1
|
He M, Tang R, Guan F, Peng W, Lu J, Li K, Zhou L, Wang Y, Yuan Y. Methanogenic response of paddy soils exposed to zinc oxide nanoparticles and sulfurized products. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137608. [PMID: 39954444 DOI: 10.1016/j.jhazmat.2025.137608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/02/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The use of zinc oxide nanoparticles (ZnO NPs) in agriculture is expanding, yet their effects on microbial ecology in flooded paddy soils remain unclear. This study examined the influence of ZnO NPs and their sulfide derivatives (S-ZnO NPs) on methane production in paddy soils. Results showed that ZnO NPs at a concentration of 1000 mg/kg significantly inhibited methane production by 28.97 % in an acid soil and by 26.83 % in an alkaline soil. S-ZnO NPs at the same concentration did not significantly affect methane production in the alkaline soil and increased it by 15.33 % in the acid soil. High-throughput sequencing revealed that ZnO NPs significantly altered the microbial community structure, affecting the prevalence of methanogenic organisms like Methanosarcina in the acid soil and Methanobacterium in the alkaline soil. Quantitative PCR analysis showed a reduction in the expression of methanogenic gene (mcrA) and total bacterial 16S rRNA genes with ZnO NPs exposure, but S-ZnO NPs had a lesser impact on these genes. This research highlights the more toxic impact of ZnO NPs compared to S-ZnO NPs on methane production and microbial communities in paddy soils, emphasizing the necessity for careful evaluation of nanoparticles in agricultural use to avoid ecological disturbances.
Collapse
Affiliation(s)
- Minghao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Rong Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fengyi Guan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Weijie Peng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinrong Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Keyi Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Kim M, Ha GS, Baek G. Influence of ion exchange membrane types on microbial electrosynthesis performance and biomethane production. BIORESOURCE TECHNOLOGY 2025; 433:132711. [PMID: 40412561 DOI: 10.1016/j.biortech.2025.132711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/08/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Microbial electrosynthesis (MES) utilizes electrical current to convert CO2 into various products via electroactive microbial activity at the cathode. Methane production in MES relies on methanogens within the cathode biofilm and is influenced by various factors including the type of ion exchange membrane, which plays a critical role but remains underexplored, particularly regarding ion transport mechanisms. This study examined methane production in MES reactors equipped with cation exchange membranes (CEM-MES) and anion exchange membranes (AEM-MES) at cathodic potentials of -1.0 to -1.2 V (vs. Ag/AgCl). AEM-MES produced 10.1 times more methane than CEM-MES. Despite elevated catholyte pH and greater pH imbalances in AEM-MES, methane production was primarily governed by H2 production rate rather than pH imbalance. The microbial community of cathode biofilm was significantly influenced by membrane type, with Methanobacterium prevailing in AEM-MES, correlating with reactor performance. AEM-MES demonstrated enhanced methane production, particularly at cathodic potentials that minimized hydrogen evolution.
Collapse
Affiliation(s)
- Myeonggyun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Geon-Soo Ha
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gahyun Baek
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Adhikari M, Wang L, Adhikari D, Khadka S, Ullah M, Mbituyimana B, Bukatuka CF, Shi Z, Yang G. Electric stimulation: a versatile manipulation technique mediated microbial applications. Bioprocess Biosyst Eng 2025; 48:171-192. [PMID: 39611964 DOI: 10.1007/s00449-024-03107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Electric stimulation (ES) is a versatile technique that uses an electric field to manipulate microorganisms individually. Over the past several decades, the capabilities of ES have expanded from bioremediation to the precise motion control of cells and microorganisms. However, there is limited information on the underlying mechanisms, latest advancement and broader microbial applications of ES in various fields, such as the production of extracellular polymers with upgraded properties. This review article summarizes recent advancements in ES and discusses it as a unique external manipulation technique for microorganisms with wide applications in bioremediation, industry, biofilm deactivation, disinfection, and controlled biosynthesis. One specific application of ES discussed in this review is the extracellular biosynthesis, regulation, and organization of extracellular polymers, such as bacterial cellulose nanofibrils, curdlan, and microbial nanowires. Overall, this review aims to provide a platform for microbial biotechnologists and synthetic biologists to leverage the manipulation of microorganisms using ES for bio-based applications, including the production of extracellular polymers with enhanced properties. Researchers can engineer, manipulate, and control microorganisms for various applications by harnessing the potential of electric fields.
Collapse
Affiliation(s)
- Manjila Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Wang
- Wuhan Branch of the National Science Library, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dhurba Adhikari
- Genomic Division, Faculty of Biosciences and Aquaculture, Nord University, NO-8049, Bodø, Norway
| | - Sujan Khadka
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Clemence Futila Bukatuka
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Cai F, Zuo X, Xiong J, Jiang W. Reduction of methane and nitrous oxide emissions from stormwater bioretention cells through microbial electrolytic cells. BIORESOURCE TECHNOLOGY 2024; 413:131444. [PMID: 39241815 DOI: 10.1016/j.biortech.2024.131444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the reduction of methane (CH4) and nitrous oxide (N2O) emissions from stormwater bioretention cells through microbial electrolytic cell (MEC), showing the largest reduction of 32.21 % (CH4) at 9.2 μA/m2 of current density and 56.16 % (N2O) at 3.5 μA/m2 of current density, compared with the corresponding in the control (0 μA/m2 of current density). Kinetic of CH4 and N2O emissions could be well fitted by Logistic model with high correlation coefficient (R2 > 0.9500) and model efficiency (ME > 0.95) but low relative root mean square error (RRMSE < 7.88). The increase of pmoA and polysaccharide (PS) were responsible for CH4 reduction, while N2O reduction was attributed to the decrease of nirS and the increase for nosZ and protein (PN), which could explain the lowest GWPd (10.67 mgCO2-eq/m2/h) at 3.5 μA/m2 of current density, suggesting that MEC could be promising for the reduction of CH4 and N2O emissions from bioretention cells.
Collapse
Affiliation(s)
- FangYue Cai
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - XiaoJun Zuo
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Jie Xiong
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - WeiLi Jiang
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| |
Collapse
|
5
|
Zhao B, Zhang Z, Feng K, Peng X, Wang D, Cai W, Liu W, Wang A, Deng Y. Inoculum source determines the stress resistance of electroactive functional taxa in biofilms: A metagenomic perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174018. [PMID: 38906302 DOI: 10.1016/j.scitotenv.2024.174018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The inoculum has a crucial impact on bioreactor initialization and performance. However, there is currently a lack of guidance on selecting appropriate inocula for applications in environmental biotechnology. In this study, we applied microbial electrolysis cells (MECs) as models to investigate the differences in the functional potential of electroactive microorganisms (EAMs) within anodic biofilms developed from four different inocula (natural or artificial), using shotgun metagenomic techniques. We specifically focused on extracellular electron transfer (EET) function and stress resistance, which affect the performance and stability of MECs. Community profiling revealed that the family Geobacteraceae was the key EAM taxon in all biofilms, with Geobacter as the dominant genus. The c-type cytochrome gene imcH showed universal importance for Geobacteraceae EET and was utilized as a marker gene to evaluate the EET potential of EAMs. Additionally, stress response functional genes were used to assess the stress resistance potential of Geobacter species. Comparative analysis of imcH gene abundance revealed that EAMs with comparable overall EET potential could be enriched from artificial and natural inocula (P > 0.05). However, quantification of stress response gene copy numbers in the genomes demonstrated that EAMs originating from natural inocula possessed superior stress resistance potential (196 vs. 163). Overall, this study provides novel perspectives on the inoculum effect in bioreactors and offers theoretical guidance for selecting inoculum in environmental engineering applications.
Collapse
Affiliation(s)
- Bo Zhao
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China
| | - Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Danrui Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weiwei Cai
- School of Civil Engineering, Beijing Jiaotong University, Beijing, China
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Aijie Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Wu Z, Ji Y, Liu G, Yu X, Shi K, Liang B, Freilich S, Jiang J. Electro-stimulation modulates syntrophic interactions in methanogenic toluene-degrading microbiota for enhanced functionality. WATER RESEARCH 2024; 260:121898. [PMID: 38865893 DOI: 10.1016/j.watres.2024.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Syntrophy achieved via microbial cooperation is vital for anaerobic hydrocarbon degradation and methanogenesis. However, limited understanding of the metabolic division of labor and electronic interactions in electro-stimulated microbiota has impeded the development of enhanced biotechnologies for degrading hydrocarbons to methane. Here, compared to the non-electro-stimulated methanogenic toluene-degrading microbiota, electro-stimulation at 800 mV promoted toluene degradation and methane production efficiencies by 11.49 %-14.76 % and 75.58 %-290.11 %, respectively. Hydrocarbon-degrading gene bamA amplification and metagenomic sequencing analyses revealed that f_Syntrophobacteraceae MAG116 may act as a toluene degrader in the non-electro-stimulated microbiota, which was proposed to establish electron syntrophy with the acetoclastic methanogen Methanosarcina spp. (or Methanothrix sp.) through e-pili or shared acetate. In the electro-stimulated microbiota, 37.22 ± 4.33 % of Desulfoprunum sp. (affiliated f_Desulfurivibrionaceae MAG10) and 58.82 ± 3.74 % of the hydrogenotrophic methanogen Methanobacterium sp. MAG74 were specifically recruited to the anode and cathode, respectively. The potential electrogen f_Desulfurivibrionaceae MAG10 engaged in interspecies electron transfer with both syntroph f_Syntrophobacteraceae MAG116 and the anode, which might be facilitated by c-type cytochromes (e.g., ImcH, OmcT, and PilZ). Moreover, upon capturing electrons from the external circuit, the hydrogen-producing electrotroph Aminidesulfovibrio sp. MAG60 could share electrons and hydrogen with the methanogen Methanobacterium sp. MAG74, which uniquely harbored hydrogenase genes ehaA-R and ehbA-P. This study elucidates the microbial interaction mechanisms underlying the enhanced metabolic efficiency of the electro-stimulated methanogenic toluene-degrading microbiota, and emphasizes the significance of metabolic and electron syntrophic interactions in maintaining the stability of microbial community functionality.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiri Freilich
- Newe-Ya'ar Research Center, Agricultural Research Organization, Ministry of Agriculture, Israel
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Zheng X, Xie J, Chen W, Liu M, Xie L. Boosting anaerobic digestion of long chain fatty acid with microbial electrolysis cell combining metal organic framework as cathode: Biofilm construction and metabolic pathways. BIORESOURCE TECHNOLOGY 2024; 395:130284. [PMID: 38219925 DOI: 10.1016/j.biortech.2023.130284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
The role of metal organic framework (MOF) modified cathode in promoting long chain fatty acid (LCFA) methanation was identified in microbial electrolysis cell coupled anaerobic digestion (MEC-AD) system. The maximum methane production rate of MEC-AD-MOF achieved 49.8 ± 3.4 mL/d, which increased by 41 % compared to MEC-AD-C. The analysis of bio-cathode biofilm revealed that microbial activity, distribution, population, and protein secretion prompted by MOF cathode, which in turn led to an acceleration of electron transfer between the cathode and microbes. Specifically, the relative abundance of acetate-oxidizing bacterium (Mesotoga) in MEC-AD-MOF was 1.5-3.6 times higher than that in MEC-AD-C, with a co-metabolized enrichment of Methanobacterium. Moreover, MOF cathode reinforced LCFA methanation by raising the relative abundance of genes coded key enzymes involved in CO2-reducing pathway, and elevating the tolerance of microbes to LCFA inhibition. These results indicate that MOF can enhance biofilm construction in MEC-AD, thereby improving the treatment performance of lipid wastewater.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weizhen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Cui W, Luo H, Liu G. Efficient hydrogen production in single-chamber microbial electrolysis cell with a fermentable substrate under hyperalkaline conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:173-183. [PMID: 37660630 DOI: 10.1016/j.wasman.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Hydrogen production from food waste is of great significance for energy conversion and pollution control. The aim of this study was to investigate the glucose fermentation from food waste and hydrogen (H2) production in the single-chamber microbial electrolysis cell (MEC) under hyperalkaline conditions. Single-chamber MECs were tested with 1 g/L glucose as substrate under different pH values (i.e., 7.0, 9.5, and 11.2) and applied voltages (i.e., 0.8, 1.2, and 1.6 V). With pH increase from 7.0 to 11.2, H2 production with methanogenesis inhibition was significantly improved in the MEC. At pH of 11.2, the maximum current density reached 180 ± 9 A/m3 with the H2 purity of 93.3 ± 1.2% and average H2 yield of 7.72 ± 0.23 mol H2/ mol glucose under 1.6 V. Acetate from glucose fermentation was the largest electron sink within 12 h. Methanobacterium alcaliphilum dominated the archaeal communities with the relative abundance of > 99.0% in the cathodic biofilms. The microbial communities and mcr A gene copy numbers analyses showed that high pH enhanced the acetate production from glucose fermentation, inhibited syntrophic acetate-oxidizing with hydrogenotrophic methanogenesis in the anodic biofilms, and inhibited hydrogenotrophic methanogenesis in the cathodic biofilms. Our results of hyperalkaline conditions provide a feasible way to harvest H2 efficiently from fermentable substrates in the single-chamber MEC.
Collapse
Affiliation(s)
- Wanjun Cui
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Han X, Wang J, Zhang J, Han B, Mei N, Fan R, Zhao J, Yao H, Yu X, Cai W. Digested extracellular DNA shortens the anodic startup of microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162642. [PMID: 36894072 DOI: 10.1016/j.scitotenv.2023.162642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
While the multiple functions of extracellular DNA (exDNA) in biofilm formation and electron transfer have been extensively studied in pure culture, its role in mixed anodic biofilm was still unknown. In this study, we employed DNase I enzyme to digest exDNA, thereby investigating its role in anodic biofilm formation based on the performance of four microbial electrolysis cells (MECs) groups with different DNase I enzyme concentration (0, 0.05, 0.1, 0.5 mg/mL). The responding time to reach 60 % maximum current of treatment group with DNase I enzyme has been significantly reduced to 83 %-86 % of the blank group (t-test, p < 0.01), indicating the exDNA digestion could promote the biofilm formation at the early stage. The anodic coulombic efficiency was enhanced by 10.74- 54.42 % in treatment group (t-test, p < 0.05), which could be ascribed to the higher absolute abundance of exoelectrogens. The lower relative abundance of exoelectrogens indicated the DNase I enzyme addition was beneficial for the enrichment of extensive species rather than exoelectrogens. As the DNase I enzyme augments the fluorescence signal of exDNA distribution in the small molecular weight region, implying the short chain exDNA could contribute to the biomass enhancement via boosting the most species enrichment. Furthermore, the exDNA alteration improved the complexity of microbial network. Our findings provide a new insight into the role of exDNA in the extracellular matrix of anodic biofilms.
Collapse
Affiliation(s)
- Xiangyu Han
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Jiaman Wang
- School of Engineering, Brown University, Providence, Rohde Island 02912, United States of America
| | - Jingjing Zhang
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Baohong Han
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Ning Mei
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Runchuan Fan
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jing Zhao
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Hong Yao
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Xiaohua Yu
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Weiwei Cai
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China.
| |
Collapse
|
10
|
Wang L, Liu C, Sangeetha T, Yan WM, Sun F, Li Z, Wang X, Pan K, Wang A, Bi X, Liu W. Integrated microbial electrolysis with high-alkali pretreated sludge digestion: Insight into the effect of voltage on methanogenesis and substrate metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118007. [PMID: 37148763 DOI: 10.1016/j.jenvman.2023.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Integrated microbial electrolysis with anaerobic digestion is proved to be an effective way to improve methanogenesis efficiency of waste activated sludge (WAS). WAS requires pretreatment for efficient improvement of acidification or methanogenesis efficiency, but excessive acidification may inhibit the methanogenesis. In order to balance these two stages, a method for efficient WAS hydrolysis and methanogenesis has been proposed in this study by high-alkaline pretreatment integrated with microbial electrolysis system. The effects of pretreatment methods and voltage on the normal temperature digestion of WAS have also been further investigated with emphasis on the effects of voltage and substrate metabolism. The results show that compared to low-alkaline pretreatment (pH = 10), high-alkaline pretreatment (pH > 14) can double the SCOD release and promote the VFAs accumulation to 5657 ± 392 mg COD/L, but inhibit the methanogenesis process. Microbial electrolysis can alleviate this inhibition effectively through the rapid consumption of VFAs and speeding up of the methanogenesis process. The optimal methane yield of the integrated system is 120.4 ± 8.4 mL/g VSS at the voltage of 0.5 V. Enzyme activities, high-throughput and gene function prediction analysis reveal that the cathode and anode maintain the activity of methanogens under high substrate concentrations. Voltage positively responded to improved methane yield from 0.3 to 0.8 V, but higher than 1.1 V is found to be unfavorable for cathodic methanogenesis and results in additional power loss. These findings provide a perspective idea for rapid and maximum biogas recovery from WAS.
Collapse
Affiliation(s)
- Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China
| | - Chang Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Thangavel Sangeetha
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan; Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Wei Mon Yan
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan; Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Fang Sun
- Heilongjiang Province Key Laboratory of Superhard Materials, Department of Physics, Mudanjiang Normal University, Mudanjiang, 157012, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Kailing Pan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518000, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518000, PR China.
| |
Collapse
|
11
|
Wang J, Lou Y, Ma D, Feng K, Chen C, Zhao L, Xing D. Co-treatment with free nitrous acid and calcium peroxide regulates microbiome and metabolic functions of acidogenesis and methanogenesis in sludge anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161924. [PMID: 36736410 DOI: 10.1016/j.scitotenv.2023.161924] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Wasted activated sludge (WAS) is a promising feedstock for carbon management because of its abundance and carbon-neutral features. Currently, the goal is to maximize the energy in WAS and avoid secondary toxic effects or accumulation of harmful substances in the environment. Chemical pretreatment is an effective strategy for enhancing WAS disintegration and production of short chain fatty acids (SCFAs). However, the role of pretreatment in shaping the core microbiome and functional metabolism of anaerobic microorganisms remains obscure. Here, the mechanisms of SCFA synthesis and microbiome response to free nitrous acid (FNA) and calcium peroxide (CaO2) co-treatment during sludge anaerobic digestion (AD) were investigated. The combination of FNA and CaO2 enriched acidogenic Macellibacteroides, Petrimonas, and Sedimentibacter to a relative abundance of 15.0%, 10.3%, and 7.3%, respectively, resulting in an apparent increase in SCFA production. Metagenome analysis indicated that FNA + CaO2 co-treatment facilitated glycolysis, phosphate acetyltransferase-acetate kinase pathway, amino acid metabolism, and acetate transport, but inhibited CO2 reduction and common pathway of methanogenesis compared with the untreated control. This work provides theoretical insights into the functional activity and interaction of microorganisms with ecological factors.
Collapse
Affiliation(s)
- Jing Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Wang B, Liu W, Liang B, Jiang J, Wang A. Microbial fingerprints of methanation in a hybrid electric-biological anaerobic digestion. WATER RESEARCH 2022; 226:119270. [PMID: 36323204 DOI: 10.1016/j.watres.2022.119270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biomethane as a sustainable, alternative, and carbon-neutral renewable energy source to fossil fuels is highly needed to alleviate the global energy crisis and climate change. The conventional anaerobic digestion (AD) process for biomethane production from waste(water) streams has been widely employed while struggling with a low production rate, low biogas qualities, and frequent instability. The electric-biologically hybrid microbial electrochemical anaerobic digestion system (MEC-AD) prospects more stable and robust biomethane generation, which facilitates complex organic substrates degradation and mediates functional microbial populations by giving a small input power (commonly voltages < 1.0 V), mainly enhancing the communication between electroactive microorganisms and (electro)methanogens. Despite numerous bioreactor tests and studies that have been conducted, based on the MEC-AD systems, the integrated microbial fingerprints, and cooperation, accelerating substrate degradation, and biomethane production, have not been fully summarized. Herein, we present a comprehensive review of this novel developing biotechnology, beginning with the principles of MEC-AD. First, we examine the fundamentals, configurations, classifications, and influential factors of the whole system's performances (reactor types, applied voltages, temperatures, conductive materials, etc.,). Second, extracellular electron transfer either between diverse microbes or between microbes and electrodes for enhanced biomethane production are analyzed. Third, we further conclude (electro)methanogenesis, and microbial interactions, and construct ecological networks of microbial consortia in MEC-AD. Finally, future development and perspectives on MEC-AD for biomethane production are proposed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China.
| | - Bin Liang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
13
|
Zhang Y, Wu X, Chen C, Xu J, Dong F, Liu X, Li X, Zheng Y. Application of thifluzamide alters microbial network structure and affects methane cycle genes in rice-paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155769. [PMID: 35526624 DOI: 10.1016/j.scitotenv.2022.155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Thifluzamide is an effective agent for controlling rice sheath blight and has a long half-life in soil. However, the effects of thifluzamide on the abundance of microbes harboring methane-cycle genes and soil microbial community assembly patterns are not well known. Thus, we conducted a three-month indoor mesocosm experiment to ascertain the effects of thifluzamide (0.05, 0.5, and 5 mg kg-1 soil; 0.05 mg kg-1 soil being recommended) on bacterial and archaeal community structure and on the abundance of methanogen genes using two typical paddy soils: sandy soil from Hangzhou (HZ) and loam sandy soil from Jiansanjiang (JSJ). The effects of thifluzamide on soil microorganisms were related to soil type. In JSJ loam sandy soil, thifluzamide significantly increased bacterial α diversity after 7-30 d and archaeal α diversity at 30 and 60 d. In HZ sandy soil, however, α diversity did not change significantly. Network analysis showed that thifluzamide-treated soils possessed more complex networks with more total nodes and links, a higher average degree of connectivity, and more keystone species. Thifluzamide application increased the number of keystone species associated with methane production in both types of paddy soil. A relatively greater number of modules were significantly negatively correlated with mcrA abundance in the HZ T10 network, but more modules were positively correlated with mcrA abundance in the JSJ T100 network. The half-life of thifluzamide varied for the different doses, i.e., from 152.0 to 419.6 d. The results reveal that methane-cycle genes, soil microbiome assembly, and interactions among microbial species all change in response to thifluzamide stress.
Collapse
Affiliation(s)
- Ying Zhang
- College of Plant Protection, Hunan Agricultural University, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Changsha 410128, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Beijing, 100193, China; Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Beijing, 100193, China
| | - Caijun Chen
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Beijing, 100193, China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Beijing, 100193, China
| | - Xingang Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Beijing, 100193, China
| | - Xiaogang Li
- College of Plant Protection, Hunan Agricultural University, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Changsha 410128, China.
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
14
|
He K, Li W, Tang L, Li W, Lv S, Xing D. Suppressing Methane Production to Boost High-Purity Hydrogen Production in Microbial Electrolysis Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11931-11951. [PMID: 35969804 DOI: 10.1021/acs.est.2c02371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen gas (H2) is an attractive fuel carrier due to its high specific enthalpy; moreover, it is a clean source of energy because in the combustion reaction with oxygen (O2) it produces water as the only byproduct. The microbial electrolysis cell (MEC) is a promising technology for producing H2 from simple or complex organics present in wastewater and solid wastes. Methanogens and non-archaeal methane (CH4)-producing microorganisms (NAMPMs) often grow in the MECs and lead to rapid conversion of produced H2 to CH4. Moreover, non-archaeal methane production (NAMP) catalyzed by nitrogenase of photosynthetic bacteria was always overlooked. Thus, suppression of CH4 production is required to enhance H2 yield and production rate. This review comprehensively addresses the principles and current state-of-the-art technologies for suppressing methanogenesis and NAMP in MECs. Noteworthy, specific strategies aimed at the inhibition of methanogenic enzymes and nitrogenase could be a more direct approach than physical and chemical strategies for repressing the growth of methanogenic archaea. In-depth studies on the multiomics of CH4 metabolism can possibly provide insights into sustainable and efficient approaches for suppressing metabolic pathways of methanogenesis and NAMP. The main objective of this review is to highlight key concepts, directions, and challenges related to boosting H2 generation by suppressing CH4 production in MECs. Finally, perspectives are briefly outlined to guide and advance the future direction of MECs for production of high-purity H2 based on genetic and metabolic engineering and on the interspecific interactions.
Collapse
Affiliation(s)
- Kuanchang He
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Longxiang Tang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Sihao Lv
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Li W, Sangeetha T, Han X, Yan WM, Yang L, Zhao J, Cai W, Yao H. Tracking the diversity and interaction of methanogens in the energy recovery process of a full-scale wastewater treatment plant. ENVIRONMENTAL RESEARCH 2022; 211:113010. [PMID: 35219628 DOI: 10.1016/j.envres.2022.113010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/07/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Methanogens have been significant for the achievement of carbon neutrality in wastewater treatment plants due to their crucial roles in the anaerobic digestion of sludge. Nevertheless, the phylogenetic diversity of methanogens and their versatile metabolism have been continuously investigated, the current scientific knowledge regarding these microbes appears inadequate and requires more evaluations. This study is considered an endeavor in which functional genes sequencing was used to reveal the diversity of methanogens in the sludge process of the wastewater treatment plant. The information obtained was substantially more than that employing 16s sequencing. The methanogenic microbial resources were appropriate to sustain a self-inoculated energy recovery with a potential ability to boost methane production. A constancy was observed in 16 S rRNA gene and mcrA gene sequencing results, where the bacterial or Methanosaeta concilii dominated community of DS (digest sludge) was distinct from the inoculum sources TS (total sludge), CTS (concentrated total sludge), and HTS (hydrolysis total sludge), indicating the independent development of DS. A quantitative cross-network was constructed by coupling the absolute quantify of 16 S rRNA and mcrA sequences. The Methanobacterium petrolearium actively interacted with bacteria in the DS community rather than the dominant species (Methanosaeta concilii). Moreover, the unclassified methanogens were identified to be significantly prevalent in all communities, suggesting that unknown methanogenic taxa might be imperative in accomplishing community functions. Collectively, the findings of this research study will shed light on the comprehensive knowledge of microbial communities, especially the methanogenic microbiota. This will further enhance the exploration of the phylogenetic diversity of methanogens and their corresponding impacts in energy recovery from wastewater treatment plants.
Collapse
Affiliation(s)
- Wei Li
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China; Beijing DaBeiNong Science and Technology Group Co., Ltd., Beijing, 100080, China
| | - Thangavel Sangeetha
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors; National Taipei University of Technology, Taipei, 10608, Taiwan; Department of Energy and Refrigeration Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Xiangyu Han
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Wei-Mon Yan
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors; National Taipei University of Technology, Taipei, 10608, Taiwan; Department of Energy and Refrigeration Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Lijun Yang
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jing Zhao
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Weiwei Cai
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Hong Yao
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
16
|
Wang L, Wu Y, Ren Y, Wang Y, Wang Y, Zhang H. Transition of fouling characteristics after development of membrane wetting in membrane-aerated biofilm reactors (MABRs). CHEMOSPHERE 2022; 299:134355. [PMID: 35306051 DOI: 10.1016/j.chemosphere.2022.134355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The practical applications of water treatment techniques based on hydrophobic aeration membrane are limited due to membrane pores blocking. Various studies have revealed that both biofilm and microbial secretion can exacerbate membrane fouling. Recently, we constructed a membrane-aerated biofilm reactor (MABR) system for treating micro-polluted surface water in order to identify the primary cause for oxygen transfer rate (OTR) decline. It was found that microbial secretion had a more prominent negative effect than that caused by biofilm, as manifested by the fact the effect of microbial secretion (66.49%) was greater than the resistance of biofilm (38.83%). Fouling decreased the total pore volume of all membrane. The peak location of adsorption capacity was more likely to occur at smaller pore sizes with longer running time. Notably, continuous fluorescence distribution between the separating layer and pores like finger in MABR system exhibited an increasing trend with the operation time, indicating a gradual increase of microbial viability. Core protein structure was revealed by different bond peaks (0-90 d). Specifically, for different organic components of EPS, the hydrophilic HIS was the main content, while the mass transfer resistance caused by the gel increased, which reduced the contact angle and increased the bubble point pressure. Therefore, effects of EPS content and composition should be considered during the application of water treatment techniques based on MABR.
Collapse
Affiliation(s)
- Lutian Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Material Science and Engineering, TianGong University, Tianjin 300387, China
| | - Yun Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China.
| | - Yue Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Yue Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Yufeng Wang
- Tianjin Urban Construction Design Institute, Tianjin 300122, China
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| |
Collapse
|
17
|
Pan W, Ouyang H, Tan X, Deng R, Gu L, He Q. Anaerobic dynamic membrane bioreactors for synthetic blackwater treatment under room temperature and mesophilic conditions. BIORESOURCE TECHNOLOGY 2022; 355:127295. [PMID: 35550923 DOI: 10.1016/j.biortech.2022.127295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Two anaerobic dynamic membrane bioreactors (AnDMBRs) were set up for the treatment of synthetic blackwater at room temperature (20-25 °C) and mesophilic conditions for 180 days with progressively increased organic loading rates(OLR). Despite dynamic membranes (DM), organics removal at room temperature was similar to removal within the mesophilic conditions of the reactor, with some disparities in methane production. A dense sludge filtration layer was more likely to be formed on the DM at room temperature, resulting in a faster membrane fouling. Microbial community analysis revealed that microorganisms had higher richness and lower diversity at room temperature, which was beneficial to the growth of Actinobacteriota, especially Propioniciclava. This comparative study discusses the feasibility of operating an AnDMBR under room temperature conditions versus mesophilic conditions. This analysis provides novel insights into future large-scale attempts to treat blackwater at room temperature.
Collapse
Affiliation(s)
- Weiliang Pan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China.
| | - Honglin Ouyang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Xiuqing Tan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Rui Deng
- School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
18
|
Li Y, Ma Y, Zhan J, Zhang Y, Zhao Z, Zhao Z. Combining metal-microbe and microbe-microbe dual direct electron transfer on Fe(0)-cathode of bio-electrochemical system to enhance anaerobic digestion of cellulose wastewater. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Gao T, Zhang H, Xu X, Teng J. Mutual effects of CO 2 absorption and H 2-mediated electromethanogenesis triggering efficient biogas upgrading. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151732. [PMID: 34826488 DOI: 10.1016/j.scitotenv.2021.151732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion coupled with bioelectrochemical system (BES) is a promising approach for biogas upgrading with low energy input. However, the alkalinity generation from electromethanogenesis is invariably ignored which could serve as a potential assistant for CO2 removal through the transformation into dissolved inorganic carbon (DIC). Herein, a novel bioelectrochemical CO2 conversion in the methanogenic BES was proposed based on active CO2 capture and in-situ microbial utilization. It was found that the BES using a stainless steel/carbon felt hybrid biocathode (BES-SSCF reactor) achieved a CH4 yield of 0.33 ± 0.03 LCH4/gCODremoval and increased CH4 production rate by 28.3% of BES-CF reactor at 1.0 V applied voltage. As the experiment progressed, CH4 content increased to 93.1% and CO2 content in the upgraded biogas maintained at below 3%. The continuous proton consumption from H2 evolution reaction in the hybrid biocathode was capable of creating a slightly alkaline condition in the BES-SSCF reactor and thereby the CO2 capture as bicarbonate was enhanced through endogenous alkalinity absorption. Microbial community analysis revealed that significant enrichment of Methanobacterium and Methanosarcina at the BES-SSCF cathodic biofilm was favorable for bicarbonate reduction into CH4 via establishment of H2-mediated electron transfer. Consequently, the remained CO2 and DIC only accounted for 12% of total carbon in the BES-SSCF reactor and the high conversion rate of CO2 to CH4 (82.3%) was achieved. These results unraveled an innovative CO2 utilization mechanism integrating CO2 absorption with H2-mediated electromethanogenesis.
Collapse
Affiliation(s)
- Tianyu Gao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China.
| | - Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| |
Collapse
|
20
|
Litti YV, Russkova YI, Zhuravleva EA, Parshina SN, Kovalev AA, Kovalev DA, Nozhevnikova AN. Electromethanogenesis: a Promising Biotechnology for the Anaerobic Treatment of Organic Waste. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Thanarasu A, Periyasamy K, Subramanian S. An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. CHEMOSPHERE 2022; 287:131886. [PMID: 34523450 DOI: 10.1016/j.chemosphere.2021.131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In the foreseeable future, renewable energy generation from electromethanogenesis to be more cost-effective energy. Electromethanogenesis system is a recent and efficient CO2 to methane technology to upgrade biogas to 100% methane for power generation. And this can be attained through by integrating anaerobic digestion with microbial electrolysis system. Microbial electrolysis system can able to support carbon reduction on cathode and oxidation on anode by CO2 capture thereby provides more CH4 production from an integrated anaerobic digestion system. Scale-up the recent advance technique of microbial electrolysis system in the anaerobic digestion process for 100% methane production for power generation is need of the hour. The overall objective of this review is to facilitate the recent technology of microbial electrolysis system in the anaerobic digestion process. At first, the function of electromethanogenesis system and innovative integrated design method are outlined. Secondly, different external parameters such as applied voltage, operating temperature, pH etc are examined for the significance on process optimization. Eventually, electrode selections, electrode spacing, surface chemistry and surface area are critically reviewed for the scale-up considerations of integration process.
Collapse
Affiliation(s)
- Amudha Thanarasu
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Karthik Periyasamy
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Sivanesan Subramanian
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India.
| |
Collapse
|
22
|
Kumar Awasthi M, Wainaina S, Mahboubi A, Zhang Z, Taherzadeh MJ. Methanogen and nitrifying genes dynamics in immersed membrane bioreactors during anaerobic co-digestion of different organic loading rates food waste. BIORESOURCE TECHNOLOGY 2021; 342:125920. [PMID: 34534942 DOI: 10.1016/j.biortech.2021.125920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
This work was aimed to evaluate the distinctive food waste (FW) organic loading rates (OLR) on methanogen and nitrifying genes dynamics and its correlation with identified relative abundance of bacterial dynamics during the anaerobic digestion. This experiment were carried out in the digesters at high OLR of food wastes at (4 to 8 g volatile solids/liter/day reactor R1) and (6 to 10 g volatile solids/liter/day reactor R2). The results shown that the relative abundance of mcrA, mcrB and mcrG genes were richest in the first day of both R1 and R2. In addition, the most of nitrifying genes were greater in after 34 days digestion in R2, while these genes did not show the specific regularity in R1. Finally, the correlation figure shows that Clostridium and Lactobacillus genera were significantly correlated with the different organic acids and methanogen and nitrifying genes dynamics.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
23
|
Cai W, Wang B, Liu W, Yao H, Deng Y, Wang A. Sessile methanogens dominated cathodic biofilm: Distribution and network in physiological transitions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148724. [PMID: 34237534 DOI: 10.1016/j.scitotenv.2021.148724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
A mature cathodic biofilm plays the key role in biocathode electron transfer. The physiological transitions of it were of great interests as the sessile and dispersed (planktonic) work in a balance while it is still lack of understanding. In this study, an improved sampling method was used for detecting sessile, detached, and dispersed microorganisms. The results indicated a certain number of methanogens (82.6%) and its associated phyla (60%-90%) are immobilized as sessile biofilm. The Tax4Fun predicted a lower abundance of mobility associated genes and a significant enrichment (t-test, P = 0.003) of c-di-GMP in sessile biofilm. Overall, the microbial interaction and motility were predicted as two factors to affect the physiological transitions of cathodic biofilm. This finding could shed a light on the investigation of cathodic biofilm in a dynamic transition rather than a static community, playing a pivotal role in understanding the relation between specific property of biofilm.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Bo Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Hong Yao
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
24
|
Hu M, Li F, Qiao J, Yuan C, Yu H, Zhuang L. New Arsenite Oxidase Gene ( aioA) PCR Primers for Assessing Arsenite-Oxidizer Diversity in the Environment Using High-Throughput Sequencing. Front Microbiol 2021; 12:691913. [PMID: 34690945 PMCID: PMC8527091 DOI: 10.3389/fmicb.2021.691913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Gene encoding the large subunit of As(III) oxidase (AioA), an important component of the microbial As(III) oxidation system, is a widely used biomarker to characterize As(III)-oxidizing communities in the environment. However, many studies were restricted to a few sequences generated by clone libraries and Sanger sequencing, which may have underestimated the diversity of As(III)-oxidizers in natural environments. In this study, we designed a primer pair, 1109F (5'-ATC TGG GGB AAY RAC AAY TA-3') and 1548R (5'-TTC ATB GAS GTS AGR TTC AT-3'), targeting gene sequence encoding for the conserved molybdopterin center of the AioA protein, yielding amplicons approximately 450 bp in size that are feasible for highly parallel amplicon sequencing. By utilizing in silico analyses and the experimental construction of clone libraries using Sanger sequencing, the specificity and resolution of 1109F/1548R are approximated with two other previously published and commonly used primers, i.e., M1-2F/M3-2R and deg1F/deg1R. With the use of the 1109F/1548R primer pair, the taxonomic composition of the aioA genes was similar both according to the Sanger and next-generation sequencing (NGS) platforms. Furthermore, high-throughput amplicon sequencing using the primer pair, 1109F/1548R, successfully identified the well-known As(III)-oxidizers in paddy soils and sediments, and they also revealed the differences in the community structure and composition of As(III)-oxidizers in above two biotopes. The random forest analysis showed that the dissolved As(III) had the highest relative influence on the Chao1 index of the aioA genes. These observations demonstrate that the newly designed PCR primers enhanced the ability to detect the diversity of aioA-encoding microorganisms in environments using highly parallel short amplicon sequencing.
Collapse
Affiliation(s)
- Min Hu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
| | - Jiangtao Qiao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
| | - Chaolei Yuan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Huanyun Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
| | - Li Zhuang
- School of Environment, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Mao Z, Cheng S, Sun Y, Lin Z, Li L, Yu Z. Enhancing stability and resilience of electromethanogenesis system by acclimating biocathode with intermittent step-up voltage. BIORESOURCE TECHNOLOGY 2021; 337:125376. [PMID: 34116281 DOI: 10.1016/j.biortech.2021.125376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Electromethanogenesis (EMG) system could efficiently convert CO2 to CH4 by using excess renewable electricity. However, the fluctuation and interruption of renewable electricity will adversely affect the biocathode and therefore the CH4 production of the EMG system. In this work, a novel biocathode acclimation strategy with intermittent step-up voltage (ISUV) was proposed to improve the stability and resilience of the EMG system against the unstable input of renewable power. Compared with the intermittent application of constant voltage (IACV), the ISUV increased the rate of CH4 production by 11.7 times with the improvement of the stability and resilience by 56% and 500%, respectively. Morphology and microflora structure analysis revealed that the biofilm enriched with ISUV exhibited a compact microflora structure with high-density cells and nanowires interconnected. This study provided a novel effective strategy to regulate the biofilm structure and enhance the performance of the EMG system.
Collapse
Affiliation(s)
- Zhengzhong Mao
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Yi Sun
- Powerchina Huadong Engineering Corporation Limited, Hangzhou 311122, PR China
| | - Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Longxin Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zhen Yu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
26
|
Song Y, Chen L, Kang L, Yang G, Qin S, Zhang Q, Mao C, Kou D, Fang K, Feng X, Yang Y. Methanogenic Community, CH 4 Production Potential and Its Determinants in the Active Layer and Permafrost Deposits on the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11412-11423. [PMID: 34310124 DOI: 10.1021/acs.est.0c07267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Permafrost thaw could increase methane (CH4) emissions, which largely depends on CH4 production driven by methanogenic archaea. However, large-scale evidence regarding key methanogenic taxa and their relative importance to abiotic factors in mediating methanogenesis remains limited. Here, we explored the methanogenic community, potential CH4 production and its determinants in the active layer and permafrost deposits based on soil samples acquired from 12 swamp meadow sites along a ∼1000 km permafrost transect on the Tibetan Plateau. Our results revealed lower CH4 production potential, mcrA gene abundance, and richness in the permafrost layer than those in the active layer. CH4 production potential in both soil layers was regulated by microbial and abiotic factors. Of the microbial properties, marker OTUs, rather than the abundance and diversity of methanogens, stimulated CH4 production potential. Marker OTUs differed between the two soil layers with hydrogenotrophic Methanocellales and facultative acetoclastic Methanosarcina predominant in regulating CH4 production potential in the permafrost and active layer, respectively. Besides microbial drivers, CH4 production potential increased with the carbon/nitrogen (C/N) ratio in both soil layers and was also stimulated by soil moisture in the permafrost layer. These results provide empirical evidence for model improvements to better predict permafrost carbon feedback to climate warming.
Collapse
Affiliation(s)
- Yutong Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiwen Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chao Mao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kai Fang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehui Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Cui W, Lu Y, Zeng C, Yao J, Liu G, Luo H, Zhang R. Hydrogen production in single-chamber microbial electrolysis cell under high applied voltages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146597. [PMID: 34030325 DOI: 10.1016/j.scitotenv.2021.146597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to investigate the performance of single-chamber MEC under applied voltages higher than that for water electrolysis. With different acetate concentrations (1.0-2.0 g/L), the MEC was tested under applied voltages from 0.8 to 2.2 V within 2600 h (54 cycles). Results showed that the MEC was stably operated for the first time within 20 cycles under 2.0 and 2.2 V, compared with the control MEC with significant water electrolysis. The maximum current density reached 27.8 ± 1.4 A/m2 under 2.0 V, which was about three times as that under 0.8 V. The anode potential in the MEC could be kept at 0.832 ± 0.110 V (vs. Ag/AgCl) under 2.2 V, thus without water electrolysis in the MEC. High applied voltage of 1.6 V combined with alkaline solution (pH = 11.2) could result in high hydrogen production and high current density. The maximum current density of MEC at 1.6 V and pH = 11.2 reached 42.0 ± 10.0 A/m2, which was 1.85 times as that at 1.6 V and pH = 7.0. The average hydrogen content reached 97.2% of the total biogas throughout all the cycles, indicating that the methanogenesis was successfully inhibited in the MEC at 1.6 V and pH = 11.2. With high hydrogen production rate and current density, the size and investment of MEC could be significantly reduced under high applied voltages. Our results should be useful for extending the range of applied voltages in the MEC.
Collapse
Affiliation(s)
- Wanjun Cui
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaobin Lu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Cuiping Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jialiang Yao
- The Affiliated High School of South China Normal University, Guangzhou 510630, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
28
|
Xiao J, Liu C, Ju B, Xu H, Sun D, Dang Y. Estimation of in-situ biogas upgrading in microbial electrolysis cells via direct electron transfer: Two-stage machine learning modeling based on a NARX-BP hybrid neural network. BIORESOURCE TECHNOLOGY 2021; 330:124965. [PMID: 33735725 DOI: 10.1016/j.biortech.2021.124965] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
With the increasing of data in wastewater treatment, data-driven machine learning models are useful for modeling biological processes and complex reactions. However, few data-driven models have been developed for simulating the microbial electrolysis cells (MECs) and traditional models are too ambiguous to comprehend the mechanisms. In this study, a new general data-driven two-stage model was firstly developed to predict CH4 production from in-situ biogas upgrading in the biocathode MECs via direct electron transfer (DET), named NARX-BP hybrid neural networks. Compared with traditional one-stage model, the model could well predict methane production via DET with excellent performance (all R2 and MES of 0.918 and 6.52 × 10-2, respectively) and reveal the mechanisms of biogas upgrading, for the new systematical modeling approach could improve the versatility and applicability by inputting significant intermediate variables. In addition, the model is generally available to support long-term prediction and optimal operation for anaerobic digestion or complex MEC systems.
Collapse
Affiliation(s)
- Jiewen Xiao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Chuanqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Bangmin Ju
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Heng Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China.
| |
Collapse
|
29
|
Zakaria BS, Dhar BR. Characterization and significance of extracellular polymeric substances, reactive oxygen species, and extracellular electron transfer in methanogenic biocathode. Sci Rep 2021; 11:7933. [PMID: 33846480 PMCID: PMC8041852 DOI: 10.1038/s41598-021-87118-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
The microbial electrolysis cell assisted anaerobic digestion holds great promises over conventional anaerobic digestion. This article reports an experimental investigation of extracellular polymeric substances (EPS), reactive oxygen species (ROS), and the expression of genes associated with extracellular electron transfer (EET) in methanogenic biocathodes. The MEC-AD systems were examined using two cathode materials: carbon fibers and stainless-steel mesh. A higher abundance of hydrogenotrophic Methanobacterium sp. and homoacetogenic Acetobacterium sp. appeared to play a major role in superior methanogenesis from stainless steel biocathode than carbon fibers. Moreover, the higher secretion of EPS accompanied by the lower ROS level in stainless steel biocathode indicated that higher EPS perhaps protected cells from harsh metabolic conditions (possibly unfavorable local pH) induced by faster catalysis of hydrogen evolution reaction. In contrast, EET-associated gene expression patterns were comparable in both biocathodes. Thus, these results indicated hydrogenotrophic methanogenesis is the key mechanism, while cathodic EET has a trivial role in distinguishing performances between two cathode electrodes. These results provide new insights into the efficient methanogenic biocathode development.
Collapse
Affiliation(s)
- Basem S. Zakaria
- grid.17089.37Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9 Canada
| | - Bipro Ranjan Dhar
- grid.17089.37Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9 Canada
| |
Collapse
|
30
|
Zakaria BS, Ranjan Dhar B. An intermittent power supply scheme to minimize electrical energy input in a microbial electrolysis cell assisted anaerobic digester. BIORESOURCE TECHNOLOGY 2021; 319:124109. [PMID: 33035866 DOI: 10.1016/j.biortech.2020.124109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
From the perspective of energy saving in the operation of microbial electrolysis cell assisted anaerobic digester (MEC-AD), this study focused on developing an intermittent power supply scheme. The applied potential was switched off for 12 and 6 hours/day during the operation of a laboratory-scale MEC-AD system fed with glucose. The results from the operation under continuous applied potential served as the control. The overall biomethane generation and net energy income from the process were unaffected when the applied potential turned off for 6 hours/day. Both quantitative and qualitative analyses of microbial communities suggested that a balanced microbiome could be maintained under short-term switching-off the applied potential. However, performance substantially deteriorated when the applied potential turned off for 12 hours/day. Overall, the results of this study suggest that MEC-AD operation does not need a continuous power supply, and higher energy efficiency can be effectively achieved by intermittently powering the reactor.
Collapse
Affiliation(s)
- Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
31
|
Cheng S, Mao Z, Sun Y, Yang J, Yu Z, Gu R. A novel electrochemical oxidation-methanogenesis system for simultaneously degrading antibiotics and reducing CO 2 to CH 4 with low energy costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141732. [PMID: 32882500 DOI: 10.1016/j.scitotenv.2020.141732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/22/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
A novel electrochemical oxidation-methanogenesis (EO-M) system was proposed for the first time to simultaneously achieve antibiotic degradation and a bioelectrochemical conversion of CO2 to CH4 with low energy costs. A dual-chamber system was installed with an antimony-doped tin oxide anode (Ti/SnO2-Sb) for the electrocatalytic generation of hydroxyl radicals to degrade ciprofloxacin (CIP), and a CO2-reducing methanogenic biocathode was enriched based on a three-dimensional (3D) graphitized granular activated carbon (GGAC) for microbial electromethanogenesis. The anode achieved removal efficiencies as high as 99.99% and 90.53% for CIP (14 mL, 50 mg L-1) and the chemical oxygen demand (COD, 89 mg L-1), respectively. The biocathode was rapidly enriched within 15 days and exhibited a methane production rate that stabilized at 15.12 ± 1.82 m3 m-3 d-1; additionally, the cathodic coulombic efficiency reached 71.76 ± 17.24%. The energy consumption of CIP degradation was reduced by 3.03 Wh L-1 compared to that of a single electrochemical oxidation system due to the lower cathodic overpotential of CO2 bioelectrochemical reduction in the EO-M system. A detailed analysis of the biofilm evolution in the 3D biocathode during the start-up process demonstrated that the enhanced absorption of extracellular polymeric substances by the GGAC cathode accelerated the enrichment of methanogens and induced the formation of methanogens with a large number of flagella. An analysis of the microbial community showed that a high relative abundance of Methanobacterium movens could promote a flagella-mediated direct electron transfer of the biocathode, eventually reducing the cathodic overpotential and energy costs of the EO-M system.
Collapse
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy, College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Zhengzhong Mao
- State Key Laboratory of Clean Energy, College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yi Sun
- State Key Laboratory of Clean Energy, College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jiawei Yang
- State Key Laboratory of Clean Energy, College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zhen Yu
- State Key Laboratory of Clean Energy, College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Ruonan Gu
- State Key Laboratory of Clean Energy, College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
32
|
Hupfauf S, Etemadi M, Fernández-Delgado Juárez M, Gómez-Brandón M, Insam H, Podmirseg SM. CoMA - an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. PLoS One 2020; 15:e0243241. [PMID: 33264369 PMCID: PMC7710066 DOI: 10.1371/journal.pone.0243241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
In recent years, there has been a veritable boost in next-generation sequencing (NGS) of gene amplicons in biological and medical studies. Huge amounts of data are produced and need to be analyzed adequately. Various online and offline analysis tools are available; however, most of them require extensive expertise in computer science or bioinformatics, and often a Linux-based operating system. Here, we introduce "CoMA-Comparative Microbiome Analysis" as a free and intuitive analysis pipeline for amplicon-sequencing data, compatible with any common operating system. Moreover, the tool offers various useful services including data pre-processing, quality checking, clustering to operational taxonomic units (OTUs), taxonomic assignment, data post-processing, data visualization, and statistical appraisal. The workflow results in highly esthetic and publication-ready graphics, as well as output files in standardized formats (e.g. tab-delimited OTU-table, BIOM, NEWICK tree) that can be used for more sophisticated analyses. The CoMA output was validated by a benchmark test, using three mock communities with different sample characteristics (primer set, amplicon length, diversity). The performance was compared with that of Mothur, QIIME and QIIME2-DADA2, popular packages for NGS data analysis. Furthermore, the functionality of CoMA is demonstrated on a practical example, investigating microbial communities from three different soils (grassland, forest, swamp). All tools performed well in the benchmark test and were able to reveal the majority of all genera in the mock communities. Also for the soil samples, the results of CoMA were congruent to those of the other pipelines, in particular when looking at the key microbial players.
Collapse
Affiliation(s)
- Sebastian Hupfauf
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - María Gómez-Brandón
- Department of Ecology and Animal Biology, GEA Group, University of Vigo, Vigo, Spain
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
33
|
Hu A, Cheng X, Wang C, Kang L, Chen P, He Q, Zhang G, Ye J, Zhou S. Extracellular polymeric substances trigger an increase in redox mediators for enhanced sludge methanogenesis. ENVIRONMENTAL RESEARCH 2020; 191:110197. [PMID: 32919968 DOI: 10.1016/j.envres.2020.110197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Artificial redox mediators can be employed to improve the electron transfer efficiency during sludge methanogenesis, whereas these artificial redox mediators have possible deficiencies, such as high cost and non-biodegradability. For large-scale commercial applications, more cost-effective and environmentally friendly alternatives should be developed. Herein, the potential of extracellular polymeric substances (EPS) as natural redox mediators to improve methanogenesis was investigated. Compared to the control test without EPS addition, the methane (CH4) production yield was increased by 83.5 ± 2.4% with an EPS dosage of 0.50 g/L and the lag phase duration was shortened by 45.6 ± 7.0%, along with the enhanced sludge dewaterability. Spectroelectrochemical measurements implied that EPS addition notably changed the intensities of different redox-active groups, which decreased the charge transfer resistance and enhanced the extracellular electron transfer efficiency. These redox-active groups were mainly from the solubilization and hydrolysis of sludge protein due to increased protease activities, thereby leading to a higher acetate concentration during the acidification step. Further investigation showed that EPS addition also improved the activities of both acetotrophic and hydrogenotrophic methanogens, as indicated by a higher abundance of alpha subunit of methyl coenzyme M reductase (mcrA) genes, enhancing CH4 production. This work provides an innovative strategy for improving sludge anaerobic digestion with efficient additives.
Collapse
Affiliation(s)
- Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiaoyuan Cheng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chao Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Li Kang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Piao Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qiuxiang He
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| |
Collapse
|
34
|
Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure. SUSTAINABILITY 2020. [DOI: 10.3390/su12208491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaerobic digestion (AD) is a biological-based technology that generates methane-enriched biogas. A microbial electrolysis cell (MEC) uses electricity to initiate bacterial oxidization of organic matter to produce hydrogen. This study determined the effect of energy production and waste treatment when using dairy manure in a combined AD and MEC (AD-MEC) system compared to AD without MEC (AD-only). In the AD-MEC system, a single chamber MEC (150 mL) was placed inside a 10 L digester on day 20 of the digestion process and run for 272 h (11 days) to determine residual treatment and energy capacity with an MEC included. Cumulative H2 and CH4 production in the AD-MEC (2.43 L H2 and 23.6 L CH4) was higher than AD-only (0.00 L H2 and 10.9 L CH4). Hydrogen concentration during the first 24 h of MEC introduction constituted 20% of the produced biogas, after which time the H2 decreased as the CH4 concentration increased from 50% to 63%. The efficiency of electrical energy recovery (ηE) in the MEC was 73% (ηE min.) to 324% (ηE max.), with an average increase of 170% in total energy compared to AD-only. Chemical oxygen demand (COD) removal was higher in the AD-MEC (7.09 kJ/g COD removed) system compared to AD-only (6.19 kJ/g COD removed). This study showed that adding an MEC during the digestion process could increase overall energy production and organic removal from dairy manure.
Collapse
|
35
|
Semiquantitative Detection of Hydrogen-Associated or Hydrogen-Free Electron Transfer within Methanogenic Biofilm of Microbial Electrosynthesis. Appl Environ Microbiol 2020; 86:AEM.01056-20. [PMID: 32561585 DOI: 10.1128/aem.01056-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrogen-entangled electron transfer has been verified as an important extracellular pathway of sharing reducing equivalents to regulate biofilm activities within a diversely anaerobic environment, especially in microbial electrosynthesis systems. However, with a lack of useful methods for in situ hydrogen detection in cathodic biofilms, the role of hydrogen involvement in electron transfer is still debatable. Here, a cathodic biofilm was constructed in CH4-produced microbial electrosynthesis reactors, in which the hydrogen evolution dynamic was analyzed to confirm the presence of hydrogen-associated electron transfer near the cathode within a micrometer scale. Fluorescent in situ hybridization images indicated that a colocalized community of archaea and bacteria developed within a 58.10-μm-thick biofilm at the cathode, suggesting that the hydrogen gradient detected by the microsensor was consumed by the collaboration of bacteria and archaea. Coupling of a microsensor and cyclic voltammetry test further provided semiquantitative results of the hydrogen-associated contribution to methane generation (around 21.20% ± 1.57% at a potential of -0.5 V to -0.69 V). This finding provides deep insight into the mechanism of electron transfer in biofilm on conductive materials.IMPORTANCE Electron transfer from an electrode to biofilm is of great interest to the fields of microbial electrochemical technology, bioremediation, and methanogenesis. It has a promising potential application to boost more value-added products or pollutant degradation. Importantly, the ability of microbes to obtain electrons from electrodes and utilize them brings new insight into direct interspecies electron transfer during methanogenesis. Previous studies verified the direct pathway of electron transfer from the electrode to a pure-culture bacterium, but it was rarely reported how the methanogenic biofilm of mixed cultures shares electrons by a hydrogen-associated or hydrogen-free pathway. In the current study, a combination method of microsensor and cyclic voltammetry successfully semiquantified the role of hydrogen in electron transfer from an electrode to methanogenic biofilm.
Collapse
|
36
|
He C, Zhang B, Yan W, Ding D, Guo J. Enhanced Microbial Chromate Reduction Using Hydrogen and Methane as Joint Electron Donors. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122684. [PMID: 32330782 DOI: 10.1016/j.jhazmat.2020.122684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen and methane commonly co-exist in aquifer. Either hydrogen or methane has been individually utilized as electron donor for bio-reducing chromate. However, little is known whether microbial chromate reduction would be suppressed or promoted when both hydrogen and methane are simultaneously supplied as joint electron donors. This study for the first time demonstrated microbial chromate reduction rate could be accelerated by both hydrogen and methane donating electrons. The maximum chromate reduction rate (4.70 ± 0.03 mg/L·d) with a volume ratio of hydrogen to methane at 1:1 was significantly higher than that with pure hydrogen (2.53 ± 0.02 mg/L·d) or pure methane (2.01 ± 0.02 mg/L·d) as the sole electron donor (p < 0.01). High-throughput 16S rRNA gene amplicon sequencing detected potential chromate reducers (e.g., Spirochaetaceae, Delftia and Azonexus) and hydrogenotrophic bacteria (e.g., Acetoanaerobium) and methane-metabolizing microorganisms (e.g., Methanobacterium), indicating that these microorganisms might play important roles on microbial chromate reduction using both hydrogen and methane as electron donors. Abundant hupL and mcrA genes responsible for hydrogen oxidation and methane conversion were harbored, together with chrA gene for chromate reduction. More abundant extracellular cytochrome c and intracellular NADH were detected with joint electron donors, suggesting more active electron transfers.
Collapse
Affiliation(s)
- Chao He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Wenyue Yan
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
37
|
Chen J, Liu Y, Yang Y, Tang M, Wang R, Jiang L, Tian Y, Hu H, Zhang X, Wei Y. Bacterial community structure and gene function prediction in response to long-term running of dual graphene modified bioelectrode bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2020; 309:123398. [PMID: 32325382 DOI: 10.1016/j.biortech.2020.123398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
This work studied bacterial community structure and gene function prediction in long-term running of dual graphene modified bioelectrode bioelectrochemical systems (LT D-GM-BE BES, 2 year). The maximum power density of LT D-GM-BE BES was 99.03 ± 3.64 mW/m2, which was 3.66 times of dual control BES (D-C-BE BES), and the transfer resistance of LT GM-BE was just approximately 1/4 of control bioelectrode (C-BE). Proteobacteria and Firmicutes were dominant bacteria in long-term modified bioanode (LT GM-BA, 30.03% and 45.64%), and in long-term modified biocathode (LT GM-BC) was Armatimonadetes (47.14%) in phylum level. The dominant bacteria in LT GM-BA was Clostridium (30.56%), in GM-BC was Chthonomonas (47.14%) in genus level. Gene function related with substrate, energy metabolism and environmental adaptation were enriched. LT GM-BE was tended to enrich dominant bacteria and enrich gene to adapt to micro-environmental changes. This study would provide metagenomics information for long-term running of BES in future.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| | - Yanyan Liu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Meizhen Tang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Liting Jiang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuping Tian
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Hanwen Hu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Xiao Zhang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yushan Wei
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
38
|
Wang AJ, Wang HC, Cheng HY, Liang B, Liu WZ, Han JL, Zhang B, Wang SS. Electrochemistry-stimulated environmental bioremediation: Development of applicable modular electrode and system scale-up. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 3:100050. [PMID: 36159603 PMCID: PMC9488061 DOI: 10.1016/j.ese.2020.100050] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 05/03/2023]
Abstract
Bioelectrochemical systems (BESs) have been studied extensively during the past decades owing primarily to their versatility and potential in addressing the water-energy-resource nexus. In stark contrast to the significant advancements that have been made in developing innovative processes for pollution control and bioresource/bioenergy recovery, minimal progress has been achieved in demonstrating the feasibility of BESs in scaled-up applications. This lack of scaled-up demonstration could be ascribed to the absence of suitable electrode modules (EMs) engineered for large-scale application. In this study, we report a scalable composite-engineered EM (total volume of 1 m3), fabricated using graphite-coated stainless steel and carbon felt, that allows integrating BESs into mainstream wastewater treatment technologies. The cost-effectiveness and easy scalability of this EM provides a viable and clear path to facilitate the transition between the success of the lab studies and applications of BESs to solve multiple pressing environmental issues at full-scale.
Collapse
Affiliation(s)
- Ai-Jie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
- Corresponding author. School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China..
| | - Hong-Cheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Hao-Yi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Jing-Long Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Bo Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Shu-Sen Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| |
Collapse
|
39
|
A Membership-Fusing Model for Characterizing the Shift of Methanogen Community in a Three-Stage Sludge-Treatment Process. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anaerobic digestion (AD) is an economical and effective method to treat sludge. AD with several pretreatments is the prior process to treat surplus sludge for a wastewater treatment plant. During a sludge-treatment process, various methanogens play their specific role in each sludge-processing stage where different methanogens predominate. Therefore, an expert in the shift of methanogen community could facilitate the workers in a plant to understand the efficiency of the sludge-treatment process. In this paper, a membership-fusing model is established to characterize the shift of methanogen community in a three-stage sludge-treatment process. The introduction of fuzzy sets clarifies the vagueness of the methanogen community structure between two processing stages. Dempster–Shafer (DS) evidence theory effectively alleviates the data error generated among paralleling samples. The accuracy of the model was verified, and the result shows the model could clearly distinguish the methanogen community structure of the three stages and make accurate judgment on the processing stage affiliation. The reliability of the model in dealing with different numbers of conflict data was proved and the experiment indicates the model could make a reliable judgment on the processing stage affiliation by reasonably fusing the interference data.
Collapse
|
40
|
Wang B, Liu W, Zhang Y, Wang A. Bioenergy recovery from wastewater accelerated by solar power: Intermittent electro-driving regulation and capacitive storage in biomass. WATER RESEARCH 2020; 175:115696. [PMID: 32179273 DOI: 10.1016/j.watres.2020.115696] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Electroactive microorganisms (EAMs) can act as pseudocapacitor to store energy and discharge electrons on need, while electromethanogens acting as receptor are able to utilize electrons, protons and carbon dioxide for methanization. However, external energy is required to overcome thermodynamical barriers for electromethanogenesis. Herein, electro-driving power by solar light was established to accelerate conversion of waste organics to bioenergy. The intermittent power supply modes were elucidated for favourable performances (e.g., current density, methane production rate, energy recovery efficiencies and economic evaluation), compared with the control driven by continuous applied voltage. It was found that natural intermittent solar-powered mode was more beneficial for microorganisms involved in electron transfer and energy recovery than manual sharp on-off mode. Electrochemistry analysis unrevealed that a higher redox current and lower resistance were exhibited under the solar-powered mode. A high charge storage capacity and electron mobility were found through cytochrome c content and live cells ratio in the solar-power assisted bioreactor. The intermittent power driving modes can regulate electron transfer proteins with capacitive storage behavior in biomass, which helps to understand the responses of functional communities on the stress of intermittent electric field. These findings indicate a promising perspective of microbial biotechnology driven by solar power to boost bioenergy recovery from waste/wastewater.
Collapse
Affiliation(s)
- Bo Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Environmental Engineering, Technical University of Denmark, DK, 2800, Lyngby, Denmark; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish Center for Education and Research, Beijing, 100190, China
| | - Wenzong Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK, 2800, Lyngby, Denmark
| | - Aijie Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
41
|
Zhang X, Li R. Electrodes bioaugmentation promotes the removal of antibiotics from concentrated sludge in microbial electrolysis cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136997. [PMID: 32032993 DOI: 10.1016/j.scitotenv.2020.136997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Microbial electrolysis cells (MECs) had a potential to improve antibiotics removal from wastewater. However, research on antibiotics removal from concentrated sludge using MECs is still very limited. In this study, antibiotics removal and microbial responses in MECs treating concentrated sludge under different applied voltages (0.3 V-1.5 V) were investigated. Results showed that antibiotics removal efficiencies at 0.6 V and 1.0 V were 16.7%-26.6% higher than other applied voltages. The applied voltages had no obvious effects on the viability, activity and composition of microorganisms in the suspended sludge even up to 1.5 V. Bioelectrodes exhibited higher bioelectrocatalytic activity and denser microbial aggregation at 0.6 V and 1.0 V, under which higher antibiotics removal was also achieved. The enhanced removal of antibiotics at the optimal applied voltages was mainly contributed by the bioaugmentation of electrodes, but was irrelative with the electrochemical reaction and the microbial responses in suspended sludge.
Collapse
Affiliation(s)
- Xiangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
42
|
Yuan Y, Cheng H, Chen F, Zhang Y, Xu X, Huang C, Chen C, Liu W, Ding C, Li Z, Chen T, Wang A. Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor. ENVIRONMENT INTERNATIONAL 2020; 136:105503. [PMID: 32006760 DOI: 10.1016/j.envint.2020.105503] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) of organics is a challenging task under high-strength sulfate (SO42-) conditions. The generation of toxic sulfides by SO42--reducing bacteria (SRB) causes low methane (CH4) production. This study investigated the feasibility of alleviating sulfide inhibition and enhancing CH4 production by using an anaerobic reactor with built-in microbial electrolysis cell (MEC), namely ME-AD reactor. Compared to AD reactor, unionized H2S in the ME-AD reactor was sufficiently converted into ionized HS- due to the weak alkaline condition created via cathodic H2 production, which relieved the toxicity of unionized H2S to methanogenesis. Correspondingly, the CH4 production in the ME-AD system was 1.56 times higher than that in the AD reactor with alkaline-pH control and 3.03 times higher than that in the AD reactors (no external voltage and no electrodes) without alkaline-pH control. MEC increased the amount of substrates available for CH4-producing bacteria (MPB) to generate more CH4. Microbial community analysis indicated that hydrogentrophic MPB (e.g. Methanosphaera) and acetotrophic MPB (e.g. Methanosaeta) participated in the two major pathways of CH4 formation were successfully enriched in the cathode biofilm and suspended sludge of the ME-AD system. Economic revenue from increased CH4 production totally covered the cost of input electricity. Integration of MEC with AD could be an attractive technology to alleviate sulfide inhibition and enhance CH4 production from AD of organics under SO42--rich condition.
Collapse
Affiliation(s)
- Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haoyi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fan Chen
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiqian Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cong Huang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Aijie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
43
|
Flores-Rodriguez C, Min B. Enrichment of specific microbial communities by optimum applied voltages for enhanced methane production by microbial electrosynthesis in anaerobic digestion. BIORESOURCE TECHNOLOGY 2020; 300:122624. [PMID: 31918296 DOI: 10.1016/j.biortech.2019.122624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the distribution of microbiome in microbial electrosynthesis systems at different applied voltages (0.5, 1.0, and 1.5 V) for methane production. Results revealed that more favorable conditions for methane production were observed with 1.0 V applied voltage. In Venn plots, the bioelectrodes at 1.0 V had higher numbers of unique operational taxonomic units compared to those at 0.5 and 1.5 V. Hierarchical cluster, non-metric multidimensional scaling, and principal component ordinate analyses revealed that the biocathode at 1.0 V clustered separately from the rest of the biofilms mainly because of the quantitative differences in the microbial distribution. Taxonomically, exoelectrogens (Geobacter spp.) dominated the bioanode at 1.0 V, while the syntrophic assemblages of hydrogen-producing bacteria (i.e., Bacteroidetes and Firmicutes) and hydrogen-consuming methanogens (i.e., Methanobacterium sp.) existed in the biocathode. These results suggest that the optimum applied voltage enriched specific microbial communities on the anode and cathode for enhanced methane production.
Collapse
Affiliation(s)
- Carla Flores-Rodriguez
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
44
|
Wang J, Zhang Z, Ye X, Pan X, Lv N, Fang H, Chen S. Enhanced solubilization and biochemical methane potential of waste activated sludge by combined free nitrous acid and potassium ferrate pretreatment. BIORESOURCE TECHNOLOGY 2020; 297:122376. [PMID: 31734060 DOI: 10.1016/j.biortech.2019.122376] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The increasing production of waste activated sludge (WAS) from wastewater treatment plants presents an inherent environmental burden. In this study, Free nitrous acid combined with potassium ferrate (FNA + PF) pretreatment was used to enhance solubilization and biochemical methane potential of WAS. Results indicated that the maximum removal rates of total suspended solid by PF, FNA, and PF + FNA pretreatment were 21.84%, 38.09%, and 56.17%, respectively. The biochemical methane potential of WAS without pretreatment reached 61.22 L CH4/kg VSS added while this value increased to 147.07 L CH4/kg VSS added after FNA + PF pretreatment (0.06 g/g TSS NaNO2 and 0.25 g/g TSS K2FeO4). Shotgun metagenomic analysis revealed that FNA + PF pretreatment could increase the diversity and stability of microbial communities by shifting methanogenic pathways from strictly acetoclastic to acetoclastic/hydrogenotrophic, thereby enhancing methane production. This study suggested that FNA + PF pretreatment is a promising technology to reduce WAS and enhance methane production by pretreated WAS during anaerobic digestion.
Collapse
Affiliation(s)
- Jinsong Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoji Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Xin Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongda Fang
- School of Port and Environmental Engineering, Jimei University, Xiamen 361021, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
45
|
Du C, Song Y, Han X, Xiao S. Insights into the key components of bacterial assemblages in typical process units of oily wastewater treatment plants. ENVIRONMENTAL RESEARCH 2020; 180:108889. [PMID: 31706603 DOI: 10.1016/j.envres.2019.108889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
To compare the structure of microbial community in the oily wastewater treatment plants (OWWTPs) located in China, and to discern the impacts of environment variables on the variance of microbial community, activated sludge samples from six typical OWWTPs were taken and the structure of microbial community of these six samples were analyzed via Illumina high-throughput sequencing. 18 core genera including Comamonas, Bacillus, Pseudomonas, Thauera, Paenibacillus, etc. were shared by all OWWTPs. Canonical correspondence analysis (CCA) suggested that temperature, oil concentration, DO and pH exhibited significant impacts in shaping the structure of microbial community. Variance partitioning analyses (VPA) illuminated that the most variation in microbial community was contributed to geographic location, explaining 36.4% of the total variations obtained, followed by wastewater characteristics (18.7%) and operational parameters (8.6%). This work offered insights into the structure of microbial community in OWWTPs at different geographic locations and illustrated the correlations between environment variables and microbial community in OWWTPs.
Collapse
Affiliation(s)
- Cong Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Water Environmental Treatment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xuemei Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shuhu Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Water Environmental Treatment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
46
|
Li J, Liu W, Ren R, Xu D, Liu C, Wang B, Wang A. Weakened adhesion force between extracellular polymeric substances of waste activated sludge caused by rhamnolipid leading to more efficient carbon release. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:892-902. [PMID: 31539994 DOI: 10.1016/j.scitotenv.2019.07.348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Rhamnolipid (RL), a biosurfactant produced by bacteria, is investigated to alter the physical characteristics of extracellular polymeric substance (EPS) of waste-activated sludge (WAS), and subsequently promotes hydrolysis and acidogenesis during anaerobic digestion for short chain fatty acids (SCFAs) production. The results revealed that RL could decrease the adhesion force of EPS from 13.46 nN to 1.08 nN, resulting in EPS disintegration layer by layer, decreasing the median particle size by 31.57 μm and releasing abundant soluble organic matter. The cell number of living bacteria remained stable after RL pretreatment (2.59 × 109 vs. 2.66 × 109), indicating that RL has a minimal impact on microbial cells (only ~2% bacterial lysis was observed). The kinetic studies of ammonia nitrogen release and SCFA production suggested that, in the RL-pretreated WAS, the reaction rate constants for hydrolysis and acidogenesis were respectively 2-fold and 1.5-fold higher than those of the control group.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ruiyun Ren
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dechun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyan Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| |
Collapse
|
47
|
Zakaria BS, Dhar BR. Progress towards catalyzing electro-methanogenesis in anaerobic digestion process: Fundamentals, process optimization, design and scale-up considerations. BIORESOURCE TECHNOLOGY 2019; 289:121738. [PMID: 31300305 DOI: 10.1016/j.biortech.2019.121738] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Electro-methanogenesis represents an emerging bio-methane production pathway that can be achieved through integrating microbial electrolysis cell (MEC) with conventional anaerobic digester (AD). Since 2009, a significant number of publications have reported superior methane productivity and kinetics from MEC-AD integrated systems. The overall objective of this review is to communicate the recent advances towards promoting electro-methanogenesis in the anaerobic digestion process. Firstly, the electro-methanogenesis pathways and functional roles of key microbial members are summarized. Secondly, various extrinsic process parameters, such as applied voltage/potential, pH, and temperature are discussed with emphasis on process optimization. Moreover, available methods for the inoculation and start-up of MEC-AD process are critically reviewed. Finally, system design and scale-up considerations, such as the selection of electrode materials, surface area and surface chemistry of electrode materials, and electrode spacing are summarized.
Collapse
Affiliation(s)
- Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
48
|
Wang D, Li Y, Zhuang H, Yi X, Yang F, Han H. Direct current triggering enhanced anaerobic treatment of acetyl pyrimidine-containing wastewater in up-flow anaerobic sludge blanket coupled with bioelectrocatalytic system. CHEMOSPHERE 2019; 231:457-467. [PMID: 31151005 DOI: 10.1016/j.chemosphere.2019.05.160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/28/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
In this study, the novel up-flow anaerobic sludge blanket coupled with bioelectrocatalytic system (UASB-BEC) was developed with the attempt to enhance treatment of acetyl pyrimidine-containing wastewater. The results revealed that higher current applied had a positive effect on acetyl pyrimidine (AP) degradation but a negative impact could be followed by the overhigh current (>1.26 A m-3). Removal efficiencies of AP and total organic carbon (TOC) were as high as 96.3 ± 2.6% and 92.9 ± 3.2% while methane production reached up to 0.70 ± 0.03 NL-CH4 L-1-reactor d-1 at applied current of 1.26 A m-3, which were significantly higher those in control system. Moreover, high-throughput 16S rRNA gene pyrosequencing further indicated that Desulfovibrio and Methanimicrococcus species were specially enriched in suspended sludge and cathodic biofilm with current involvement. It could be reasonably speculated that enrichment of Desulfovibrio and Methanimicrococcus species could promote biotransformation of AP and final H2-depended methylotrophic methanogenesis. This study could shed light on better understanding of AP transformation in bioelectrocatalytic system and provide a valuable reference to practical application of anaerobic AP-containing wastewater treatment.
Collapse
Affiliation(s)
- Dexin Wang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Yangyang Li
- Department of Environmental Science and Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Xuesong Yi
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Fei Yang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
49
|
Ragab A, Katuri KP, Ali M, Saikaly PE. Evidence of Spatial Homogeneity in an Electromethanogenic Cathodic Microbial Community. Front Microbiol 2019; 10:1747. [PMID: 31417533 PMCID: PMC6685142 DOI: 10.3389/fmicb.2019.01747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
Microbial electrosynthesis (MES) has been gaining considerable interest as the next step in the evolution of microbial electrochemical technologies. Understanding the niche biocathode environment and microbial community is critical for further developing this technology as the biocathode is key to product formation and efficiency. MES is generally operated to enrich a specific functional group (e.g., methanogens or homoacetogens) from a mixed-culture inoculum. However, due to differences in H2 and CO2 availability across the cathode surface, competition and syntrophy may lead to overall variability and significant beta-diversity within and between replicate reactors, which can affect performance reproducibility. Therefore, this study aimed to investigate the distribution and potential spatial variability of the microbial communities in MES methanogenic biocathodes. Triplicate methanogenic biocathodes were enriched in microbial electrolysis cells for 5 months at an applied voltage of 0.7 V. They were then transferred to triplicate dual-chambered MES reactors and operated at -1.0 V vs. Ag/AgCl for six batches. At the end of the experiment, triplicate samples were taken at different positions (top, center, bottom) from each biocathode for a total of nine samples for total biomass protein analysis and 16S rRNA gene amplicon sequencing. Microbial community analyses showed that the biocathodes were highly enriched with methanogens, especially the hydrogenotrophic methanogen family Methanobacteriaceae, Methanobacterium sp., and the mixotrophic Methanosarcina sp., with an overall core community representing > 97% of sequence reads in all samples. There was no statistically significant spatial variability (p > 0.05) observed in the distribution of these communities within and between the reactors. These results suggest deterministic community assembly and indicate the reproducibility of electromethanogenic biocathode communities, with implications for larger-scale reactors.
Collapse
Affiliation(s)
- Ala'a Ragab
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Krishna P Katuri
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Ali
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
50
|
Zhang Z, Song Y, Zheng S, Zhen G, Lu X, Kobayashi T, Xu K, Bakonyi P. Electro-conversion of carbon dioxide (CO 2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: The current status and future perspective. BIORESOURCE TECHNOLOGY 2019; 279:339-349. [PMID: 30737066 DOI: 10.1016/j.biortech.2019.01.145] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Given the aggravated greenhouse effect caused by CO2 and the current energy shortage, CO2 capture and reuse has been gaining ever-increasing concerns. Microbial Electrolysis Cells (MECs) has been considered to be a promising alternative to recycle CO2 bioelectrochemically to low-carbon electrofuels such as CH4 by combining electroactive microorganisms with electrochemical stimulation, enabling both CO2 fixation and energy recovery. In spite of the numerous efforts dedicated in this field in recent years, there are still many problems that hinder CO2 bioelectroconversion technique from the scaling-up and potential industrialization. This review comprehensively summarized the working principles, extracellular electron transfers behaviors, and the critical factors limiting the wide-spread utilization of CO2 electromethanogenesis. Various characterization and electrochemical testing methods for helping to uncover the underlying mechanisms in CO2 electromethanogenesis have been introduced. In addition, future research needs for pushing forward the development of MECs technology in real-world CO2 fixation and recycling were elaborated.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ying Song
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shaojuan Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China.
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China
| | - Takuro Kobayashi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| |
Collapse
|