sustainable development pattern was weakened (58% and 28% for TN and TP loading, respectively) and the increase in loading under the brutal development pattern was significantly amplified (409% and 215% for TN and TP loading, respectively). The adoption of active environmental policies remained an effective way of loading control. However, the risk of water bloom in local lake areas might persist due to factors such as urbanization. Timely and comprehensive assessments can provide managers with more information to identify key factors that contribute to the risk of water blooms and to develop diverse water quality improvement measures. The insights from our study are applicable to other watersheds around the world with similar socio-economic background and climatic conditions.
Collapse
Affiliation(s)
- Zhen Wei
- School of Environment, Beijing Normal University, Beijing, 100875, China; Key Laboratory for Water and Sediment Science, Ministry of Education, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yanxin Yu
- School of Environment, Beijing Normal University, Beijing, 100875, China; Key Laboratory for Water and Sediment Science, Ministry of Education, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yujun Yi
- School of Environment, Beijing Normal University, Beijing, 100875, China; Key Laboratory for Water and Sediment Science, Ministry of Education, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
11
|
Barathan BP, Chen W, Su Y, Wang X, Chen Y. The effects of nutrient loading from different sources on eutrophication in a large shallow lake in Southeast China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7603-7620. [PMID: 37395908 DOI: 10.1007/s10653-023-01641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Lake water eutrophication has become one of the leading obstacles to sustainable economic development in China. Research on the effects of mainstream currents on reservoirs has been relatively underdeveloped compared with research on tributaries, though changes in the water-sediment transport regime in a downstream river may affect nutrient transport behavior in a lake connected to that river. This is particularly problematic because certain wastewater sources, including runoff from agricultural wastes and industrial discharges, adversely affect lake water. Our study focused on Sanshiliujiao Lake, a significant drinking water source in Fujian, Southeast China, that has suffered considerably from eutrophication over the past few decades. This study aimed to estimate the phosphorus and nitrogen loads to the lake, exploring their sources and their ecologic effects using in situ observation and the export coefficient model. Our results showed that the pollution loads of total phosphorus (TP) and total nitrogen (TN) were 2.390 and 46.040 t/year, respectively, most of which were derived from the water diversion (TP 45.7%, TN 29.2%) and non-point source (TP 30.2%, TN 41.6%). The TN input was the highest in East river (3.557 kg/d), followed by Red river (2.524 kg/d). During the wet season, the input of TP and TN increased by 14.6 and 18.7 times, respectively, but produced only slight variations in concentration. Water diversion enriched the nutrients inputs and altered the structure and abundance of phytoplankton communities. In addition, when water flows from the main river directly to Sanshiliujiao Lake, algal blooms in river-connected lakes are significantly exacerbated, so our study may also serve as a theoretical basis to regulate eutrophication in Sanshiliujiao Lake.
Collapse
Affiliation(s)
- Balaji-Prasath Barathan
- Environmental Science and Engineering College, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, People's Republic of China
- Fujian Province Research Centre for River and Lake Health Assessment, Fuzhou, 350007, People's Republic of China
| | - Wenting Chen
- Environmental Science and Engineering College, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, People's Republic of China.
- Fujian Province Research Centre for River and Lake Health Assessment, Fuzhou, 350007, People's Republic of China.
| | - Xue Wang
- Environmental Science and Engineering College, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Yinxing Chen
- Environmental Science and Engineering College, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| |
Collapse
|
12
|
Yuan H, Chen P, Liu E, Yu J, Tai Z, Li Q, Wang H, Cai Y. Terrestrial sources regulate the endogenous phosphorus load in Taihu Lake, China after exogenous controls: Evidence from a representative lake watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:118016. [PMID: 37121007 DOI: 10.1016/j.jenvman.2023.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Identifying phosphorus (P) sources and contributions from terrestrial sources is important for clean water and eutrophication management in lake watersheds. However, this remains challenging owing to the high complexity of P transport processes. The concentrations of different P fractions in the soils and sediments from Taihu Lake, a representative freshwater lake watershed, were obtained using sequential extraction procedure. The dissolved phosphate (PO4-P) and alkaline phosphatase activity (APA) in the lake's water were also surveyed. The results showed that different P pools in the soil and sediments displayed different ranges. Higher concentrations of P fractions were measured in the solid soils and sediments from the northern and western regions of the lake watershed, indicating a larger input of P from exogenous sources, including agriculture runoff and industrial effluent from the river. Generally, higher Fe-P and Ca-P concentrations of up to 399.5 and 481.4 mg/kg were detected in soils and lake sediments, respectively. Similarly, the lake's water had higher concentrations of PO4-P and APA in the northern region. A significant positive correlation was found between Fe-P in the soil and PO4-P concentrations in the water. Statistical analysis indicated that appropriately 68.75% P was retained in the sediment from terrigenous sources, and 31.25% P experienced dissolution and shifted to the solution phase in the water-sediment ecosystems. The dissolution and release in Fe-P in the soils were responsible for the increase of Ca-P in the sediment after the afflux of soils into the lake. These findings suggest that soil runoff predominantly controls P occurrence in lake sediments as an exogenous source. Generally, the strategy of reducing terrestrial inputs from agricultural soil discharge is still an important step in P management at the catchment scale of lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Panyu Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250359, China
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ziqiu Tai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706, Madison, WI, USA
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
13
|
van Wijk D, Chang M, Janssen ABG, Teurlincx S, Mooij WM. Regime shifts in shallow lakes explained by critical turbidity. WATER RESEARCH 2023; 242:119950. [PMID: 37348422 DOI: 10.1016/j.watres.2023.119950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 06/24/2023]
Abstract
Worldwide, water quality managers target a clear, macrophyte-dominated state over a turbid, phytoplankton-dominated state in shallow lakes. The competition mechanisms underlying these ecological states were explored in the 1990s, but the concept of critical turbidity seems neglected in contemporary water quality models. In particular, a simple mechanistic model of alternative stable states in shallow lakes accounting for resource competition mechanisms and critical turbidity is lacking. To this end, we combined Scheffer's theory on critical turbidity with insights from nutrient and light competition theory founded by Tilman, Huisman and Weissing. This resulted in a novel graphical and mathematical model, GPLake-M, that is relatively simple and mechanistically understandable and yet captures the essential mechanisms leading to alternative stable states in shallow lakes. The process-based PCLake model was used to parameterize the model parameters and to test GPLake-M using a pattern-oriented strategy. GPLake-M's application range and position in the model spectrum are discussed. We believe that our results support the fundamental understanding of regime shifts in shallow lakes and provide a starting point for further mechanistic and management-focused explorations and model development. Furthermore, the concept of critical turbidity and the relation between light-limited submerged macrophytes and nutrient-limited phytoplankton might provide a new focus for empirical aquatic ecological research and water quality monitoring programs.
Collapse
Affiliation(s)
- Dianneke van Wijk
- Water Systems and Global Change Group, Wageningen University & Research, Wageningen, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands.
| | - Manqi Chang
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, 100038, Beijing, China
| | - Annette B G Janssen
- Water Systems and Global Change Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Sven Teurlincx
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Wolf M Mooij
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
14
|
Deng J, Shan K, Shi K, Qian SS, Zhang Y, Qin B, Zhu G. Nutrient reduction mitigated the expansion of cyanobacterial blooms caused by climate change in Lake Taihu according to Bayesian network models. WATER RESEARCH 2023; 236:119946. [PMID: 37084577 DOI: 10.1016/j.watres.2023.119946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Although nutrient reduction has been used for lake eutrophication mitigation worldwide, the use of this practice alone has been shown to be less effective in combatting cyanobacterial blooms, primarily because of climate change. In addition, quantifying the climate change contribution to cyanobacterial blooms is difficult, further complicating efforts to set nutrient reduction goals for mitigating blooms in freshwater lakes. This study employed a continuous variable Bayesian modeling framework to develop a model to predict spring cyanobacterial bloom areas and frequencies (the responses) using nutrient levels and climatic factors as predictors. Our results suggested that both spring climatic factors (e.g., increasing temperature and decreasing wind speed) and nutrients (e.g., total phosphorus) played vital roles in spring blooms in Lake Taihu, with climatic factors being the primary drivers for both bloom areas and frequencies. Climate change in spring had a 90% probability of increasing the bloom area from 35 km2 to 180 km2 during our study period, while nutrient reduction limited the bloom area to 170 km2, which helped mitigate expansion of cyanobacterial blooms. For lake management, to ensure a 90% probability of the mean spring bloom areas remaining under 154 km2 (the 75th percentile of the bloom areas in spring), the total phosphorus should be maintained below 0.073 mg·L-1 under current climatic conditions, which is a 46.3% reduction from the current level. Our modeling approach is an effective method for deriving dynamic nutrient thresholds for lake management under different climatic scenarios and management goals.
Collapse
Affiliation(s)
- Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kun Shan
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Kun Shi
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Song S Qian
- Department of Environmental Sciences, University of Toledo, Toledo, Ohio OH 43606, USA
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Guangwei Zhu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
15
|
Li Y, Zhang C, Wang X, Liao X, Zhong Q, Zhou T, Gu F, Zou H. Pollutant impacts on bacteria in surface water and sediment: Conventional versus emerging pollutants in Taihu Lake, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121334. [PMID: 36822306 DOI: 10.1016/j.envpol.2023.121334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bacteria play a critical role in biogeochemical cycling, self-purification, and food web fueling in surface freshwater ecosystems. However, the comparison between the impacts of conventional and emerging pollutants on the bacteria in surface water and sediment remains unclear and requires for an in-depth understanding to assess ecological risk and select associated bioindicators. Taihu Lake, a typical shallow lake in China, was divided into pollutant impacted and less-impacted zones for sampling. Spatial distributions of conventional pollutants, emerging pharmaceuticals, and bacterial communities were investigated in surface water and sediment. The correlations of pollutants with bacterial communities and the variations in bacterial functions were analyzed to help assess the pollutant influences on bacteria. The results showed that the water quality index and trophic level index across the whole lake were at medium to good, and mesotropher to light eutropher grades, respectively, indicating a relatively good control on conventional pollutants in water. Target pharmaceuticals were at much higher concentrations in water of the impacted zone compared to the less-impacted zone, exhibiting close positive relationships with the bacterial phyla in the impacted water. The ratio of Firmicutes to Proteobacteria in surface water is suggested as a plausible bioindicator to evaluate the level of inflow pharmaceutical contamination and the risk of relevant bacterial resistance in the outflow. In sediment, no significant difference was observed for pharmaceuticals between the two zones, whereas total phosphorus and orthophosphate were substantially higher in the impacted zone. Phosphorus pollutants were tightly associated with the bacterial genera in the impacted sediment, likely relating to the increase in iron- or sulfate-reducing bacteria which implies the potential risk of phosphorus releasing from sediment to water.
Collapse
Affiliation(s)
- Yifei Li
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Chengnuo Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaoxuan Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaolin Liao
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Qin Zhong
- Dongzhu Ecological Environment Protection Co., Ltd., Wuxi, 214101, PR China
| | - Tao Zhou
- Dongzhu Ecological Environment Protection Co., Ltd., Wuxi, 214101, PR China
| | - Fan Gu
- Dongzhu Ecological Environment Protection Co., Ltd., Wuxi, 214101, PR China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
16
|
Li Y, Sarpong L, Cheng Y, Norgbey E, Nooni IK, Nasiru S, Setordjie VE, Duodu RAB, Dzakpasu M. A sediment diagenesis model on sediment oxygen demand in managing eutrophication on Taihu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35602-35616. [PMID: 36534258 DOI: 10.1007/s11356-022-24301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Blue-green algae (CyanoHABs), photosynthetic bacteria that create a harmful aquatic environment, have been a trending issue on Taihu for over a decade. CyanoHABs adapt to varying climatic changes, which explains why the problem on Taihu still thrives. One major drive that keeps the algae is Sediment Oxygen Demand (SOD). In this paper, seasonal and spatial variations of SOD that contribute immensely to nutrient growth in Lake Taihu were done using the Environmental Fluid Dynamics Code (EFDC). The results were analyzed based on Nitrogenous SOD (NSOD) and Total SOD (TSOD). Summer results ranged from - 0.05754 to - 0.0826 (- 0.75658 to - 0.83902) (g/m2/day) and Winter values ranged from - 0.3022 to - 0.40171 (- 1.34486 to - 1.48856) (g/m2/day) indicate a gradual decrease in NSOD (TSOD) values respectively. Relatively higher values in summer are attributed to warmer surface water which sets up thermal stratification to increase the internal loading of nitrogen. Lower winter values are related to inverse stratification, where lower oxygen concentration decreases the SOD to trigger ammonium accumulation in the water column. NSOD (TSOD) values for Autumn results ranged from - 0.1039 to - 0.24786 (- 0.96251 to - 1.39454) (g/m2/day) and Spring values of - 0.43019 to - 0.35959 (- 1.48297 to - 0.54089) (g/m2/day). Transition seasons (i.e., Autumn and Spring) results are impacted by wind mixing that allows dissolved oxygen and nutrients in the whole water column. However, spring values depict a gradual increase in SOD value attributed to spring turnover and gradual stratification, which decrease nutrient concentration. In contrast, decreasing SOD values in autumn are related to mixing, but temperature decreases tend to increase nutrient concentrations. Carbonaceous sediment oxygen demand (CSOD), due to sulfide oxidation, presents high values from the difference between TSOD and NSOD. Based on the high values of CSOD, it is highly recommended that more research on eutrophic Taihu lakes would consider delving into CSOD.
Collapse
Affiliation(s)
- Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Linda Sarpong
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China.
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yue Cheng
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Eyram Norgbey
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Isaac Kwesi Nooni
- Binjiang College, Nanjing University of Information Science & Technology, No. 333 Xishan Road, Wuxi, 214105, China
- School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Salifu Nasiru
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China
| | - Victor Edem Setordjie
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China
- College of Coastal, Harbor and Offshore Engineering, Hohai University, Nanjing, 210098, China
| | | | - Mawuli Dzakpasu
- Key Lab of Northwest Water Resources, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, China
| |
Collapse
|
17
|
Chen M, Janssen ABG, de Klein JJM, Du X, Lei Q, Li Y, Zhang T, Pei W, Kroeze C, Liu H. Comparing critical source areas for the sediment and nutrients of calibrated and uncalibrated models in a plateau watershed in southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116712. [PMID: 36402022 DOI: 10.1016/j.jenvman.2022.116712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Controlling non-point source pollution is often difficult and costly. Therefore, focusing on areas that contribute the most, so-called critical source areas (CSAs), can have economic and ecological benefits. CSAs are often determined using a modelling approach, yet it has proved difficult to calibrate the models in regions with limited data availability. Since identifying CSAs is based on the relative contributions of sub-basins to the total load, it has been suggested that uncalibrated models could be used to identify CSAs to overcome data scarcity issues. Here, we use the SWAT model to study the extent to which an uncalibrated model can be applied to determine CSAs. We classify and rank sub-basins to identify CSAs for sediment, total nitrogen (TN), and total phosphorus (TP) in the Fengyu River Watershed (China) with and without model calibration. The results show high similarity (81%-93%) between the identified sediment and TP CSA number and locations before and after calibration both on the yearly and seasonal scale. For TN alone, the results show moderate similarity on the yearly scale (73%). This may be because, in our study area, TN is determined more by groundwater flow after calibration than by surface water flow. We conclude that CSA identification with the uncalibrated model for TP is always good because its CSA number and locations changed least, and for sediment, it is generally satisfactory. The use of the uncalibrated model for TN is acceptable, as its CSA locations did not change after calibration; however, the TN CSA number changed by over 60% compared to the figures before calibration on both yearly and seasonal scales. Therefore, we advise using an uncalibrated model to identify CSAs for TN only if water yield composition changes are expected to be limited. This study shows that CSAs can be identified based on relative loading estimates with uncalibrated models in data-deficient regions.
Collapse
Affiliation(s)
- Meijun Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Water Systems and Global Change Group, Department of Environmental Sciences, Wageningen University and Research, PO Box 47, 6700AA Wageningen, the Netherlands; Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University and Research, PO Box, 47, 6700AA, Wageningen, the Netherlands.
| | - Annette B G Janssen
- Water Systems and Global Change Group, Department of Environmental Sciences, Wageningen University and Research, PO Box 47, 6700AA Wageningen, the Netherlands
| | - Jeroen J M de Klein
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University and Research, PO Box, 47, 6700AA, Wageningen, the Netherlands
| | - Xinzhong Du
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Qiuliang Lei
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ying Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China
| | - Tianpeng Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Wei Pei
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Carolien Kroeze
- Water Systems and Global Change Group, Department of Environmental Sciences, Wageningen University and Research, PO Box 47, 6700AA Wageningen, the Netherlands
| | - Hongbin Liu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
18
|
Wang Y, Ji Z, Li X, Long Z, Pei Y. Comprehensive analysis of the migration and transformation of nutrients between sediment and overlying water in complex habitat systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158433. [PMID: 36055482 DOI: 10.1016/j.scitotenv.2022.158433] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Under the influence of environmental change, disturbance and other external conditions, sediments release internal nutrients to the overlying water and become a contamination source in the lake. Complex habitat systems provide a unique opportunity for determining the influences of environmental changes in lakes. In this study, Baiyangdian Lake (BYDL) was divided into different habitat systems (connected water areas, river courses, reed fields, lotus ponds, fishponds, farmland, and thorps) based on the influence of natural and artificial activities. The physical and chemical properties of overlying water and sediment in different habitat systems were investigated. In addition, statistical analytical methods were used to analyze the relationship between sediment characteristics and overlying water parameters in different habitat systems. The results showed that nitrogen and phosphorus in the overlying water could accumulate in the sediments, while disturbance was one of the main factors affecting the release of nutrients from sediments. Disturbance promoted the suspension of sediments and increased the oxygen content, thereby facilitating the internal release of nutrients. However, there were also some differences in the process of internal release of nutrients between the habitat systems. Nitrogen in the overlying water was closely related to the source of organic matter (r > 0.950), especially in the ponds (including lotus ponds, reed fields, and fishponds), and phosphorus was mainly influenced by turbidity (r > 0.870). In the river course (p = 0.198, n = 26), the disturbance and increase in pH promoted the internal release of nutrients from the sediments (contributions of 35.2 % and 25.1 %, respectively). In the ponds, the aquatic macrophytes reduced the release of nitrogen and phosphorus in sediments. Overall, this study provides more information on the migration and transformation of nutrients between sediment and overlying water in lakes with multiple habitats.
Collapse
Affiliation(s)
- Youke Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Zehua Ji
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Xiuqing Li
- Shandong Provincial Research Institute of Coal Geology Planning and Exploration, Jinan 250104, China
| | - Ziwei Long
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
19
|
Yuan H, Jia B, Zeng Q, Zhou Y, Wu J, Wang H, Fang H, Cai Y, Li Q. Dissimilatory nitrate reduction to ammonium (DNRA) potentially facilitates the accumulation of phosphorus in lake water from sediment. CHEMOSPHERE 2022; 303:134664. [PMID: 35460675 DOI: 10.1016/j.chemosphere.2022.134664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/20/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) and phosphorus (P) are crucial nutrients for eutrophication in the lacustrine ecosystem and attract the attention worldwide. However, the interaction between them need further clarification. This study aimed to assess the influence of dissimilatory nitrate reduction to ammonia (DNRA) on the cycle of P in lacustrine sediment. Different fractions of N and P in the pore water were measured using high-resolution in-situ measurement techniques, HR-Peeper and DGT, coupling with sequential extraction for solid sediment from a shallow freshwater lake. The results showed that elevated nitrate (NO3-) reduction via DNRA rather than denitrification was verified at deeper sediment layer, suggesting the generation of inorganic ammonia (NH4+) as electron donor under anaerobic episodes. High abundance of DNRA bacteria (nrfA gene) obtained using high-throughput sequencing analysis were detected at upper layer and responsible for the accumulation of NH4+ in the sediment coupling with chemolithoautotrophic metabolism. Additionally, significant desorption of ionic ferrous iron (Fe2+) and dissolved reactive phosphate (DRP) from solid phase and the enrichment in the solution was simultaneously detected. Higher concentration of solid Fe bound P (Fe-P) at deeper layer indicated the potential re-oxidation of Fe2+ as electron donor during DNRA process and sorption of DRP toward the Fe-containing minerals. However, obvious evidence of desorption proved by DGT indicated that higher NH4+ concentrations favored the reduction of Fe(III) oxy(hydr)oxides and the desorption of DRP into the pore water and diffusion toward the overlying water. Finally, noteworthy S2- release from solid sediment was speculated to stimulate the DNRA and facilitated the accumulation of NH4+ in the solution, which further induced the enrichment of DRP in water from the solid phase. Overall, DNRA potentially facilitates the accumulation of P in lake water, and the synchronous control of N and P is important for the eutrophication management and restoration of lake eutrophication.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Bingchan Jia
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yanwen Zhou
- Nanjing Research Institute of Ecological and Environmental Sciences, Nanjing, 210013, China
| | - Juan Wu
- Gaochun District Water Authority Bureau, Nanjing, 211300, China
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706, Madison, WI, USA
| |
Collapse
|
20
|
Assessing the role of internal phosphorus recycling on eutrophication in four lakes in China and Malaysia. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Laishram RJ, Yumnam G, Alam W. Assessment of ecohydrogeochemical status of freshwater Loktak Lake of Manipur, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:659. [PMID: 35943636 DOI: 10.1007/s10661-022-10336-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The present study has been carried out to assess the ecohydrogeochemical status of Loktak Lake, the largest freshwater lake in the Northeastern region of India, based on the water quality parameters, hydrogeochemistry, water quality indices (WQI) and trophic state index (TSI). The spatio-temporal variations of physicochemical parameters have been assessed, and it was found that parameters such as pH, turbidity, dissolved oxygen, biological oxygen demand, iron, fluoride and coliform concentrations in the water exceeded the permissible limits prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS) during both pre-monsoon (PM) and post-monsoon (PoM) seasons. The water hardness lies within the soft category, except for a few samples found to be moderately hard. WQI values of lake water ranged between 38.19 and 155.47 during PM and 39.48 and 432.26 during PoM. Based on the WQI classification during PM, 8.6% of the samples were in the unsuitable category, 14.3% very poor, 45.7% poor and 31.4% in the good category. During PoM, 22.9% of the samples were in the unsuitable category, 25.7% very poor, 31.4% poor and 20% in the good category. The irrigation water quality was evaluated using indices such as sodium percentage, sodium adsorption ratio, residual sodium carbonate, permeability index and Kelly's ratio, and the results indicated that the lake water could be used safely for agricultural purposes. The trophic state evaluation revealed an oligotrophic condition of the lake waters during PM (TSI 37.9) and a mesotrophic condition during PoM (TSI 46.9).
Collapse
Affiliation(s)
- Ranu Jajo Laishram
- Department of Forestry and Environmental Science, Manipur University (A Central University), Canchipur, Indo-Myanmar Road, Imphal, 795003, Manipur, India.
| | - Gyanendra Yumnam
- Department of Forestry and Environmental Science, Manipur University (A Central University), Canchipur, Indo-Myanmar Road, Imphal, 795003, Manipur, India
| | - Wazir Alam
- Department of Forestry and Environmental Science, Manipur University (A Central University), Canchipur, Indo-Myanmar Road, Imphal, 795003, Manipur, India
| |
Collapse
|
22
|
Cao X, Zhao D, Li C, Röttjers L, Faust K, Zhang H. Regime transition Shapes the Composition, Assembly Processes, and Co-occurrence Pattern of Bacterioplankton Community in a Large Eutrophic Freshwater Lake. MICROBIAL ECOLOGY 2022; 84:336-350. [PMID: 34585289 DOI: 10.1007/s00248-021-01878-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
At certain nutrient concentrations, shallow freshwater lakes are generally characterized by two contrasting ecological regimes with disparate patterns of biodiversity and biogeochemical cycles: a macrophyte-dominated regime (MDR) and a phytoplankton-dominated regime (PDR). To reveal ecological mechanisms that affect bacterioplankton along the regime shift, Illumina MiSeq sequencing of the 16S rRNA gene combined with a novel network clustering tool (Manta) were used to identify patterns of bacterioplankton community composition across the regime shift in Taihu Lake, China. Marked divergence in the composition and ecological assembly processes of bacterioplankton community was observed under the regime shift. The alpha diversity of the bacterioplankton community consistently and continuously decreased with the regime shift from MDR to PDR, while the beta diversity presents differently. Moreover, as the regime shifted from MDR to PDR, the contribution of deterministic processes (such as environmental selection) to the assembly of bacterioplankton community initially decreased and then increased again as regime shift from MDR to PDR, most likely as a consequence of differences in nutrient concentration. The topological properties, including modularity, transitivity and network diameter, of the bacterioplankton co-occurrence networks changed along the regime shift, and the co-occurrences among species changed in structure and were significantly shaped by the environmental variables along the regime transition from MDR to PDR. The divergent environmental state of the regimes with diverse nutritional status may be the most important factor that contributes to the dissimilarity of bacterioplankton community composition along the regime shift.
Collapse
Affiliation(s)
- Xinyi Cao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| | - Chaoran Li
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
| | - Lisa Röttjers
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Hongjie Zhang
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
23
|
Su H, Zou R, Zhang X, Liang Z, Ye R, Liu Y. Exploring the type and strength of nonlinearity in water quality responses to nutrient loading reduction in shallow eutrophic water bodies: Insights from a large number of numerical simulations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:115000. [PMID: 35390659 DOI: 10.1016/j.jenvman.2022.115000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Reducing the load of nutrients is essential to improve water quality while water quality may not respond to the load reduction in a linear way. Despite nonlinear water quality responses being widely mentioned by studies, there is a lack of comprehensive assessment on the extent and type of nonlinear responses considering the seasonal changes. This study aimed to measure the strength of nonlinearity of theoretically possible water quality responses and explore their potential types in shallow eutrophic water bodies. Hereto, we generated 14,710 numerical water body cases that describe the water quality processes using the Environmental Fluid Dynamics Code (EFDC) and applied eight load reduction scenarios on each water body case. Inflows are simplified from Lake Dianchi. The climate conditions consider three cases: Lake Dianchi, Wissahickon Creek, and Famosa Slough. We then developed a nonlinearity strength indicator to quantify the strength and frequency of nonlinear water quality responses. Based on the quantification of nonlinearity, we clustered all the samples of water quality responses using K-Means, an unsupervised Machine Learning algorithm, to find the potential types of nonlinear water quality responses for TN (total nitrogen), TP (total phosphorus), and Chla (chlorophyll a). Results show linear or near-linear response types account for 90%, 69%, and 20% of TN, TP, and Chla samples respectively. TP and Chla could perform more types of nonlinearity. Representative nonlinear water quality responses include disproportional improvement, peak change (disappear, move forwards or afterward), and seasonal deterioration of TN after load reduction. This study would contribute to the current understanding of nonlinear water quality responses to load reduction and provide a basis to study under which conditions the nonlinear responses may emerge.
Collapse
Affiliation(s)
- Han Su
- Multidisciplinary Water Management Group, Faculty of Engineering Technology, University of Twente, Enschede, 7500AE, the Netherlands; Rays Computational Intelligence Lab, Beijing Inteliway Environmental Ltd., Beijing, 100085, China
| | - Rui Zou
- Rays Computational Intelligence Lab, Beijing Inteliway Environmental Ltd., Beijing, 100085, China.
| | - Xiaoling Zhang
- Rays Computational Intelligence Lab, Beijing Inteliway Environmental Ltd., Beijing, 100085, China
| | - Zhongyao Liang
- Department of Ecosystem Science and Management, Pennsylvania State University, State College, PA, 16803, USA
| | - Rui Ye
- Nanjing Smart Water Co. Ltd, Nanjing, 210012, China
| | - Yong Liu
- State Environmental Protection Key Laboratory of All Materials Flux in Rivers, College of Environmental Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
24
|
Shi X, Luo X, Jiao JJ, Zuo J. Dominance of evaporation on lacustrine groundwater discharge to regulate lake nutrient state and algal blooms. WATER RESEARCH 2022; 219:118620. [PMID: 35598468 DOI: 10.1016/j.watres.2022.118620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
As global threats to freshwater lakes, eutrophication and harmful algal blooms (HABs) are governed by various biogeochemical, climatological and anthropogenic processes. Groundwater is key to join these processes in regulating HABs, but the underlying mechanisms remain unclear. Here, we leveraged basin-wide field data of Lake Taihu (China's largest eutrophic lake) and global archives, and demonstrate the dominance of evaporation on lacustrine groundwater discharge (LGD) in shallow lakes. We extrapolated decadal LGD and the derived nutrient loadings and found that HABs promptly consume ubiquitous groundwater borne nutrients, leading lake water N: P ratios 2-3 months time lagged behind LGD N: P ratios. We conclude that evaporation dominated LGD is an unraveled but crucial regulator of nutrient states and HABs in shallow lakes, which advocates synergistical studies from both climatological and hydrogeological perspective when restoring lake ecosystems.
Collapse
Affiliation(s)
- Xiaoyan Shi
- Department of Earth Sciences, The University of Hong Kong, Hong Kong; The University of Hong Kong, Zhejiang Institution of Research and Innovation (ZIRI), Hangzhou, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong; The University of Hong Kong, Zhejiang Institution of Research and Innovation (ZIRI), Hangzhou, China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong; The University of Hong Kong, Zhejiang Institution of Research and Innovation (ZIRI), Hangzhou, China.
| | - Jinchao Zuo
- The University of Hong Kong, Zhejiang Institution of Research and Innovation (ZIRI), Hangzhou, China; The University of Hong Kong, Shenzhen Institution of Research and Innovation (SIRI), Shenzhen, China
| |
Collapse
|
25
|
The Spatiotemporal Characteristics of Water Quality and Main Controlling Factors of Algal Blooms in Tai Lake, China. SUSTAINABILITY 2022. [DOI: 10.3390/su14095710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Taking Tai Lake in China as the research area, a 3D water environment mathematical model was built. Combined with the LHS and Morris uncertainty and sensitivity analysis methods, the uncertainty and sensitivity analysis of total phosphorus (TP), total nitrogen (TN), dissolved oxygen (DO), and chlorophyll a (Chl-a) were carried out. The main conclusions are: (1) The performance assessment of the 3D water environment mathematical model is good (R2 and NSE > 0.8) and is suitable for water quality research in large shallow lakes. (2) The time uncertainty study proves that the variation range of Chl-a is much larger than that of the other three water quality parameters and is more severe in summer and autumn. (3) The spatial uncertainty study proves that Chl-a is mainly present in the northwest lake area (heavily polluted area) and the other three water quality indicators are mainly present in the center. (4) The sensitivity results show that the main controlling factors of DO are ters (0.15) and kmsc (0.12); those of TN and TP are tetn (0.58) and tetp (0.24); and those of Chl-a are its own growth rate (0.14), optimal growth temperature (0.12), death rate (0.12), optimal growth light (0.11), and TP uptake rate (0.11). Thus, TP control is still the key treatment method for algal blooms that can be implemented by the Chinese government.
Collapse
|
26
|
Evaluation of the Potential Release Risk of Internal N and P from Sediments—A Preliminary Study in Two Freshwater Reservoirs in South China. WATER 2022. [DOI: 10.3390/w14040664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growing evidence has demonstrated the influence of internal nitrogen (N) and phosphorus (P) on harmful algae blooms in eutrophic freshwater ecosystems. However, the main controlling factors for internal N and P release risks, and whether these factors vary as environmental conditions change, remains poorly understood. We evaluated potential release risks of N and P from sediments in two freshwater reservoirs in Beihai City, southern China, by evaluating apparent nutrient fluxes during simulated static incubation experiments at two temperatures (15 °C and 25 °C). Sediments were analyzed to determine their basic properties as well as N and P fractions. Results showed that the main controlling factors of the apparent fluxes in dissolved total P, soluble reactive P, total N, and ammonium were related to sediment adsorption properties, redox properties, and microbial-mediated properties (e.g., water-extractable P, total inorganic N, redox-sensitive P, total organic carbon, organic P). The primary controlling factors for apparent N and P fluxes were dependent on the form of N and P and changed with temperature. The results suggest that care should be taken when simply using total N and P contents in sediments to evaluate their internal nutrient release risks.
Collapse
|
27
|
Yang J, Strokal M, Kroeze C, Ma L, Bai Z, Teurlincx S, Janssen ABG. What is the pollution limit? Comparing nutrient loads with thresholds to improve water quality in Lake Baiyangdian. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150710. [PMID: 34619224 DOI: 10.1016/j.scitotenv.2021.150710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Ecological thresholds are useful indicators for water quality managers to define limits to nutrient pollution. A common approach to estimating ecological thresholds is using critical nutrient loads. Critical nutrient loads are typically defined as the loads at which the phytoplankton chlorophyll-a exceeds a certain concentration. However, national policies, such as in China, use chemical indicators (nitrogen and phosphorus concentrations) rather than ecological indicators (phytoplankton chlorophyll-a) to assess water quality. In this study, we uniquely define the critical nutrient loads based on maximum allowable nutrient concentrations for lake Baiyangdian. We assess whether current and future nutrient loads in this lake comply with the Chinese Water Quality standards. To this end, we link two models (MARINA-Lakes and PCLake+). The PCLake+ model was applied to estimate the critical nutrient loads related to ecological thresholds for total nitrogen, total phosphorus and chlorophyll-a. The current (i.e., 2012) and future (i.e., 2050) nutrient loads were derived from the water quality MARINA-Lakes model. Nitrogen loads exceeded the nitrogen threshold in 2012. Phosphorus loads were below all ecological thresholds in 2012. Ecological thresholds are exceeded in 2050 with limited environmental policies, and urbanization may increase nutrient loads above the ecological thresholds in 2050. Recycling and reallocating animal manure is needed to avoid future water pollution in Lake Baiyangdian. Our study highlights the need for effective policies for clean water based on policy-relevant indicators.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China; Water Systems and Global Change Group, Wageningen University and Research, Droevendaalsesteeg 4, Wageningen 6780 PB, the Netherlands
| | - Maryna Strokal
- Water Systems and Global Change Group, Wageningen University and Research, Droevendaalsesteeg 4, Wageningen 6780 PB, the Netherlands
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University and Research, Droevendaalsesteeg 4, Wageningen 6780 PB, the Netherlands
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China.
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Sven Teurlincx
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Aquatic Ecology, P.O. Box 50, Wageningen 6700 AB, the Netherlands
| | - Annette B G Janssen
- Water Systems and Global Change Group, Wageningen University and Research, Droevendaalsesteeg 4, Wageningen 6780 PB, the Netherlands
| |
Collapse
|
28
|
Che L, Wan L. Water Quality Analysis and Evaluation of Eutrophication in a Swamp Wetland in the Permafrost Region of the Lesser Khingan Mountains, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:234-242. [PMID: 34424376 DOI: 10.1007/s00128-021-03359-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Wuyiling Nature Reserve is located at the edge of a frozen soil area and has abundant vegetation resources. It is an important area for evaluating the impact of frozen soil degradation on the environment. Analyzing the water quality and eutrophication characteristics of different swamps and water bodies can provide a basis for protecting the water environment of frozen soil areas. The pollution characteristics of different swamps and water bodies were analyzed and the Levenberg-Marquardt back-propagation neural network was used to evaluate water quality and eutrophication. Finally, the eutrophication evaluation was compared with the nutritional status index. The results demonstrated that (1) the highest concentrations of the total phosphorus (TP), total nitrogen, ammonia nitrogen (AN), permanganate index (PI), chemical oxygen demand, and chlorophyll were all present in the Tangwang River, which could be caused by the effects of human and agricultural activities along the river. The maximum average concentrations of TP, AN, and PI in the four wetland swamps appeared in the shrub swamp; (2) The water quality category of shrub, grass, and forest swamps in Wuyiling Nature Reserve was Class II, and the water quality category of floating swamps and the Tangwang River was Class I. The nutrient levels of the four marsh swamp wetlands and the Tangwang River were in the mid-range for many nutrients; and (3) the LM-BP neural network model, which was used to evaluate water eutrophication, and the results of a comprehensive evaluation of a nutritional status index were similar, further demonstrating the credibility of the evaluation results.
Collapse
Affiliation(s)
- Lina Che
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Luhe Wan
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, 150025, People's Republic of China.
| |
Collapse
|
29
|
Significant Temporal and Spatial Variability in Nutrient Concentrations in a Chinese Eutrophic Shallow Lake and Its Major Tributaries. WATER 2022. [DOI: 10.3390/w14020217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sediment nutrients can be released to the surface water when hydraulic disturbance becomes strong in shallow lakes, which contributes to nutrient enrichment and subsequent lake eutrophication in the water column. To explore the seasonal variations and spatial distributions exhibited by nutrients in the water column, surface sediment, and pore water of Lake Yangcheng and its major tributaries, we determined the concentrations of nitrogen (N) and phosphorus (P) throughout the lake in different seasons of 2018. Total N (TN) and total P (TP) concentrations in the connected rivers were much greater than those in the lake, indicating that external loading greatly contributed to the nutrient enrichment. TN concentration in the water column was highest in the winter, whereas TP peaked in the summer. A similar temporal pattern was observed for TN and TP in the sediment with maxima in the winter and minima in the summer; however, nutrients in the pore water were highest in the summer, in contrast to the temporal variation in the sediment. Additionally, high TN values in the water column and high TP in the three compartments were distributed primarily in the west part of the lake, while high TN concentrations in the sediment and pore water were observed mainly in the east portion of the lake. According to the enrichment factor index (an indicator evaluating the nutrient enrichment by comparing the detected contents and standard values), nutrients in the lake sediment were severely enriched with TN and TP averaging 2195.8 mg/kg and 543.0 mg/kg, respectively. The vertical distribution of TN and TP generally exhibited similar decreasing patterns with an increase in sediment depth, suggesting mineralization of TN and TP by microbes and benthic organisms. More attention and research are needed to understand the seasonality of nutrient exchange across the sediment–water interface, especially in eutrophic lakes.
Collapse
|
30
|
Mini-review of process-based food web models and their application in aquatic-terrestrial meta-ecosystems. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Janssen ABG, Droppers B, Kong X, Teurlincx S, Tong Y, Kroeze C. Characterizing 19 thousand Chinese lakes, ponds and reservoirs by morphometric, climate and sediment characteristics. WATER RESEARCH 2021; 202:117427. [PMID: 34298277 DOI: 10.1016/j.watres.2021.117427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Chinese lakes, including ponds and reservoirs, are increasingly threatened by algal blooms. Yet, each lake is unique, leading to large inter-lake variation in lake vulnerability to algal blooms. Here, we aim to assess the effects of unique lake characteristics on lake vulnerability to algal blooms. To this end, we built a novel and comprehensive database of lake morphometric, climate and sediment characteristics of 19,536 Chinese lakes, including ponds and reservoirs (>0.1 km2). We assessed lake characteristics for nine stratification classes and show that lakes, including ponds and reservoirs, in eastern China typically have a warm stratification class (Tavg>4 °C) and are slightly deeper than those in western China. Model results for representative lakes suggest that the most vulnerable lakes to algal blooms are in eastern China where pollution levels are also highest. Our characterization provides an important baseline to inform policymakers in what regions lakes are potentially most vulnerable to algal blooms.
Collapse
Affiliation(s)
- Annette B G Janssen
- Water Systems and Global Change Group, Wageningen University & Research, PO Box 47, 6700 AA Wageningen, the Netherlands.
| | - Bram Droppers
- Water Systems and Global Change Group, Wageningen University & Research, PO Box 47, 6700 AA Wageningen, the Netherlands
| | - Xiangzhen Kong
- UFZ - Helmholtz Centre for Environmental Research, Department Lake Research, Brückstr. 3a, 39114 Magdeburg, Germany; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Sven Teurlincx
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, the Netherlands
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 30000, China
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University & Research, PO Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
32
|
Uncertainty and Sensitivity Analysis of Input Conditions in a Large Shallow Lake Based on the Latin Hypercube Sampling and Morris Methods. WATER 2021. [DOI: 10.3390/w13131861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We selected Tai Lake in China as the research area, and based on the Eco-lab model, we parameterized seven main external input conditions: discharge, carbon, nitrogen, phosphorus, wind speed, elevation, and temperature. We combined the LHS uncertainty analysis method and the Morris sensitivity analysis method to study the relationship between water quality and input conditions. The results showed that (1) the external input conditions had an uncertain impact on water quality. Among them, the uncertainties in total nitrogen concentration (TN) and total phosphorus concentration (TP) were mainly reflected in the lake entrance area, and the uncertainties of chlorophyll-a (Chl-a) and dissolved oxygen (DO) were mainly reflected in the lake center area. (2) The external input conditions had different sensitivities to different water layers. The bottom layer was most clearly and stably affected by input conditions. The TN and TP of the three different water layers were closely related to the flux into the lake, with average sensitivities of 83% and 78%, respectively. DO was mainly related to temperature and water elevation, with the bottom layer affected by temperatures as high as 98%. Chl-a was affected by all input factors except nitrogen and was most affected by wind speed, with an average of about 34%. Therefore, the accuracy of external input conditions can be effectively improved according to specific goals, reducing the uncertainty impact of the external input conditions of the model, and the model can provide a scientific reference for the determination of the mid- to long-term governance plan for Tai Lake in the future.
Collapse
|
33
|
Ji N, Zou R, Jiang Q, Liang Z, Hu M, Liu Y, Yu Y, Wang Z, Wang H. Internal positive feedback promotes water quality improvement for a recovering hyper-eutrophic lake: A three-dimensional nutrient flux tracking model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145505. [PMID: 33581532 DOI: 10.1016/j.scitotenv.2021.145505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Nutrient dynamics in lakes are determined by the combined effects of external and internal nutrient fluxes. However, the feedback loop of nutrient fluxes and water quality changes is still an open question. An integrated three-dimensional flux tracking approach based on the Environmental Fluid Dynamics Code model was established to quantify the long-term dynamic changes in external and internal processes in Lake Dianchi (one of the three most hyper-eutrophic lakes in China), and to explore the potential causes of water quality improvement during 2012-2018. The long-term trends and relative influences of nutrient fluxes on water quality were identified. The results showed that the inflow flux was the largest input source and declined by 50% between 2003 and 2012, which was followed by a stable trend from 2012 to 2018. The second largest input source was benthic release, which exhibited a significant interannual reduction. Algae sedimentation was the largest removal process, and declined by 45% between 2012 and 2018. An integrated analysis demonstrated that, following an external loading reduction prior to 2012, the positive feedback of internal fluxes promoted water quality improvement during 2012-2018. Considering the long timescale of the nutrient-flux feedback mechanism, reducing external loading is still the top priority for a long-term virtuous cycle of water quality in the process of eutrophic lake restoration.
Collapse
Affiliation(s)
- Ningning Ji
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Materials Flux in Rivers, Peking University, Beijing 100871, China
| | - Rui Zou
- Rays Computational Intelligence Lab, Beijing Inteliway Environmental Ltd., Beijing 100085, China
| | - Qingsong Jiang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Materials Flux in Rivers, Peking University, Beijing 100871, China
| | - Zhongyao Liang
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 407 Forest Resources Building, University Park, PA 16802, USA
| | - Mengchen Hu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Materials Flux in Rivers, Peking University, Beijing 100871, China
| | - Yong Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Materials Flux in Rivers, Peking University, Beijing 100871, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034, China.
| | - Yanhong Yu
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034, China
| | - Zhiyun Wang
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034, China
| | - Hailing Wang
- Kunming Dianchi Investment Co., Ltd., Kunming 650100, China
| |
Collapse
|
34
|
Temporal Temperature Distribution in Shallow Sediments of a Large Shallow Lake and Estimated Hyporheic Flux Using VFLUX 2 Model. WATER 2021. [DOI: 10.3390/w13030300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying and quantifying exchange flux across sediment-water interface is crucial when considering water and nutrient contributions to a eutrophic lake. In this study, observed temporal temperature distributions in shallow sediment of Lake Taihu (Eastern China) based on three-depth sensors at 14 sites throughout 2016 were used to assess temporal water exchange patterns. Results show that temporal temperature in shallow sediments differed with sampling sites and depths and the temperature amplitudes also clearly shrunk as the offshore distance increasing. Exchange fluxes estimated using the VFLUX 2 model based on temperature amplitude show that alternating-direction temporal flow exists in the eastern zone of Lake Taihu with averages of −13.0, −0.6, and 3.4 mm day−1 (negative represents discharging into the lake) at three nearshore sites (0.5, 2.0, and 6.0 km away from the shoreline, respectively). Whereas downwelling flow occurred throughout almost the entire year with averages of 37.7, 23.5, and 6.6 mm day−1 at the three southern nearshore sites, respectively. However, upwelling flow occurred throughout almost the entire year and varied widely in the western zone with averages of −74.8, 45.9, and −27.0 mm day–1 and in the northern zone with averages of −76.2, −55.3, and −51.1 mm day−1. The estimated fluxes in the central zone were relatively low and varied slightly during the entire year (−15.1 to 22.5 mm day−1 with an average of −0.7 mm day−1). Compared with the sub sensor pair (at 5 and 10 cm), the estimated hyporheic fluxes based on the top sensor pair (at 0 and 5 cm) varied within wider ranges and exhibited relatively larger values. Effects of upwelling flow at the western and northern zones need to be paid attention to on nearshore water quality particularly during winter and spring seasons. Estimated flow patterns at the four zones summarily reflect the seasonal water interaction near the sediment surface of Lake Taihu and are beneficial to improve its comprehensive management. Thermal dispersivity usually used for estimating the thermal diffusivity is more sensitive for upward hyporheic flux estimating even if with a low flux. Temperature amplitude ratio method can be used to estimate the exchange flux and suitable for low flux conditions (either upwelling or downwelling). A better evaluation of the exchange flux near inclined nearshore zones might need an optimized installation of temperature sensors along with the potential flow path and/or a vertical two-dimensional model in the future.
Collapse
|
35
|
Huang J, Xu Q, Wang X, Ji H, Quigley EJ, Sharbatmaleki M, Li S, Xi B, Sun B, Li C. Effects of hydrological and climatic variables on cyanobacterial blooms in four large shallow lakes fed by the Yangtze River. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 5:100069. [PMID: 36158610 PMCID: PMC9488064 DOI: 10.1016/j.ese.2020.100069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Shallow lakes, one of the most widespread water bodies in the world, are easily shifted to a new trophic state due to external interferences. Shifting hydrologic conditions and climate change can cause cyanobacterial harmful algal blooms (CyanoHABs) in shallow lakes, which pose serious threats to ecological integrity and human health. This study analyzed the effects of hydrologic and meteorological variables on cyanobacterial blooms in Yangtze-connected lakes (Lake Dongting and Poyang) and isolated lakes (Lake Chao and Tai). The results show that (i) chlorophyll-a (Chl-a) concentration tends to decrease exponentially with increasing relative lake level fluctuations (RLLF) and precipitation, but to increase linearly with increasing wind speed and air temperature; (ii) Chl-a concentrations in lakes were significantly higher when RLLF < 100, precipitation < 2.6 mm, wind speed > 2.6 m s-1, or air temperature > 17.8 °C; (iii) the Chl-a concentration of Yangtze-isolated lakes was more significantly affected by water level amplitude, precipitation, wind speed and air temperature than the Yangtze-connected lakes; (iv) the RLLF and the ratio of wind speed to mean water depth could be innovative coupling factors to examine variation characteristics of Chl-a in shallow lakes with greater correlation than single factors.
Collapse
Affiliation(s)
- Jian Huang
- California State Polytechnic University Pomona, CA, USA
| | - Qiujin Xu
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xixi Wang
- Old Dominion University, Norfolk, VA, USA
| | - Hao Ji
- California State Polytechnic University Pomona, CA, USA
| | | | | | - Simeng Li
- California State Polytechnic University Pomona, CA, USA
| | - Beidou Xi
- Old Dominion University, Norfolk, VA, USA
| | - Biao Sun
- Inner Mongolia Agriculture University, Hohhot, China
| | - Caole Li
- Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
36
|
Andersen TK, Nielsen A, Jeppesen E, Hu F, Bolding K, Liu Z, Søndergaard M, Johansson LS, Trolle D. Predicting ecosystem state changes in shallow lakes using an aquatic ecosystem model: Lake Hinge, Denmark, an example. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02160. [PMID: 32363772 PMCID: PMC7583379 DOI: 10.1002/eap.2160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/26/2019] [Accepted: 03/30/2020] [Indexed: 05/06/2023]
Abstract
In recent years, considerable efforts have been made to restore turbid, phytoplankton-dominated shallow lakes to a clear-water state with high coverage of submerged macrophytes. Various dynamic lake models with simplified physical representations of vertical gradients, such as PCLake, have been used to predict external nutrient load thresholds for such nonlinear regime shifts. However, recent observational studies have questioned the concept of regime shifts by emphasizing that gradual changes are more common than sudden shifts. We investigated if regime shifts would be more gradual if the models account for depth-dependent heterogeneity of the system by including the possibility of vertical gradients in the water column and sediment layers for the entire depth. Hence, bifurcation analysis was undertaken using the 1D hydrodynamic model GOTM, accounting for vertical gradients, coupled to the aquatic ecosystem model PCLake, which is implemented in the framework for aquatic biogeochemical modeling (FABM). First, the model was calibrated and validated against a comprehensive data set covering two consecutive 7-yr periods from Lake Hinge, a shallow, eutrophic Danish lake. The autocalibration program Auto-Calibration Python (ACPy) was applied to achieve a more comprehensive adjustment of model parameters. The model simulations showed excellent agreement with observed data for water temperature, total nitrogen, and nitrate and good agreement for ammonium, total phosphorus, phosphate, and chlorophyll a concentrations. Zooplankton and macrophyte coverage were adequately simulated for the purpose of this study, and in general the GOTM-FABM-PCLake model simulations performed well compared with other model studies. In contrast to previous model studies ignoring depth heterogeneity, our bifurcation analysis revealed that the spatial extent and depth limitation of macrophytes as well as phytoplankton chlorophyll-a responded more gradually over time to a reduction in the external phosphorus load, albeit some hysteresis effects still appeared. In a management perspective, our study emphasizes the need to include depth heterogeneity in the model structure to more correctly determine at which external nutrient load a given lake changes ecosystem state to a clear-water condition.
Collapse
Affiliation(s)
- Tobias Kuhlmann Andersen
- Department of BioscienceAarhus University8600SilkeborgDenmark
- Sino‐Danish Center for Education and ResearchUniversity of Chinese Academy of SciencesBeijing100049China
| | - Anders Nielsen
- Department of BioscienceAarhus University8600SilkeborgDenmark
| | - Erik Jeppesen
- Department of BioscienceAarhus University8600SilkeborgDenmark
- Sino‐Danish Center for Education and ResearchUniversity of Chinese Academy of SciencesBeijing100049China
| | - Fenjuan Hu
- Department of BioscienceAarhus University8600SilkeborgDenmark
| | - Karsten Bolding
- Department of BioscienceAarhus University8600SilkeborgDenmark
- Sino‐Danish Center for Education and ResearchUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zhengwen Liu
- Sino‐Danish Center for Education and ResearchUniversity of Chinese Academy of SciencesBeijing100049China
- State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjing210008China
- Department of EcologyJinan UniversityGuangzhou510632China
| | - Martin Søndergaard
- Department of BioscienceAarhus University8600SilkeborgDenmark
- Sino‐Danish Center for Education and ResearchUniversity of Chinese Academy of SciencesBeijing100049China
| | | | - Dennis Trolle
- Department of BioscienceAarhus University8600SilkeborgDenmark
- Sino‐Danish Center for Education and ResearchUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
37
|
Exploring How Cyanobacterial Traits Affect Nutrient Loading Thresholds in Shallow Lakes: A Modelling Approach. WATER 2020. [DOI: 10.3390/w12092467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Globally, many shallow lakes have shifted from a clear macrophyte-dominated state to a turbid phytoplankton-dominated state due to eutrophication. Such shifts are often accompanied by toxic cyanobacterial blooms, with specialized traits including buoyancy regulation and nitrogen fixation. Previous work has focused on how these traits contribute to cyanobacterial competitiveness. Yet, little is known on how these traits affect the value of nutrient loading thresholds of shallow lakes. These thresholds are defined as the nutrient loading at which lakes shift water quality state. Here, we used a modelling approach to estimate the effects of traits on nutrient loading thresholds. We incorporated cyanobacterial traits in the process-based ecosystem model PCLake+, known for its ability to determine nutrient loading thresholds. Four scenarios were simulated, including cyanobacteria without traits, with buoyancy regulation, with nitrogen fixation, and with both traits. Nutrient loading thresholds were obtained under N-limited, P-limited, and colimited conditions. Results show that cyanobacterial traits can impede lake restoration actions aimed at removing cyanobacterial blooms via nutrient loading reduction. However, these traits hardly affect the nutrient loading thresholds for clear lakes experiencing eutrophication. Our results provide references for nutrient loading thresholds and draw attention to cyanobacterial traits during the remediation of eutrophic water bodies.
Collapse
|
38
|
Huang J, Zhang Y, Arhonditsis GB, Gao J, Chen Q, Peng J. The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: A national-scale characterization. WATER RESEARCH 2020; 181:115902. [PMID: 32505885 DOI: 10.1016/j.watres.2020.115902] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 05/22/2023]
Abstract
Harmful algal blooms (HABs) can have dire repercussions on aquatic wildlife and human health, and may negatively affect recreational uses, aesthetics, taste, and odor in drinking water. The factors that influence the occurrence and magnitude of harmful algal blooms and toxin production remain poorly understood and can vary in space and time. It is within this context that we use machine learning (ML) and two 14-year (2005-2018) data sets on water quality and meteorological conditions of China's lakes and reservoirs to shed light on the magnitude and associated drivers of HAB events. General regression neural network (GRNN) models are developed to predict chlorophyll a concentrations for each lake and reservoir during two study periods (2005-2010 and 2011-2018). The developed models with an acceptable model fit are then analyzed by two indices to determine the areal HAB magnitudes and associated drivers. Our national assessment suggests that HAB magnitudes for China's lakes and reservoirs displayed a decreasing trend from 2006 (1363.3 km2) to 2013 (665.2 km2), and a slightly increasing trend from 2013 to 2018 (775.4 km2). Among the 142 studied lakes and reservoirs, most severe HABs were found in Lakes Taihu, Dianchi and Chaohu with their contribution to the total HAB magnitude varying from 89.2% (2013) to 62.6% (2018). HABs in Lakes Taihu and Chaohu were strongly associated with both total phosphorus and nitrogen concentrations, while our results were inconclusive with respect to the predominant environmental factors shaping the eutrophication phenomena in Lake Dianchi. The present study provides evidence that effective HAB mitigation may require both nitrogen and phosphorus reductions and longer recovery times; especially in view of the current climate-change projections. ML represents a robust strategy to elucidate water quality patterns in lakes, where the available information is sufficient to train the constructed algorithms. Our mapping of HAB magnitudes and associated environmental/meteorological drivers can help managers to delineate hot-spots at a national scale, and comprehensively design the best management practices for mitigating the eutrophication severity in China's lakes and reservoirs.
Collapse
Affiliation(s)
- Jiacong Huang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Yinjun Zhang
- China National Environmental Monitoring Centre, 8(B) Dayangfang Beiyuan Road, Chaoyang District, Beijing, 100012, China
| | - George B Arhonditsis
- Ecological Modelling Laboratory, Department of Physical & Environmental Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Junfeng Gao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Qiuwen Chen
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China.
| | - Jian Peng
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, United Kingdom
| |
Collapse
|
39
|
Yang C, Yang P, Geng J, Yin H, Chen K. Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114292. [PMID: 32179221 DOI: 10.1016/j.envpol.2020.114292] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
It is well known that sediment internal loading can worsen lake water quality for many years even if effective measures have been taken to control external loading. In this study, a 12-month field study was carried out to reveal the relationship between sediment phosphorus (P) and nitrogen (N) forms as well as their fluxes across sediment-water interface from the most polluted area of Lake Chaohu, a large shallow eutrophication lake in China. The possible contribution of mobile fraction of P and N to lake eutrophication is also analyzed. The results indicate that the content of total P and N and their forms in water and sediment were rather dynamic during the year-long field investigation. Low concentrations of P and N from sediment and overlying water were observed in the winter but increased sharply in summer. The phosphate and ammonium fluxes showed evident seasonal variation, and higher fluxes can be observed in warmer seasons especially during the period of algal bloom with high sedimentation. The reduction of ferric iron and degradation of organic matter could be responsible for the increased P flux from sediment in algal bloom seasons, which is consistent with the seasonal variation of P forms in sediment. A comparison of the mole ratio of P flux:N flux to both the P:N mole ratio in sediments and the Redfield ratio was used to further distinguish the dominant sediment P forms' release during seasonal variation. Moreover, the anoxic condition and enhanced microbial activity in warmer seasons contribute a lot to the ammonium release from sediment. Consequently, the nutrient fluxes seasonally influence their corresponding nutrient concentrations in the overlying water. The results of this study indicate that sediment internal loading plays an important role in the eutrophication of Lake Chaohu.
Collapse
Affiliation(s)
- Chunhui Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Pan Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Jian Geng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| | - Kaining Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| |
Collapse
|
40
|
Sarpong L, Li Y, Norgbey E, Nwankwegu AS, Cheng Y, Nasiru S, Nooni IK, Setordjie VE. A Sediment Diagenesis Model of Seasonal Nitrate and Ammonium Flux Spatial Variation Contributing to Eutrophication at Taihu, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4158. [PMID: 32545158 PMCID: PMC7312823 DOI: 10.3390/ijerph17114158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
Algal blooms have thrived on the third-largest shallow lake in China, Taihu over the past decade. Due to the recycling of nutrients such as nitrate and ammonium, this problem has been difficult to eradicate. Sediment flux, a product of diagenesis, explains the recycling of nutrients. The objective was to simulate the seasonal spatial variations of nitrate and ammonium flux. In this paper, sediment diagenesis modeling was applied to Taihu with Environmental Fluid Dynamics Code (EFDC). Latin hypercube sampling was used to create an input file from twelve (12) nitrogen related parameters of sediment diagenesis and incorporated into the EFDC. The results were analyzed under four seasons: summer, autumn, winter, and spring. The concentration of NH4-N in the sediment-water column increased from 2.744903 to 22.38613 (g/m3). In summer, there was an accumulation of ammonium in the water column. In autumn and winter, the sediment was progressively oxidized. In spring, low-oxygen conditions intensify denitrification. This allows algal blooms to continue to thrive, creating a threat to water quality sustainability. The sediment diagenesis model, coupled with water quality measured data, showed an average relative error for Total Nitrogen (TN) of 38.137%, making the model suitable. Future studies should simulate phosphate flux and measure sediment fluxes on the lake.
Collapse
Affiliation(s)
- Linda Sarpong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; (L.S.); (E.N.); (A.S.N.); (Y.C.)
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- College of Environment, Hohai University, Nanjing 210098, China
| | - Eyram Norgbey
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; (L.S.); (E.N.); (A.S.N.); (Y.C.)
- College of Environment, Hohai University, Nanjing 210098, China
| | - Amechi S. Nwankwegu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; (L.S.); (E.N.); (A.S.N.); (Y.C.)
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yue Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; (L.S.); (E.N.); (A.S.N.); (Y.C.)
- College of Environment, Hohai University, Nanjing 210098, China
| | - Salifu Nasiru
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China;
| | - Isaac Kwesi Nooni
- School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China;
- Binjiang College, Nanjing University of Information Science & Technology, No.333 Xishan Road, Wuxi 214105, China
| | - Victor Edem Setordjie
- College of Coastal, Harbor and Offshore Engineering, Hohai University, Nanjing 210098, China;
| |
Collapse
|
41
|
Identification of Regime Shifts and Their Potential Drivers in the Shallow Eutrophic Lake Yilong, Southwest China. SUSTAINABILITY 2020. [DOI: 10.3390/su12093704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regime shifts in shallow lakes can lead to great changes in ecosystem structures and functions, making ecosystem management more complicated. Lake Yilong, located in Yunnan Province, is one of the most eutrophic lakes in China. Although there is a high possibility that this lake has undergone regime shift one or more times, the presence of regime shifts and their drivers remain unknown. Here, we employed the sequential t-test analysis of regime shifts to detect the regime shifts based on the long-term (1989–2018) dataset of the lake. We further determined their potential drivers, and explored the nutrient thresholds of regime shifts and hysteresis. The results showed that during the testing period, three regime shifts occurred in 1996 (restorative type), 2009 (catastrophic type) and 2014 (restorative type). The potential key drivers for the first two regime shifts (1996 and 2009) were both related to aquaculture. The abolition of cage fish culture may have led to the restorative regime shift in 1996, and the stocking of crabs and excessive premature releasing of fry possibly caused the catastrophic regime shift in 2009. However, the third regime shift, which occurred in 2014, was possibly related to the drought and succedent hydration. These results indicate that adjustments of aquaculture strategy and hydrological conditions are critical for the lake ecosystem’s recovery. Moreover, the total phosphorus thresholds were identified to be lower than 0.046 mg/L (restorative type) and higher than 0.105 mg/L (catastrophic type), respectively. In addition, an obvious hysteresis was observed after 2014, suggesting that nutrient reduction is important for this lake’s management in the future.
Collapse
|
42
|
Abstract
As the third largest fresh water lake in China, Taihu Lake is suffering from serious eutrophication, where nutrient loading from tributary and surrounding river networks is one of the main contributors. In this study, water age is used to investigate the impacts of tributary discharge and wind influence on nutrient status in Taihu Lake, quantitatively. On the base of sub-basins of upstream catchments and boundary conditions of the lake, multiple inflow tributaries are categorized into three groups. For each group, the water age has been computed accordingly. A well-calibrated and validated three-dimensional Delft3D model is used to investigate both spatial and temporal heterogeneity of water age. Changes in wind direction lead to changes in both the average value and spatial pattern of water age, while the impact of wind speed differs in each tributary group. Water age decreases with higher inflow discharge from tributaries; however, discharge effects are less significant than that of wind. Wind speed decline, such as that induced by climate change, has negative effects on both internal and external nutrient source release, and results in water quality deterioration. Water age is proved to be an effective indicator of water exchange efficiency, which may help decision-makers to carry out integrated water management at a complex basin scale.
Collapse
|
43
|
Yuan H, Tai Z, Li Q, Liu E. In-situ, high-resolution evidence from water-sediment interface for significant role of iron bound phosphorus in eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136040. [PMID: 31864994 DOI: 10.1016/j.scitotenv.2019.136040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/19/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Potential release of phosphorus (P) bound to iron (Fe) is critical because of the aggravating effects on P load in aquatic ecosystems. However, the process is largely unknown due to the absence of in-situ high-resolution evidence. Dissolved oxygen (DO), ferrous ion (Fe2+), and dissolved reactive phosphate (DRP) in interstitial water of sediment columns from a eutrophic shallow lake were measured using the novel colorimetric planar optode imaging method and ZrO-Chelex DGT technology during controlled experimental episodes. The solid Fe and P fractions in sediments were also simultaneously evaluated by employing sequential extraction procedure and spectra scanning analysis including SEM-EDS and 57Fe-Mössbauer spectroscopy. The results demonstrated that the DO penetration depths were accordingly regulated with time, the depths depended on the oxygen supply patterns, and oxygen depletion occurred at anaerobic intervals. Considerable increases of concentrations and diffusion of Fe2+ and DRP in interstitial water upward from the deep layer into the overlying water were mirrored by decreased concentrations of solid Fe bound P and mineral phase Fe(II) during an anaerobic episode. This confirmed that the re-dissolution of solid Fe bound P pools is the most important source of labile P, and aggravates the P budget in lake water via anaerobic intervals. The reduction-precipitation mechanism of Fe bound P during different oxidation scenarios indicated that the Fe bound P in sediments can act as intermediates between Po and Ca bound P, and result in the permanent burying of authigenic Ca bound P. Significantly positive correlations (R2 ≥ 0.7783, n = 74) between labile Fe2+ and DRP on both redox conditions also provided explicit evidence for the critical role of redox controlling Fe in labile P cycling at the lacustrine sediment-water interface. These findings provide improved insight for potential controlling effort of Fe coupled P to labile P depending on the oxygen supply in shallow-water hypereutrophic lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ziqiu Tai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qiang Li
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China.
| |
Collapse
|
44
|
Wu P, Lu Y, Lu Y, Dai J, Huang T. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:138-148. [PMID: 31486194 DOI: 10.1002/wer.1220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/06/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Nutrient enrichment facilitates algal outbreaks in eutrophic shallow lakes. To further understand the influence of various inorganic nutrient forms on cyanobacterial blooms, a nitrate (NO3 ), ammonium (NH4 ), and orthophosphate (PO4 ) amendment experiment was conducted in a large shallow lake of China (Lake Taihu) during summer. The results showed that the photosynthetic performance of phytoplankton responded more positively to phosphorus (P) than nitrogen (N), and NH4 addition stimulated higher algal photosynthetic activities in P-enriched waters. Individual inorganic N or PO4 addition significantly activated cyanobacteria and green algae. Meanwhile, the N plus P amendment promoted higher biomass of the planktonic microbial community, and the dual addition of NH4 + PO4 yielded the highest chlorophyll a concentration. NH4 additions provisionally promoted higher green algae than cyanobacteria biomass in the beginning, while cyanobacteria dominated again with increasing NH4 :PO4 ratios. These results revealed that increasing ammonium would enhance the increase in phytoplankton biomass in advance and prolong the duration of algal blooms. Hence, based on the control of P loading, the reduction in external inorganic N focusing on ammonium sources (such as ammonia N fertilizer) at the watershed scale would help to alleviate eutrophication and cyanobacterial blooms over the long term in Lake Taihu. PRACTITIONER POINTS: Ammonium addition stimulated higher algal photosynthetic activities in P-enriched waters. Individual inorganic N or PO4 addition significantly activated cyanobacteria and green algae. The dual addition of NH4 + PO4 yielded the highest chlorophyll a concentration. Increasing NH4 would enhance the increase in phytoplankton biomass in advance and prolong the duration of cyanobacterial blooms.
Collapse
Affiliation(s)
- Pan Wu
- State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
| | - Yongjun Lu
- State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
| | - Yan Lu
- State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
| | - Jiangyu Dai
- State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
| | - Tingjie Huang
- State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
| |
Collapse
|
45
|
Study of the limnology of wetlands through a one-dimensional model for assessing the eutrophication levels induced by various pollution sources. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2019.108907] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Yang C, Nan J, Yu H, Li J. Embedded reservoir and constructed wetland for drinking water source protection: Effects on nutrient removal and phytoplankton succession. J Environ Sci (China) 2020; 87:260-271. [PMID: 31791499 DOI: 10.1016/j.jes.2019.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
An embedded reservoir that provides an efficient nutrient removal system protects drinking water. However, embedded reservoirs are rarely used in eutrophic shallow lakes because of their undetermined nutrient retention efficiency and unknown effects by the phytoplankton community. In this study, we aim to investigate the nutrient retention and algae succession in an embedded reservoir and adjacent wetland from April 2017 to September 2018 in the eastern part of Lake Taihu, China. More than 40% of total phosphorus (TP) and 45% of particulate phosphorous entering the reservoir were retained semi-annually, and the highest TP removal efficiency was achieved in the reservoir during autumn with an average value of 53.3% ± 9.9%. The overall nitrogen retention efficiency (21.7% ± 37.8%) was lower than that of TP (41.8% ± 27.8%). Similar trends were obtained in the wetland area. An important pathway for phosphorus removal is through particulate matter retention. Our study revealed that nutrient retention mechanisms in the reservoir were primarily via macrophyte absorption, particulate substance sedimentation, and prolonged water residence time. Consequently, the phytoplankton biomass (Chl-a) in the reservoir decreased (from 48.0 to 25.2 μg/L) and water transparency improved, due to the decreased P level and transformation of the phytoplankton group into simple structures with good ecological status. Therefore, the combination of embedded reservoir and constructed wetland ecosystem can be used successfully to protect surface water. The results will be advantageous to groups seeking to preserve drinking water sources.
Collapse
Affiliation(s)
- Changtao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Nan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huaiyong Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
47
|
Modeling the Ecological Response of a Temporarily Summer-Stratified Lake to Extreme Heatwaves. WATER 2019. [DOI: 10.3390/w12010094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate extremes, which are steadily increasing in frequency, can have detrimental consequences for lake ecosystems. We used a state-of-the-art, one-dimensional, hydrodynamic-ecosystem model [General Ocean Turbulence Model (GOTM)-framework for aquatic biogeochemical models (FABM)-PCLake] to determine the influence of extreme climate events on a temperate and temporarily summer stratified lake (Lake Bryrup, Denmark). The model was calibrated (eight years data) and validated (two years data), and the modeled variables generally showed good agreement with observations. Then, a span of extreme warming scenarios was designed based on weather data from the heatwave seen over northern Europe in May–July 2018, mimicking situations of extreme warming returning every year, every three years, and every five years in summer and all year round, respectively. We found only modest impacts of the extreme climate events on nutrient levels, which in some scenarios decreased slightly when looking at the annual mean. The most significant impacts were found for phytoplankton, where summer average chlorophyll a concentrations and cyanobacteria biomass peaks were up to 39% and 58% higher than during baseline, respectively. As a result, the phytoplankton to nutrient ratios increased during the heat wave experiments, reflecting an increased productivity and an increased cycling of nutrients in the pelagic. The phytoplankton blooms occurred up to 15 days earlier and lasted for up to half a month longer during heat wave years relative to the baseline. Our extreme scenarios illustrated and quantified the large impacts of a past heat wave (observed 2018) and may be indicative of the future for many temperate lakes.
Collapse
|
48
|
Chang M, Teurlincx S, DeAngelis DL, Janse JH, Troost TA, van Wijk D, Mooij WM, Janssen ABG. A Generically Parameterized model of Lake eutrophication (GPLake) that links field-, lab- and model-based knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133887. [PMID: 31756864 DOI: 10.1016/j.scitotenv.2019.133887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Worldwide, eutrophication is threatening lake ecosystems. To support lake management numerous eutrophication models have been developed. Diverse research questions in a wide range of lake ecosystems are addressed by these models. The established models are based on three key approaches: the empirical approach that employs field surveys, the theoretical approach in which models based on first principles are tested against lab experiments, and the process-based approach that uses parameters and functions representing detailed biogeochemical processes. These approaches have led to an accumulation of field-, lab- and model-based knowledge, respectively. Linking these sources of knowledge would benefit lake management by exploiting complementary information; however, the development of a simple tool that links these approaches was hampered by their large differences in scale and complexity. Here we propose a Generically Parameterized Lake eutrophication model (GPLake) that links field-, lab- and model-based knowledge and can be used to make a first diagnosis of lake water quality. We derived GPLake from consumer-resource theory by the principle that lacustrine phytoplankton is typically limited by two resources: nutrients and light. These limitations are captured in two generic parameters that shape the nutrient to chlorophyll-a relations. Next, we parameterized GPLake, using knowledge from empirical, theoretical, and process-based approaches. GPLake generic parameters were found to scale in a comparable manner across data sources. Finally, we show that GPLake can be applied as a simple tool that provides lake managers with a first diagnosis of the limiting factor and lake water quality, using only the parameters for lake depth, residence time and current nutrient loading. With this first-order assessment, lake managers can easily assess measures such as reducing nutrient load, decreasing residence time or changing depth before spending money on field-, lab- or model- experiments to support lake management.
Collapse
Affiliation(s)
- Manqi Chang
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Aquatic Ecology, PO Box 50, 6700 AB Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, PO Box 47, 6700 AA, the Netherlands.
| | - Sven Teurlincx
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Aquatic Ecology, PO Box 50, 6700 AB Wageningen, the Netherlands
| | - Donald L DeAngelis
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL 32653, USA
| | - Jan H Janse
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Aquatic Ecology, PO Box 50, 6700 AB Wageningen, the Netherlands; PBL, Netherlands Environmental Assessment Agency, PO Box 30314, 2500 GH Den Haag, the Netherlands
| | | | - Dianneke van Wijk
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Aquatic Ecology, PO Box 50, 6700 AB Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, PO Box 47, 6700 AA, the Netherlands; Water Systems and Global Change Group, Wageningen University & Research, PO Box 47, 6700 AA Wageningen, the Netherlands
| | - Wolf M Mooij
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Aquatic Ecology, PO Box 50, 6700 AB Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, PO Box 47, 6700 AA, the Netherlands
| | - Annette B G Janssen
- Water Systems and Global Change Group, Wageningen University & Research, PO Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
49
|
Wang M, Xu X, Wu Z, Zhang X, Sun P, Wen Y, Wang Z, Lu X, Zhang W, Wang X, Tong Y. Seasonal Pattern of Nutrient Limitation in a Eutrophic Lake and Quantitative Analysis of the Impacts from Internal Nutrient Cycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13675-13686. [PMID: 31599576 DOI: 10.1021/acs.est.9b04266] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nutrient dynamics in lakes are determined by the external anthropogenic discharges and unobserved internal cycling processes. In this work, a decadal nutrient data set from the eutrophic Lake Taihu, China, revealed a strong seasonal pattern of nutrient concentration and limitation. A nutrient-driven dynamic eutrophication model based on a Bayesian hierarchical framework was established to quantify the relative contributions to temporal variations from external discharges and internal processes. Results showed that after years of efforts on nutrient reduction, external discharges were relatively small and fluctuated less between seasons compared to the internal processes. A quantitative relationship between monthly nutrient concentration and corresponding internal loading was observed. Lake sediment could transform from a source of phosphorus in overlying water in summer and autumn to a sink in winter and spring. Together with temporal variations in nitrification and denitrification, seasonal transformation from the limitation of phosphorus induced colimitation of nitrogen and phosphorus. Understanding the potential impact of internal nutrient cycling on a seasonal pattern of nutrient concentration and limitation, the growth of phytoplankton, and, possibly, phytoplankton community composition should be emphasized, given the change in the relative importance of external discharges and internal loading in the process of lake restoration.
Collapse
Affiliation(s)
- Mengzhu Wang
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Xiwen Xu
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Zhen Wu
- Department of Earth, Atmospheric and Planetary Sciences , Massachusetts Institute of Technology , Cambridge Massachusetts 02139 , United States
| | - Xiaoqian Zhang
- Center for Rural Environment Protection , Chinese Academy for Environmental Planning , Beijing 100012 , China
| | - Peizhe Sun
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Yingting Wen
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Zhen Wang
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , Nanjing 210008 , China
| | - Xuebin Lu
- School of Science , Tibet University , Lhasa 850012 , China
| | - Wei Zhang
- School of Environment and Natural Resources , Renmin University of China , Beijing 100872 , China
| | - Xuejun Wang
- College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Yindong Tong
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
50
|
Kong X, Koelmans AA. Modeling Decreased Resilience of Shallow Lake Ecosystems toward Eutrophication due to Microplastic Ingestion across the Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13822-13831. [PMID: 31682109 DOI: 10.1021/acs.est.9b03905] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The discovery of microplastic (MP) being present in freshwaters has stimulated research on the impacts of MP on freshwater organisms. To date, research has focused on primary effects, leaving questions with respect to secondary effects at the level of freshwater food webs unanswered. Here, we use a theoretical modeling approach to investigate the hypothesis that MP imposes negative impacts on the level of freshwater shallow lake food webs. We find that increasing MP levels have the potential to affect the critical phosphorus loading (CPL), which is defined as the threshold for regime shifts between clear and turbid states of the water column. The possible occurrence of catastrophic cascades due to MP pollution is predominantly driven by the negative effects of MP on zooplankton. We explore the possible states of the food web by scenario analysis and show that the secondary effects of MP at current concentrations are likely to be negligible. However, at the current rate of MP production, a 20-40% reduction in the CPL would occur by the end of this century, suggesting a loss of resilience in shallow lakes that would be subject to abrupt changes in the food web under lower nutrient loading.
Collapse
Affiliation(s)
- Xiangzhen Kong
- Department of Lake Research , Helmholtz Centre for Environmental Research-UFZ , Brückstr. 3a , 39114 Magdeburg , Germany
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management group , Wageningen University & Research , P.O. Box 47, 6700 AA Wageningen , The Netherlands
| |
Collapse
|