1
|
Zhu H, Li W, Zhang D, Zhang C, Chi G, Wei Z, Xu X. Impacts of production wastewater reuse on water quality safety and microbial community dynamics in drinking water treatment plants. ENVIRONMENTAL RESEARCH 2025; 276:121473. [PMID: 40147516 DOI: 10.1016/j.envres.2025.121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Reusing production wastewater (PW) in drinking water treatment plants (DWTPs) can increase the net water production rate and improve coagulation efficiency. However, it also poses the risk of pollutant enrichment, and the impact of PW reuse on microorganisms during water treatment processes is not yet well understood. To investigate the specific effects of PW reuse on water quality, this study conducted a production test in two conditions: with and without wastewater reuse. The samples were analyzed for particulate matter, organic matter, and microbial indicators, additionally, high-throughput sequencing technology was employed to analyze the bacterial community composition and predict gene functions. The results indicated that PW reuse increased the heterotrophic plate count by 2.56 % (from 312 to 326 CFU/mL) and assimilable organic carbon by 66.7 % (from 68.3 to 114.1 μg/L) in treated water, while remaining within safety standards. Analysis of bacterial community diversity and composition revealed that PW reuse significantly affected the bacterial community in the rapid sand filter and the biological stability of treated water. The bacterial community changed sequentially in each treatment process unit, with the proportion of bacteria shared with raw water gradually decreased (shared operational taxonomic units from 74.77 % to 56.71 %). Gene function prediction showed that PW reuse enhanced the metabolic capacity of microorganisms without significantly increasing the risk of pathogenicity among all samples. Understanding the microbial safety of water quality with PW reuse could provide valuable insights into microbial control strategies for drinking water distribution systems.
Collapse
Affiliation(s)
- Hailong Zhu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Weiying Li
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Dawei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chen Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Guozheng Chi
- Zhejiang Lianchi Water Equipment Co. Ltd., Hangzhou, Zhejiang, 311100, China
| | - Zhongqing Wei
- Fuzhou Water Supply Co. Ltd., Fuzhou, Fujian, 350001, China
| | - Xingzhong Xu
- Fuzhou Water Supply Co. Ltd., Fuzhou, Fujian, 350001, China
| |
Collapse
|
2
|
Hu D, Li X, An K, Zhang X, Zheng M, Li P, Ji L, Jia R. A comprehensive investigation of bacterial communities in sediment and bulk water in a chlorinated drinking water distribution system. ENVIRONMENTAL RESEARCH 2025; 277:121611. [PMID: 40239737 DOI: 10.1016/j.envres.2025.121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
The accumulation of pipeline sediments within drinking water distribution systems (DWDS) has garnered widespread attention because of their roles as microbial reservoirs. However, previous investigations predominantly concentrated on microbial occurrence in unchlorinated DWDS sediments but largely overlooked chlorinated systems and failed to characterize the spatial distribution patterns of potential pathogens along the DWDS. This study systematically examined bacterial communities in both the sediment and bulk water phases across a chlorinated DWDS through the seasonal collection of 96 samples. Physicochemical water quality parameters, such as turbidity and residual chlorine, exhibited relative stability throughout the network. As anticipated, sediment samples showed substantial particulate accumulation (summer: 1.13 ± 0.61 Log10 NTU; winter: 1.07 ± 0.45 Log10 NTU). Microbial biomass proved significantly elevated in sediments (summer: 4.78 ± 0.65 Log10 gene copies/mL; winter: 4.99 ± 0.42 Log10 gene copies/mL) than water samples (summer: 3.98 ± 0.50 Log10 gene copies/mL; winter: 4.06 ± 0.57 Log10 gene copies/mL; p < 0.05), with similar patterns emerging for the potentially pathogenic fungi, Mycobacterium spp., and Legionella spp. Notably, no longitudinal accumulation gradient of microbial biomass was detected along the pipeline network in either the sediment or water samples. Interestingly, the winter sediment samples displayed peak microbial biomass levels. Seasonal variation exerted a substantial effect on microbial community composition, with turbidity and residual chlorine demonstrating stronger correlations with biomass in summer than in winter. These findings underscore the necessity for regular sediment removal from chlorinated DWDS as a critical preventive measure against waterborne pathogen proliferation and disease transmission.
Collapse
Affiliation(s)
- Dong Hu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiang Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Kang An
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xin Zhang
- Jinan Municipal Center for Disease Control and Prevention, Jinan, 250117, China
| | - Minjia Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Li
- Changqing Branch of Jinan Ecological Environment Bureau, Jinan, 250300, China
| | - Long Ji
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Ruibao Jia
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101, China.
| |
Collapse
|
3
|
Simon SA, Aschmann V, Behrendt A, Hügler M, Engl LM, Pohlner M, Rolfes S, Brinkhoff T, Engelen B, Könneke M, Rodriguez-R LM, Bornemann TLV, Nuy JK, Rothe L, Stach TL, Beblo-Vranesevic K, Leuko S, Runzheimer K, Möller R, Conrady M, Huth M, Trabold T, Herkendell K, Probst AJ. Earth's most needed uncultivated aquatic prokaryotes. WATER RESEARCH 2025; 273:122928. [PMID: 39724798 DOI: 10.1016/j.watres.2024.122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Aquatic ecosystems house a significant fraction of Earth's biosphere, yet most prokaryotes inhabiting these environments remain uncultivated. While recently developed genome-resolved metagenomics and single-cell genomics techniques have underscored the immense genetic breadth and metabolic potential residing in uncultivated Bacteria and Archaea, cultivation of these microorganisms is required to study their physiology via genetic systems, confirm predicted biochemical pathways, exploit biotechnological potential, and accurately appraise nutrient turnover. Over the past two decades, the limitations of culture-independent investigations highlighted the importance of cultivation in bridging this vast knowledge gap. Here, we collected more than 80 highly sought-after uncultivated lineages of aquatic Bacteria and Archaea with global ecological impact. In addition to fulfilling critical roles in global carbon, nitrogen, and sulfur cycling, many of these organisms are thought to partake in key symbiotic relationships. This review highlights the vital contributions of uncultured microbes in aquatic ecosystems, from lakes and groundwater to the surfaces and depths of the oceans and will guide current and future initiatives tasked with cultivating our planet's most elusive, yet highly consequential aquatic microflora.
Collapse
Affiliation(s)
- Sophie A Simon
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Vera Aschmann
- Department of Water Microbiology, TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Annika Behrendt
- Department of Water Microbiology, TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Michael Hügler
- Department of Water Microbiology, TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Lisa M Engl
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Marion Pohlner
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sönke Rolfes
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Bert Engelen
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Martin Könneke
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Austria
| | - Till L V Bornemann
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Julia K Nuy
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Louisa Rothe
- Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Tom L Stach
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | | | - Stefan Leuko
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | | | - Ralf Möller
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Marius Conrady
- Faculty of Life Sciences, Biosystemtechnik, Humboldt University Berlin, Berlin, Germany
| | - Markus Huth
- Faculty of Life Sciences, Biosystemtechnik, Humboldt University Berlin, Berlin, Germany
| | - Thomas Trabold
- Chair of Energy Process Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nürnberg, Germany
| | - Katharina Herkendell
- Chair of Energy Process Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nürnberg, Germany; Department of Energy Process Engineering and Conversion Technologies for Renewable Energies, Technische Universität Berlin, Berlin, Germany
| | - Alexander J Probst
- Department of Environmental Metagenomics, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre of Water and Environmental Research, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Hua P, Huang Q, Wang Z, Jiang S, Gao F, Zhang J, Ying GG. Impact of physicochemical and microbial drivers on the formation of disinfection by-products in drinking water distribution systems: A multivariate Bayesian network modeling approach. WATER RESEARCH 2025; 273:123001. [PMID: 39733531 DOI: 10.1016/j.watres.2024.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
The formation of disinfection byproducts (DBPs) in drinking water distribution systems (DWDS) is significantly affected by numerous factors, including physicochemical water properties, microbial community composition and structure, and the characteristics of organic DBP precursors. However, the codependence of various factors remains unclear, particularly the contribution of microbial-derived organics to DBP formation, which has been inadequately explored. Herein, we present a Bayesian network modeling framework incorporating a Bayesian-based microbial source tracking method and excitation-emission fluorescence spectroscopy-parallel factor analysis to capture the critical drivers influencing DBP formation and explore their interactions. The results showed that the planktonic and suspended particle-associated bacteria in tap water mainly originated from bacteria in the treated water. Protein- and tryptophan-like fluorescence components were identified, illustrating their contribution to DBP formation cannot be ignored. The microbial abundance of Actinobacteria, Bacilli, and Bacteroidia is significantly related to the formation of trihalomethanes, haloacetic acids, and N-nitrosamines. These findings highlight the necessity for prioritizing management policies to control biofilm formation and minimize DBP formation in DWDSs.
Collapse
Affiliation(s)
- Pei Hua
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Qiuyun Huang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhenyu Wang
- Department Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Strasse 4, 06120 Halle (Saale), Germany
| | - Shanshan Jiang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fangzhou Gao
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, 210098 Nanjing, China
| | - Guang-Guo Ying
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
5
|
Liu X, Zhang H, Pei T, Huang T, Ma B, Wang T, Liu X, Ma W. Algal organic matter triggers re-assembly of bacterial community in plumbing system. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136713. [PMID: 39615381 DOI: 10.1016/j.jhazmat.2024.136713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 01/28/2025]
Abstract
Algal bloom outbreaks in upstream drinking water reservoirs inevitably lead to algal organic matter (AOM) pollution in downstream drinking water plants and distribution systems. However, the responses of indoor piped drinking water quality and microbial community to AOM remain to be well studied. In this study, we investigated the effects of low and high concentrations of Chlorella organic matters on pipe-based drinking water. We found that AOM introduced nitrogen and phosphorus contamination into drinking water and promoted massive regeneration of bacteria during stagnation, along with increased bacterial metabolic activity. Compared to the Control group, the utilization capacity of alcohols, acids, esters, and amino acids increased under the influence of AOM. In addition, AOM intrusion reduced the bacterial community diversity in drinking water. The bacterial communities became more saturated, interspecific relationships became more complex, and interspecific competition increased. Bacteria with the ability to denitrification, such as Pseudomonas putida, Sphingobium amiense, Delftia tsuruhatensis, and Acidovorax temperans, were the most abundant. Residual chlorine, ammonium, nitrite, and iron had notable effects on the bacterial community under the influence of AOM. The results help elucidate the response mechanism of microbial community to AOM contamination in indoor drinking water pipes and provide a scientific basis for drinking water safety risk management.
Collapse
Affiliation(s)
- Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Tingting Pei
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tuanwei Wang
- Xi'an Secondary Water Supply Management Center, Xi'an, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Wenpeng Ma
- Shaanxi Environmental Monitoring Center, Xi'an, China
| |
Collapse
|
6
|
Chen R, Xu R, Huang J, Zhu X, Tang Y, Zhang Y. N-acyl-homoserine-lactones as a critical factor for biofilm formation during the initial adhesion stage in drinking water distribution systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125489. [PMID: 39647771 DOI: 10.1016/j.envpol.2024.125489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The N-acyl-homoserine-lactone (AHLs)-mediated quorum sensing (QS) system is crucial for the coordination of microbial behaviors within communities. However, the levels of AHLs in biofilms in drinking water distribution systems (DWDSs) and their impact on biofilm formation remain poorly understood. Herein, we simulated DWDSs via biofilm reactors to explore the presence and influence of AHLs during the initial stages of biofilm formation on pipe walls. Glass, polypropylene random copolymer (PP-R) and stainless steel (SS) were used as the coupon materials and the three parallel experimental groups were set up and named accordingly. The glass material is considered to form biofilms only minimally and is therefore used as a negative control. By day 30, the concentration of AHLs in biofilm phase in both PP-R group and SS group reached 1200-1800 ng/L. The predominant AHLs were C6-HSL, C8-HSL, and C10-HSL, with a significant positive correlation between AHLs and biofilm biomass. Metagenomic analysis revealed that microbes exhibiting significant differences among the three groups all demonstrated notable correlations with AHLs. Subsequent analysis of QS genes revealed that the genes associated with AHLs biosynthesis and QS receptors were more abundant in the PP-R and SS groups with biofilm formation. Additionally, we analyzed the abundance of genes related to cell motility, transmembrane transport, tricarboxylic acid cycle, and genetic information synthesis. The co-occurrence network indicates that these processes exhibit a strong correlation with QS genes. This study demonstrates the pivotal role of AHLs in microbial communication during the initial stages of biofilm formation in DWDSs and indicates that the regulatory pathways and mechanisms of AHLs may vary under different environmental conditions.
Collapse
Affiliation(s)
- Ruisi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ruotong Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiaxin Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiuneng Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yulin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yongji Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
7
|
Ke Y, Sun W, Xue Y, Yuan Z, Zhu Y, Chen X, Yan S, Li Y, Xie S. Pipe material and natural organic matter impact drinking water biofilm microbial community, pathogen profiles and antibiotic resistome deciphered by metagenomics assembly. ENVIRONMENTAL RESEARCH 2024; 262:119964. [PMID: 39260724 DOI: 10.1016/j.envres.2024.119964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Biofilms in drinking water distribution systems (DWDSs) are a determinant to drinking water biosafety. Yet, how and why pipe material and natural organic matter (NOM) affect biofilm microbial community, pathogen composition and antibiotic resistome remain unclear. We characterized the biofilms' activity, microbial community, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and pathogenic ARG hosts in Centers for Disease Control and Prevention (CDC) reactors with different NOM dosages and pipe materials based on metagenomics assembly. Biofilms in cast iron (CI) pipes exhibited higher activity than those in polyethylene (PE) pipes. NOM addition significantly decreased biofilm activity in CI pipes but increased it in PE pipes. Pipe material exerted more profound effects on microbial community structure than NOM. Azospira was significantly enriched in CI pipes and Sphingopyxis was selected in PE pipes, while pathogen (Ralstonia pickettii) increased considerably in NOM-added reactors. Microbial community network in CI pipes showed more edges (CI 13520, PE 7841) and positive correlation proportions (CI 72.35%, PE 61.69%) than those in PE pipes. Stochastic processes drove assembly of both microbial community and antibiotic resistome in DWDS biofilms based on neutral community model. Bacitracin, fosmidomycin and multidrug ARGs were predominant in both PE and CI pipes. Both pipe materials and NOM regulated the biofilm antibiotic resistome. Plasmid was the major MGE co-existing with ARGs, facilitating ARG horizontal transfer. Pathogens (Achromobacter xylosoxidans and Ralstonia pickettii) carried multiple ARGs (qacEdelta1, OXA-22 and aadA) and MGEs (integrase, plasmid and transposase), which deserved more attention. Microbial community contributed more to ARG change than MGEs. Structure equation model (SEM) demonstrated that turbidity and ammonia affected ARGs by directly mediating Shannon diversity and MGEs. These findings might provide a technical guidance for controlling pathogens and ARGs from the point of pipe material and NOM in drinking water.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing, 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Withey Z, Gweon HS. Longitudinal bacterial community dynamics and sodium hypochlorite intervention in a newly built university building. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175349. [PMID: 39122041 DOI: 10.1016/j.scitotenv.2024.175349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Urbanisation and building advancements have increased microbial growth in indoor environments, altering human interactions with these microorganisms. Restrooms and their sinks harbour diverse bacterial communities, that differ from those found in natural environments, that could have negative implications for human health. Over two and a half years, this study examined the diversity, temporal dynamics, and resilience of bacterial communities in restroom sink P-traps in a newly built university building. Structured into two phases, the first phase consisted of continuous monitoring of bacterial community dynamics for two years (n = 352), while the second phase involved an intervention with sodium hypochlorite (bleach) and subsequent sampling (n = 132). In the first phase, we show that sink communities converge, becoming more compositionally similar to other sinks within the building. Bacterial families such as Rhodocyclaceae and Flavobacteriaceae dominated across the sinks, and others such as Comamonadaceae, Moraxellaceae and Enterbacteriaceae were highly prevalent. When comparing bacterial structure and composition to other sinks located on the university campus, the mean bacterial dissimilarity decreased over time, indicating compositional similarity, particularly with the newer buildings on campus. The second phase demonstrated resilience by the bacterial sink communities. Following bleach treatments, a distinct increase in Acinetobacter was observed. However, by the fourth week after bleach invention, bacterial communities had re-established to levels observed prior to treatment. This study had the unique opportunity to sample a newly built building before occupancy and for the subsequent two and a half years. The findings provide crucial insights into the development and resilience of sink P-trap bacterial communities in restrooms, laying the groundwork for more targeted approaches to disinfection strategies.
Collapse
Affiliation(s)
- Zoe Withey
- School of Biological Sciences, University of Reading, Reading, UK
| | - Hyun S Gweon
- School of Biological Sciences, University of Reading, Reading, UK; UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire OX10 8BB, UK.
| |
Collapse
|
9
|
Cavallaro A, Gabrielli M, Hammes F, Rhoads WJ. The impact of DNA extraction on the quantification of Legionella, with implications for ecological studies. Microbiol Spectr 2024; 12:e0071324. [PMID: 38953325 PMCID: PMC11302271 DOI: 10.1128/spectrum.00713-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Monitoring the levels of opportunistic pathogens in drinking water is important to plan interventions and understand the ecological niches that allow them to proliferate. Quantitative PCR is an established alternative to culture methods that can provide a faster, higher-throughput, and more precise enumeration of the bacteria in water samples. However, PCR-based methods are still not routinely applied for Legionella monitoring, and techniques, such as DNA extraction, differ notably between laboratories. Here, we quantify the impact that DNA extraction methods had on downstream PCR quantification and community sequencing. Through a community science campaign, we collected 50 water samples and corresponding shower hoses, and compared two commonly used DNA extraction methodologies to the same biofilm and water phase samples. The two methods showed clearly different extraction efficacies, which were reflected in both the quantity of DNA extracted and the concentrations of Legionella enumerated in both the matrices. Notably, one method resulted in higher enumeration in nearly all samples by about one order of magnitude and detected Legionella in 21 samples that remained undetected by the other method. 16S rRNA amplicon sequencing revealed that the relative abundance of individual taxa, including sequence variants of Legionella, significantly varied depending on the extraction method employed. Given the implications of these findings, we advocate for improvement in documentation of the performance of DNA extraction methods used in drinking water to detect and quantify Legionella, and characterize the associated microbial community.IMPORTANCEMonitoring for the presence of the waterborne opportunistic pathogen Legionella is important to assess the risk of infection and plan remediation actions. While monitoring is traditionally carried on through cultivation, there is an ever-increasing demand for rapid and high-throughput molecular-based approaches for Legionella detection. This paper provides valuable insights on how DNA extraction affects downstream molecular analysis such as the quantification of Legionella through droplet digital PCR and the characterization of natural microbial communities through sequencing analysis. We analyze the results from a risk-assessment, legislative, and ecological perspective, showing how initial DNA processing is an important step to take into account when shifting to molecular-based routine monitoring and discuss the central role of consistent and detailed reporting of the methods used.
Collapse
Affiliation(s)
- Alessio Cavallaro
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich, Switzerland
| | - Marco Gabrielli
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - William J. Rhoads
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
10
|
Maranha A, Alarico S, Nunes-Costa D, Melo-Marques I, Roxo I, Castanheira P, Caramelo O, Empadinhas N. Drinking Water Microbiota, Entero-Mammary Pathways, and Breast Cancer: Focus on Nontuberculous Mycobacteria. Microorganisms 2024; 12:1425. [PMID: 39065193 PMCID: PMC11279143 DOI: 10.3390/microorganisms12071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The prospect of drinking water serving as a conduit for gut bacteria, artificially selected by disinfection strategies and a lack of monitoring at the point of use, is concerning. Certain opportunistic pathogens, notably some nontuberculous mycobacteria (NTM), often exceed coliform bacteria levels in drinking water, posing safety risks. NTM and other microbiota resist chlorination and thrive in plumbing systems. When inhaled, opportunistic NTM can infect the lungs of immunocompromised or chronically ill patients and the elderly, primarily postmenopausal women. When ingested with drinking water, NTM often survive stomach acidity, reach the intestines, and migrate to other organs using immune cells as vehicles, potentially colonizing tumor tissue, including in breast cancer. The link between the microbiome and cancer is not new, yet the recognition of intratumoral microbiomes is a recent development. Breast cancer risk rises with age, and NTM infections have emerged as a concern among breast cancer patients. In addition to studies hinting at a potential association between chronic NTM infections and lung cancer, NTM have also been detected in breast tumors at levels higher than normal adjacent tissue. Evaluating the risks of continued ingestion of contaminated drinking water is paramount, especially given the ability of various bacteria to migrate from the gut to breast tissue via entero-mammary pathways. This underscores a pressing need to revise water safety monitoring guidelines and delve into hormonal factors, including addressing the disproportionate impact of NTM infections and breast cancer on women and examining the potential health risks posed by the cryptic and unchecked microbiota from drinking water.
Collapse
Affiliation(s)
- Ana Maranha
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Susana Alarico
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniela Nunes-Costa
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Inês Melo-Marques
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Inês Roxo
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Olga Caramelo
- Gynecology Department, Coimbra Hospital and University Centre (CHUC), 3004-561 Coimbra, Portugal;
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.); (S.A.); (D.N.-C.); (I.M.-M.); (I.R.)
- Centre for Innovative Biomedicine & Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
11
|
Li M, Liu Z, Chen Y. Tap water microbiome shifts in secondary water supply for high-rise buildings. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100413. [PMID: 38585200 PMCID: PMC10997949 DOI: 10.1016/j.ese.2024.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
In high-rise buildings, secondary water supply systems (SWSSs) are pivotal yet provide a conducive milieu for microbial proliferation due to intermittent flow, low disinfectant residual, and high specific pipe-surface area, raising concerns about tap water quality deterioration. Despite their ubiquity, a comprehensive understanding of bacterial community dynamics within SWSSs remains elusive. Here we show how intrinsic SWSS variables critically shape the tap water microbiome at distal ends. In an office setting, distinct from residential complexes, the diversity in piping materials instigates a noticeable bacterial community shift, exemplified by a transition from α-Proteobacteria to γ-Proteobacteria dominance, alongside an upsurge in bacterial diversity and microbial propagation potential. Extended water retention within SWSSs invariably escalates microbial regrowth propensities and modulates bacterial consortia, yet secondary disinfection emerges as a robust strategy for preserving water quality integrity. Additionally, the regularity of water usage modulates proximal flow dynamics, thereby influencing tap water's microbial landscape. Insights garnered from this investigation lay the groundwork for devising effective interventions aimed at safeguarding microbiological standards at the consumer's endpoint.
Collapse
Affiliation(s)
- Manjie Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Zhaowei Liu
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Yongcan Chen
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
12
|
Gholipour S, Nikaeen M, Mohammadi F, Rabbani D. Antibiotic resistance pattern of waterborne causative agents of healthcare-associated infections: A call for biofilm control in hospital water systems. J Infect Public Health 2024; 17:102469. [PMID: 38838607 DOI: 10.1016/j.jiph.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND In recent years, the global spread of antimicrobial resistance has become a concerning issue, often referred to as a "silent pandemic". Healthcare-associated infections (HAIs) caused by antibiotic-resistant bacteria (ARB) are a recurring problem, with some originating from waterborne route. The study aimed to investigate the presence of clinically relevant opportunistic bacteria and antibiotic resistance genes (ARGs) in hospital water distribution systems (WDSs). METHODS Water and biofilm samples (n = 192) were collected from nine hospitals in Isfahan and Kashan, located in central Iran, between May 2022 and June 2023. The samples were analyzed to determine the presence and quantities of opportunistic bacteria and ARGs using cultural and molecular methods. RESULTS Staphylococcus spp. were highly detected in WDS samples (90 isolates), with 33 % of them harboring mecA gene. However, the occurrences of E. coli (1 isolate), Acinetobacter baumannii (3 isolates), and Pseudomonas aeruginosa (14 isolates) were low. Moreover, several Gram-negative bacteria containing ARGs were identified in the samples, mainly belonging to Stenotrophomonas, Sphingomonas and Brevundimonas genera. Various ARGs, as well as intI1, were found in hospital WDSs (ranging from 14 % to 60 %), with higher occurrences in the biofilm samples. CONCLUSION Our results underscore the importance of biofilms in water taps as hotspots for the dissemination of opportunistic bacteria and ARG within hospital environments. The identification of multiple opportunistic bacteria and ARGs raises concerns about the potential exposure and acquisition of HAIs, emphasizing the need for proactive measures, particularly in controlling biofilms, to mitigate infection risks in healthcare settings.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Shan L, Zheng W, Xu S, Zhu Z, Pei Y, Bao X, Yuan Y. Effect of household pipe materials on formation and chlorine resistance of the early-stage biofilm: various interspecific interactions exhibited by the same microbial biofilm in different pipe materials. Arch Microbiol 2024; 206:295. [PMID: 38856934 DOI: 10.1007/s00203-024-04013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024]
Abstract
Microbial community biofilm exists in the household drinking water system and would pose threat to water quality. This paper explored biofilm formation and chlorination resistance of ten dual-species biofilms in three typical household pipes (stainless steel (SS), polypropylene random (PPR), and copper), and investigated the role of interspecific interaction. Biofilm biomass was lowest in copper pipes and highest in PPR pipes. A synergistic or neutralistic relationship between bacteria was evident in most biofilms formed in SS pipes, whereas four groups displayed a competitive relationship in biofilms formed in copper pipe. Chlorine resistance of biofilms was better in SS pipes and worse in copper pipes. It may be helped by interspecific relationships, but was more dependent on bacteria and resistance mechanisms such as more stable extracellular polymeric substance. The corrosion sites may also protect bacteria from chlorination. The findings provide useful insights for microbial control strategies in household drinking water systems.
Collapse
Affiliation(s)
- Lili Shan
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Wanjun Zheng
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Siyang Xu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
- Department of Transportation of Jiangxi Province, Comprehensive Transportation Development Research Center of Jiangxi Provincial, Nanchang, PR China
| | - Zebing Zhu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China.
| | - Yunyan Pei
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Xiajun Bao
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
| |
Collapse
|
14
|
Søborg DA, Højris B, Brinkmann K, Pedersen MR, Skovhus TL. Characterizing the development of biofilm in polyethylene pipes in the non-chlorinated Danish drinking-water distribution system. BIOFOULING 2024; 40:262-279. [PMID: 38695072 DOI: 10.1080/08927014.2024.2343839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/11/2024] [Indexed: 06/11/2024]
Abstract
In newly commissioned drinking-water polyethylene (PE) pipes, biofilm develops on the inner pipe surface. The microbial community composition from colonization to the establishment of mature biofilms is less known, including the effect on the distributed water quality. Biofilm development was followed through 1.5 years in PE-pipe side streams at two locations of a full-scale, non-chlorinated drinking-water distribution system (leaving a waterworks versus 5-6 km from a waterworks) along with inlet and outlet water quality. Mature biofilms were established after ∼8-9 months, dominated by Proteobacteria, Actinobacteria and Saccharibacteria (61-93% relative abundance), with a higher diversity (OTUs/Shannon Index/16S rRNA gene amplicon sequencing) in pipes in the far end of the distribution system. Comamonadaceae, and specifically Aquabacterium (>30% of reads), dominated young (∼1.5-month-old) biofilms. Young biofilms were linked to increased microbiological counts in drinking water (HPC/ATP/qPCR), while the establishment of mature biofilms led to a drop in HPC and benefited the water quality, highlighting the importance of optimizing commissioning procedures for rapidly achieving mature and stable biofilms.
Collapse
Affiliation(s)
- Ditte A Søborg
- Research Centre for Built Environment, Climate, Water Technology and Digitalization, VIA University College, Horsens, Denmark
| | - Bo Højris
- Water Application and Technology, GRUNDFOS Holding A/S, Bjerringbro, Denmark
| | | | | | - Torben L Skovhus
- Research Centre for Built Environment, Climate, Water Technology and Digitalization, VIA University College, Horsens, Denmark
| |
Collapse
|
15
|
Ren A, Yao M, Fang J, Dai Z, Li X, van der Meer W, Medema G, Rose JB, Liu G. Bacterial communities of planktonic bacteria and mature biofilm in service lines and premise plumbing of a Megacity: Composition, Diversity, and influencing factors. ENVIRONMENT INTERNATIONAL 2024; 185:108538. [PMID: 38422875 DOI: 10.1016/j.envint.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Although simulated studies have provided valuable knowledge regarding the communities of planktonic bacteria and biofilms, the lack of systematic field studies have hampered the understanding of microbiology in real-world service lines and premise plumbing. In this study, the bacterial communities of water and biofilm were explored, with a special focus on the lifetime development of biofilm communities and their key influencing factors. The 16S rRNA gene sequencing results showed that both the planktonic bacteria and biofilm were dominated by Proteobacteria. Among the 15,084 observed amplicon sequence variants (ASVs), the 33 core ASVs covered 72.8 %, while the 12 shared core ASVs accounted for 62.2 % of the total sequences. Remarkably, it was found that the species richness and diversity of biofilm communities correlated with pipe age. The relative abundance of ASV2 (f_Sphingomonadaceae) was lower for pipe ages 40-50 years (7.9 %) than for pipe ages 10-20 years (59.3 %), while the relative abundance of ASV10 (f_Hyphomonadaceae) was higher for pipe ages 40-50 years (19.5 %) than its presence at pipe ages 20-30 years (1.9 %). The community of the premise plumbing biofilm had significantly higher species richness and diversity than that of the service line, while the steel-plastics composite pipe interior lined with polyethylene (S-PE) harbored significantly more diverse biofilm than the galvanized steel pipes (S-Zn). Interestingly, S-PE was enriched with ASV27 (g_Mycobacterium), while S-Zn pipes were enriched with ASV13 (g_Pseudomonas). Moreover, the network analysis showed that five rare ASVs, not core ASVs, were keystone members in biofilm communities, indicating the importance of rare members in the function and stability of biofilm communities. This manuscript provides novel insights into real-world service lines and premise plumbing microbiology, regarding lifetime dynamics (pipe age 10-50 years), and the influences of pipe types (premise plumbing vs. service line) and pipe materials (S-Zn vs. S-PE).
Collapse
Affiliation(s)
- Anran Ren
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China
| | - Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Walter van der Meer
- Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands; Oasen Drinkwater, PO Box 122, 2800 AC, Gouda, The Netherlands
| | - Gertjan Medema
- Oasen Drinkwater, PO Box 122, 2800 AC, Gouda, The Netherlands; KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Li D, Van De Werfhorst LC, Ervin J, Poresky A, Steets B, Rivers C, Sharp G, Smith J, Holden PA. Municipal separate storm sewer system (MS4) dry weather flows and potential flow sources as assessed by conventional and advanced bacterial analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122521. [PMID: 37678735 DOI: 10.1016/j.envpol.2023.122521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Municipal separate storm sewer systems (MS4s) function in urbanized areas to convey flows during both wet weather (i.e., stormwater) and dry weather (i.e., urban runoff as well as subsurface sources of flow) to receiving waters. While urban stormwater is known to contain microbial and chemical pollutants, MS4 dry weather flows, or non-stormwater discharges (NSWDs), are much less studied, although they are also known to contain pollutants, especially when these flows include raw sewage. In addition, some natural NSWDs (e.g., from groundwater infiltrating MS4 pipes) are critical for aquatic habitat protection. Thus, it is important to distinguish NSWD sources to prevent non-natural flows while retaining natural waters (i.e., groundwater). Here, MS4 dry weather flows were assessed by analyzing water samples from MS4 outfalls across multiple watersheds and water provider service areas in south Orange County, CA; potential NSWD sources including sewage, recycled water, potable water, and groundwater were sampled and analyzed for their likely contributions to overall NSWDs. Geochemical and microbiological water quality indicators, as well as bacterial communities, differed across NSWDs, yet water quality within most locations did not vary significantly diurnally or by sampling date. Meanwhile, NSWD source waters had distinctly different bacterial taxa abundances and specific bacterial genera. Shared geochemical and microbial characteristics of certain sources and outfall flows suggested the contributions of sources to outfall flows. The average proportions by sources contributing to MS4 outfalls were further estimated by SourceTracker and FEAST, respectively. The results of this study highlight the use of multiple tools when assessing chemical and microbiological water quality to predict sources of NSWDs contributing to urban MS4 flows during dry weather. This information can be used to support management actions to reduce unnatural and high risk sources of dry weather drainage while preserving natural sources important to environmental health in downstream receiving waters.
Collapse
Affiliation(s)
- Dong Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, USA
| | | | - Jared Ervin
- Geosyntec Consultants, Santa Barbara, CA, 93101, USA
| | - Aaron Poresky
- Geosyntec Consultants, Santa Barbara, CA, 93101, USA
| | | | - Cindy Rivers
- Orange County Public Works (OCPW), Orange County, CA, USA
| | - Grant Sharp
- Orange County Public Works (OCPW), Orange County, CA, USA
| | - Jen Smith
- California NanoSystems Institute, University of California, Santa Barbara, USA
| | - Patricia A Holden
- Bren School of Environmental Science & Management, University of California, Santa Barbara, USA.
| |
Collapse
|
17
|
Wang C, Yang H, Liu H, Zhang XX, Ma L. Anthropogenic contributions to antibiotic resistance gene pollution in household drinking water revealed by machine-learning-based source-tracking. WATER RESEARCH 2023; 246:120682. [PMID: 37832249 DOI: 10.1016/j.watres.2023.120682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Although the presence of antibiotic resistance genes (ARGs) in drinking water and their potential horizontal gene transfer to pathogenic microbes are known to pose a threat to human health, their pollution levels and potential anthropogenic sources are poorly understood. In this study, broad-spectrum ARG profiling combined with machine-learning-based source classification SourceTracker was performed to investigate the pollution sources of ARGs in household drinking water collected from 95 households in 47 cities of eight countries/regions. In total, 451 ARG subtypes belonging to 19 ARG types were detected with total abundance in individual samples ranging from 1.4 × 10-4 to 1.5 × 10° copies per cell. Source tracking analysis revealed that many ARGs were highly contributed by anthropogenic sources (37.1%), mainly wastewater treatment plants. The regions with the highest detected ARG contribution from wastewater (∼84.3%) used recycled water as drinking water, indicating the need for better ARG control strategies to ensure safe water quality in these regions. Among ARG types, sulfonamide, rifamycin and tetracycline resistance genes were mostly anthropogenic in origin. The contributions of anthropogenic sources to the 20 core ARGs detected in all of the studied countries/regions varied from 36.6% to 84.1%. Moreover, the anthropogenic contribution of 17 potential mobile ARGs identified in drinking water was significantly higher than other ARGs, and metagenomic assembly revealed that these mobile ARGs were carried by diverse potential pathogens. These results indicate that human activities have exacerbated the constant input and transmission of ARGs in drinking water. Our further risk classification framework revealed three ARGs (sul1, sul2 and aadA) that pose the highest risk to public health given their high prevalence, anthropogenic sources and mobility, facilitating accurate monitoring and control of anthropogenic pollution in drinking water.
Collapse
Affiliation(s)
- Chen Wang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Huiying Yang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Huafeng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
18
|
Cai X, Hu Y, Zhou S, Meng D, Xia S, Wang H. Unraveling bacterial and eukaryotic communities in secondary water supply systems: Dynamics, assembly, and health implications. WATER RESEARCH 2023; 245:120597. [PMID: 37713796 DOI: 10.1016/j.watres.2023.120597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Secondary water supply systems (SWSSs) are crucial water supply infrastructures for high-rise buildings in metropolitan cities. In recent years, they have garnered public attention due to increased microbial risks. However, our understanding of SWSS microbial ecology, particularly concerning the composition of eukaryotes and the underlying mechanisms driving microbial dynamics and assembly in SWSSs, remains elusive. Herein, we conducted a comprehensive investigation on both eukaryotes and bacteria along the water transportation pathway and across various microbial habitats (water, biofilm, and sediment) in SWSSs. Sequencing results revealed that eukaryotes within SWSSs predominantly consist of protists (average abundance: 31.23%) and metazoans (20.91%), while amoebae accounted for 4.71% of the total. During water transportation from the distribution mains to taps, both bacterial and eukaryotic communities exhibited significant community shifts, and higher degrees of variation were observed for eukaryotic community among different locations within SWSSs. The normalized stochasticity ratio (NST) analysis demonstrated that bacterial community assembly was governed by stochastic processes, while eukaryotic community assembly was primarily shaped by deterministic processes. Within SWSS tanks, bacterial communities significantly varied across water, biofilm, and sediment, whereas eukaryotic communities showed minor differences among these habitats. The co-occurrence networks analysis revealed that tank biofilm and sediment harbored more eukaryote-bacterium linkages than water, suggesting biofilm and sediment might be hotspots for inter-kingdom interactions. We also applied FEAST analysis to track the source of tap water microbiota, results of which showed that household-tap bacteria mainly originated from tank water. In contrast, tank biofilm was identified as the primary microbial source to eukaryotes in household tap water. Additionally, engineering factors such as tank materials significantly affected amoeba community, and the SWSS configuration was found to influence Legionella and Mycobacterium abundances in SWSSs. Overall, results of our study shed light on the microbial ecology in SWSS and provide insights into SWSS management and health risk control.
Collapse
Affiliation(s)
- Xucheng Cai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Yuxing Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Shuang Zhou
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Die Meng
- Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China.
| |
Collapse
|
19
|
Ke Y, Sun W, Chen X, Zhu Y, Guo X, Yan W, Xie S. Seasonality Determines the Variations of Biofilm Microbiome and Antibiotic Resistome in a Pilot-Scale Chlorinated Drinking Water Distribution System Deciphered by Metagenome Assembly. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11430-11441. [PMID: 37478472 DOI: 10.1021/acs.est.3c01980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Understanding the biofilm microbiome and antibiotic resistome evolution in drinking water distribution systems (DWDSs) is crucial to ensure the safety of drinking water. We explored the 10 month evolution of the microbial community, antibiotic resistance genes (ARGs), mobile gene elements (MGEs) co-existing with ARGs and pathogenic ARG hosts, and the ARG driving factors in DWDS biofilms using metagenomics assembly. Sampling season was critical in determining the microbial community and antibiotic resistome shift. Pseudomonas was the primary biofilm colonizer, and biofilms diversified more as the formation time increased. Most genera tended to cooperate to adapt to an oligotrophic environment with disinfectant stress. Biofilm microbial community and antibiotic resistome assembly were mainly determined by stochastic processes and changed with season. Metagenome assembly provided the occurrence and fates of MGEs co-existing with ARGs and ARG hosts in DWDS biofilms. The abundance of ARG- and MGE-carrying pathogen Stenotrophomonas maltophilia was high in summer. It primarily harbored the aph(3)-IIb, multidrug transporter, smeD, and metallo-beta-lactamase ARGs, which were transferred via recombination. The microbial community was the most crucial factor driving the antibiotic resistance shift. We provide novel insights about the evolution of pathogens and ARGs and their correlations in DWDS biofilms to ensure the safety of drinking water.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xu Guo
- Fangshan District Water Bureau, Beijing 102445, China
| | - Weixin Yan
- Beijing BiSheng United Water Company, Beijing 102400, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Effect of domestic pipe materials on microbiological safety of drinking water: Different biofilm formation and chlorination resistance for diverse pipe materials. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
21
|
Fang J, Dai Z, Li X, van der Hoek JP, Savic D, Medema G, van der Meer W, Liu G. Service-lines as major contributor to water quality deterioration at customer ends. WATER RESEARCH 2023; 241:120143. [PMID: 37276656 DOI: 10.1016/j.watres.2023.120143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Biofilm detachment contributes to water quality deterioration. However, the contributions of biofilm detachment from different pipes have not been quantified or compared. Following the introduction of partial reverse osmosis (RO) in drinking water production, this study analyzed particles at customers' ends and tracked their origins to water distribution mains and service lines. For doing so, filter bags were installed in front of water meters to capture upstream detached particles, while biofilm from water main and service line were sampled by cutting pipe specimens. The results showed that elemental concentrations of the biofilm in mains were higher than those of service lines (54.3-268.5 vs. 27.1-44.4 μg/cm2), both dominated by Ca. Differently, filter bags were dominated by Fe/Mn (77.5-98.1%). After introducing RO, Ca significantly decreased in biofilms of mains but not service lines, but the released Fe/Mn rather than Ca arrived at customers' ends. The ATP concentrations of service lines were higher than mains, which decreased on mains but increased in service lines after introducing RO. For the core ASVs, 13/24 were shared by service lines (17), mains (21), and filter bags (17), which were assigned mainly to Nitrospira spp., Methylomagnum spp., Methylocytis spp., and IheB2-23 spp. According to source tracking results, service lines contributed more than mains to the particulate material collected by filter bags (57.6 ± 13.2% vs. 13.0 ± 11.6%). To the best of our knowledge, the present study provides the first evidence of service lines' direct and quantitative contributions to potential water quality deterioration at customers' ends. This highlights the need for the appropriate management of long-neglected service line pipes, e.g., regarding material selection, length optimization, and proper regulation.
Collapse
Affiliation(s)
- Jiaxing Fang
- Key Lab of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, PR China; Membrane Science and Technology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600, GA, Delft, the Netherlands
| | - Zihan Dai
- Key Lab of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, PR China
| | - Xiaoming Li
- Key Lab of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, PR China
| | - Jan Peter van der Hoek
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600, GA, Delft, the Netherlands; Waternet, P.O. Box 94370, 1090, GJ Amsterdam, the Netherlands
| | - Dragan Savic
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands; Centre for Water Systems, University of Exeter, Exeter EX4 4QF, United Kingdom; University of Belgrade, Faculty of Civil Engineering, Department for Hydraulic and environmental engineering, Bulevar kralja Aleksandra 73, Belgrade, Serbia
| | - Gertjan Medema
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600, GA, Delft, the Netherlands; KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands; Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48823, USA
| | - Walter van der Meer
- Membrane Science and Technology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands; Oasen Water Company, PO BOX 122, 2800, AC, Gouda, the Netherlands
| | - Gang Liu
- Key Lab of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, PR China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600, GA, Delft, the Netherlands.
| |
Collapse
|
22
|
Wang X, Wang J, Liu SY, Guo JS, Fang F, Chen YP, Yan P. Mechanisms of survival mediated by the stringent response in Pseudomonas aeruginosa under environmental stress in drinking water systems: Nitrogen deficiency and bacterial competition. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130941. [PMID: 36758433 DOI: 10.1016/j.jhazmat.2023.130941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Pseudomonas aeruginosa causes public health problems in drinking water systems. This study investigated the potential role of the stringent response in regulating the adaptive physiological metabolic behaviors of P. aeruginosa to low nitrogen stress and bacterial competition in drinking water systems. The results indicated that guanosine tetraphosphate (ppGpp) concentrations in P. aeruginosa increased to 135.5 pmol/g SS under short-term nitrogen deficiency. Meanwhile, the expression levels of the ppGpp synthesis genes (ppx, relA) and degradation gene (spoT) were upregulated by 37.0% and downregulated by 26.8%, respectively, indicating that the stringent response was triggered. The triggered stringent response inhibited the growth of P. aeruginosa and enhanced the metabolic activity of P. aeruginosa to adapt to nutrient deprivation. The interspecific competition significantly affected the regulation of the stringent response in P. aeruginosa. During short-term nitrogen deficiency, the extracellular polymeric substances concentration of P. aeruginosa decreased significantly, leading to desorption and diffusion of attached bacteria and increased ecological risks. The regulatory effect of stringent response on P. aeruginosa gradually weakened under long-term nitrogen deficiency. However, the expression of pathogenic genes (nalD/PA3310) and flagellar assembly genes (fliC) in P. aeruginosa was upregulated by the stringent response, which increased the risk of disease.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jing Wang
- Chongqing Jianzhu College, Chongqing 400072, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL 36082, USA
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
23
|
Zhang H, Liu X, Huang T, Ma B, Sun W, Zhao K, Sekar R, Xing Y. Stagnation trigger changes to tap water quality in winter season: Novel insights into bacterial community activity and composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157240. [PMID: 35817116 DOI: 10.1016/j.scitotenv.2022.157240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The drinking water distribution system is important for water supply and it affects the quality of the drinking water. Indoor pipeline water quality is regulated by physical, hydraulic and biological elements, such as indoor temperature and stagnation. In this work, the effects of indoor heating and overnight stagnation on the variation in bacterial community structure and the total cell count were assessed by full-length 16S rRNA gene sequencing and flow cytometry, respectively. The results exhibited that the average intact cell count was 6.99 × 104 cells/mL and the low nucleic acid (LNA) bacteria was 4.48 × 104 cells/mL after stagnation. The average concentration of total and intracellular adenosine triphosphate (ATP) was 3.64 × 10-12 gATP/mL and 3.13 × 10-17 gATP/cell in stagnant water, respectively. The growth of LNA cells played a crucial role in increasing ATP. The dominant phylum observed was Proteobacteria (87.21 %), followed by Actinobacteria (8.25 %). Opportunistic pathogens increased the risk of disease in stagnant water (up to 1.2-fold for Pseudomonas sp. and 5.8-fold for Mycobacterium sp.). Meanwhile, structural equation model (SEM) and redundancy analysis (RDA) also illustrated that water temperature, residual chlorine and Fe significantly affected the abundance and composition of bacterial community. Taking together, these results show response of tap water quality to overnight stagnation and indoor heating, and provide scientific basis for drinking water security management in winter season.
Collapse
Affiliation(s)
- Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Xiang Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Ben Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Kexin Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yan Xing
- Shaanxi Environmental Monitoring Center, Xi'an, China
| |
Collapse
|
24
|
Wu Y, Zhang Y, Yang X, Li K, Mai B, He Z, Wu R. Deterministic processes shape bacterial community assembly in a karst river across dry and wet seasons. Front Microbiol 2022; 13:938490. [PMID: 36274723 PMCID: PMC9584624 DOI: 10.3389/fmicb.2022.938490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Karst rivers are particularly vulnerable to bacterial pollution because immigrations are easily diffused from the surrounding environments due to their strong hydraulic connectivity. However, the assembly mechanism in shaping riverine bacterial biogeography is still poorly understood, especially for an ecosystem in the karst area. Here, 16S rRNA genes were used to explore the spatiotemporal and biogeographical patterns of bacterial communities from the Chishui River in the dry and wet seasons, and explore the impact of external immigration on the assembly of water bacterial communities. Our results showed clear spatiotemporal patterns of bacterial communities with a more pronounced seasonal rather than spatial fluctuation, which appeared to be dependent on seasonal-related environmental factors (e.g., temperature and turbidity). The bacterial communities exhibited a significant (p < 0.05) distance–decay pattern in both seasons, and they had a stronger distance–decay relationship in the dry season than in the wet season. However, most of the biomarkers of different external immigrations did not show significant (p > 0.05) distance–decay patterns along the Chishui river, implying that the biomarkers could be used as indicators of external immigration (e.g., OTU_125 and OTU_536). Also, the tributaries were the main external immigration (20.44–83.68%) for the Chishui River, while other terrestrial immigration (e.g., livestock, the soil of the cropland, brewing wastewater treatment plant, and sewages) showed relatively little influence, which could be due to the hydrodynamic conditions (e.g., fragile rock–soil system and hydrological structure) of the karst river. Additionally, the assembly of water bacterial communities in the Chishui river was governed by more determinism (50.7–85.7%) than stochasticity (14.3–49.3%) in both the dry and wet seasons. We demonstrated that the bacterial community’s substantial variations are largely shaped by deterministic processes, thereby providing a better understanding of spatiotemporal patterns and mechanisms of the bacterial community in karst river waters.
Collapse
Affiliation(s)
- Yongjie Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou, China
| | - Yang Zhang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou, China
| | - Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Kaiming Li
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Renren Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou, China
- *Correspondence: Renren Wu,
| |
Collapse
|
25
|
Mechanism of Biofilm Formation on Installation Materials and Its Impact on the Quality of Tap Water. WATER 2022. [DOI: 10.3390/w14152401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the conducted study, an attempt was made to verify and evaluate the impact of the biofilm formed on the surfaces of the installation material on the quality and sanitary safety of tap water reaching the consumer. For biofilm studies, fractal analysis and quantitative bacteriological analysis were used. The quality of tap water flowing through the experimental installation (semi-technical scale) was determined using physicochemical and microbiological parameters. The quantitative analysis of the biofilm showed that an increase in the number of microorganisms was observed in the initial phase of biofilm formation (reached 1.4 × 104 CFU/mL/cm2 on day 14). During this period, there was a chaotic build-up of bacterial cells, as evidenced by an increase in the roughness of the profile lines. Unstable elevations of the biofilm formed in this way could be easily detached from the structure of the material, which resulted in deterioration of the bacteriological quality of the water leaving the installation. The obtained results indicate that the biofilm completely and permanently covered the surface of the tested material after 25 days of testing (the surface roughness described by the fractal dimension decreased). Moreover, the favorable temperature (22.6 °C) and the recorded decrease in the content of inorganic nitrogen (by 15%), phosphorus (by 14%), and dissolved oxygen (by 15%) confirm the activity of microorganisms. The favorable environmental conditions in the installation (the presence of nutrients, low chlorine concentration, and high temperature) contributed to the secondary development of microorganisms, including pathogenic organisms in the tested waters.
Collapse
|
26
|
Li D, Van De Werfhorst LC, Steets B, Ervin J, Murray JLS, Smith J, Holden PA. Assessing multiple fecal sources to surf zone waters of two recreational beaches by bacterial community analysis. WATER RESEARCH 2022; 221:118781. [PMID: 35759849 DOI: 10.1016/j.watres.2022.118781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Fecal sources to recreational surf zone waters should be identified to protect public health. While watershed origins of human and other fecal sources are often discoverable by quantitative polymerase chain reaction (qPCR) of fecal markers using spatially stratified samples, similarly assessing wastewater treatment plant (WWTP) outfall and other offshore contributions to surf zones is challenged by individual marker fate and transport. Here, bacterial communities were assessed for relatedness between all hypothesized fecal sources and surf zone waters for two urban California recreational beaches, by sequencing genes encoding 16S rRNA and analyzing data using SourceTracker and FEAST. Ambient marine bacterial communities dominated the surf zone, while fecal (human, dog, or gull) or wastewater (sewage or treated WWTP effluent) bacterial communities were present at low proportions and those from recycled water were absent. Based on the relative abundances of bacterial genera specifically associated with human feces, the abundances of HF183 in bacterial community sequences, and FEAST and SourceTracker results when benchmarked to HF183, the major sources of HF183 to surf zone waters were human feces and treated WWTP effluent. While surf zone sequence proportions from human sources (feces, sewage and treated WWTP effluent) appeared uncorrelated to previously obtained qPCR HF183 results, the proportions of human fecal and potential human pathogen sequences in surf zone waters were elevated when there were more swimmers (i.e. during weekday afternoons, holidays and busy weekends, and race events), thus confirming previously-published qPCR-based conclusions that bather shedding contributed low levels of human fecal contamination. Here, bacterial community sequencing also showed evidence that treated WWTP effluent from an offshore outfall was entering the surf zone, thereby resolving a prior uncertainty. Thus, bacterial community sequencing not only confirms qPCR HF183-based human marker detections, but further allows for confirming fecal sources for which individual marker quantification results can be equivocal.
Collapse
Affiliation(s)
- Dong Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, USA
| | | | | | - Jared Ervin
- Geosyntec Consultants, Santa Barbara, CA 93101, USA
| | - Jill L S Murray
- Department of Parks & Recreation, Creeks Division, Santa Barbara, CA 93102, USA
| | - Jen Smith
- California NanoSystems Institute, University of California, Santa Barbara, USA
| | - Patricia A Holden
- Bren School of Environmental Science & Management, University of California, Santa Barbara, USA.
| |
Collapse
|
27
|
Chen L, Li X, van der Meer W, Medema G, Liu G. Capturing and tracing the spatiotemporal variations of planktonic and particle-associated bacteria in an unchlorinated drinking water distribution system. WATER RESEARCH 2022; 219:118589. [PMID: 35597222 DOI: 10.1016/j.watres.2022.118589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The aperiodic changes in the quantity and community of planktonic and particle-associated bacteria have hampered the understanding and management of microbiological water quality in drinking water distribution systems. In this study, online sampling was combined with the microbial fingerprint-based SourceTracker2 to capture and trace the spatiotemporal variations in planktonic and particle-associated bacteria in an unchlorinated distribution system. The results showed that spatially, the particle load significantly increased, while in contrast, the quantity of particle-associated bacteria decreased sharply from the treatment plant to the distribution network. Similar to the trend of particle-associated bacterial diversity, the number of observed OTUs first slightly decreased from the treatment plant to the transportation network and then sharply increased from the transportation network to the distribution network. The SourceTracker2 results revealed that the contribution of particle-associated bacteria from the treatment plant decreased along the distribution distance. The spatial results indicate the dominant role of sedimentation of particles from the treatment plant, while the observed increases in particles and the associated bacteria mainly originated from the distribution network, which were confirmed directly by the increased contributions of loose deposits and biofilm. Temporally, the daily peaks of particle-associated bacterial quantity, observed OTU number, and contributions of loose deposits and biofilms were captured during water demand peaks (e.g., 18-21 h). The temporal results reveal clear linkages between the distribution system harboring bacteria (e.g., within loose deposits and biofilms) and the planktonic and particle-associated bacteria flowing through the distribution system, which are dynamically connected and interact. This study highlights that the spatiotemporal variations in planktonic and particle-associated bacteria are valuable and unneglectable for the widely on-going sampling campaigns required by water quality regulations and/or drinking water microbiological studies.
Collapse
Affiliation(s)
- Lihua Chen
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R China; Department of Water Management, Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft 2600 GA, the Netherlands
| | - Xuan Li
- Department of Water Management, Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft 2600 GA, the Netherlands
| | - Walter van der Meer
- Membrane Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, the Netherlands; Oasen Drinkwater, Nieuwe Gouwe O.Z. 3, Gouda 2801 SB, the Netherlands
| | - Gertjan Medema
- Department of Water Management, Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft 2600 GA, the Netherlands; KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherlands; Michigan State University, 1405 S Harrison Rd, East-Lansing, MI 48823, United States
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R China; Department of Water Management, Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft 2600 GA, the Netherlands.
| |
Collapse
|
28
|
Miao X, Liu C, Liu M, Han X, Zhu L, Bai X. The role of pipe biofilms on dissemination of viral pathogens and virulence factor genes in a full-scale drinking water supply system. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128694. [PMID: 35316639 DOI: 10.1016/j.jhazmat.2022.128694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Water is an important medium for virus transmission and viral pathogens are increasingly appreciated as a significant water safety issue. However, the effect of pipe biofilms on viral pathogens remains unclear. This research aimed to investigate the dissemination of viruses in a full-scale drinking water supply system (DWSS) and the effect of pipe biofilms on viral pathogens in bulking water. Viral pathogens, pathogenic viral hosts, and viral virulence factors (VFs) were found to disseminate from source water to tap water. The proportion of virus and viral VFs in the biofilm was far less than that in water. The contribution of biofilms in pipe wall to viruses and viral VFs in bulking water was less than 4%, and viruses in the biofilm had no obvious effect on pathogenic viruses in water. Dominant viruses carrying VFs changed from Cyanobacteria virus to Mycobacterium virus after advanced water treatment. Mycobacterium and organics were identified as the key factors influencing composition and abundance of viral VFs, which could explain 41.1% of the variation in viral virulence in the water supply system. Host bacteria and organics may be used as the key targets to control the risk of viruses in DWSSs.
Collapse
Affiliation(s)
- Xiaocao Miao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chenxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Mingkun Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xue Han
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lingling Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
29
|
Mahajna A, Dinkla IJT, Euverink GJW, Keesman KJ, Jayawardhana B. Clean and Safe Drinking Water Systems via Metagenomics Data and Artificial Intelligence: State-of-the-Art and Future Perspective. Front Microbiol 2022; 13:832452. [PMID: 35602066 PMCID: PMC9121918 DOI: 10.3389/fmicb.2022.832452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
The use of next-generation sequencing technologies in drinking water distribution systems (DWDS) has shed insight into the microbial communities' composition, and interaction in the drinking water microbiome. For the past two decades, various studies have been conducted in which metagenomics data have been collected over extended periods and analyzed spatially and temporally to understand the dynamics of microbial communities in DWDS. In this literature review, we outline the findings which were reported in the literature on what kind of occupancy-abundance patterns are exhibited in the drinking water microbiome, how the drinking water microbiome dynamically evolves spatially and temporally in the distribution networks, how different microbial communities co-exist, and what kind of clusters exist in the drinking water ecosystem. While data analysis in the current literature concerns mainly with confirmatory and exploratory questions pertaining to the use of metagenomics data for the analysis of DWDS microbiome, we present also future perspectives and the potential role of artificial intelligence (AI) and mechanistic models to address the predictive and mechanistic questions. The integration of meta-omics, AI, and mechanistic models transcends metagenomics into functional metagenomics, enabling deterministic understanding and control of DWDS for clean and safe drinking water systems of the future.
Collapse
Affiliation(s)
- Asala Mahajna
- Wetsus – European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Engineering and Technology Institute Groningen, University of Groningen, Groningen, Netherlands
| | - Inez J. T. Dinkla
- Wetsus – European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| | - Gert Jan W. Euverink
- Engineering and Technology Institute Groningen, University of Groningen, Groningen, Netherlands
| | - Karel J. Keesman
- Mathematical and Statistical Methods – Biometris, Wageningen University, Wageningen, Netherlands
| | - Bayu Jayawardhana
- Engineering and Technology Institute Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
30
|
Guo XJ, Jiang T, Ma XX, Hu XJ, Huang JB, Cui LT, Cui J, Yao XH, Shi YL, Li J, Guo ZL, Lou JD, Liang MC, Fu HY, Yuan P, Liu JY, Tu LP, Xu JT. Relationships Between Diurnal Changes of Tongue Coating Microbiota and Intestinal Microbiota. Front Cell Infect Microbiol 2022; 12:813790. [PMID: 35433494 PMCID: PMC9008461 DOI: 10.3389/fcimb.2022.813790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/02/2022] [Indexed: 11/29/2022] Open
Abstract
The oral cavity and the intestine are the main distribution locations of human digestive bacteria. Exploring the relationships between the tongue coating and gut microbiota, the influence of the diurnal variations of the tongue coating microbiota on the intestinal microbiota can provide a reference for the development of the disease diagnosis and monitoring, as well as the medication time. In this work, a total of 39 healthy college students were recruited. We collected their tongue coating microbiota which was collected before and after sleep and fecal microbiota. The diurnal variations of tongue coating microbiota are mainly manifested on the changes in diversity and relative abundance. There are commensal bacteria in the tongue coating and intestines, especially Prevotella which has the higher proportion in both sites. The relative abundance of Prevotella in the tongue coating before sleep has a positive correlation with intestinal Prevotella; the r is 0.322 (p < 0.05). Bacteroides in the intestine had the most bacteria associated with the tongue coating and had the highest correlation coefficient with Veillonella in the oral cavity, which was 0.468 (p < 0.01). These results suggest that the abundance of the same flora in the two sites may have a common change trend. The SourceTracker results show that the proportion of intestinal bacteria sourced from tongue coating is less than 1%. It indicates that oral flora is difficult to colonize in the intestine in healthy people. This will provide a reference for the study on the oral and intestinal microbiota in diseases.
Collapse
Affiliation(s)
- Xiao-jing Guo
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Tao Jiang
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Xu-xiang Ma
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Xiao-juan Hu
- Shanghai Collaborative Innovation Center of Health Service in Traditional Chinese Medicine (TCM), Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Jing-bin Huang
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Long-tao Cui
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Ji Cui
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Xing-hua Yao
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Yu-lin Shi
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Jun Li
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Zhi-ling Guo
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Jin-di Lou
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Meng-chen Liang
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Hong-yuan Fu
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Pei Yuan
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Jia-yi Liu
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Li-ping Tu
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
- *Correspondence: Li-ping Tu, ; Jia-tuo Xu,
| | - Jia-tuo Xu
- Basic Medical College, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
- *Correspondence: Li-ping Tu, ; Jia-tuo Xu,
| |
Collapse
|
31
|
Rahmatika I, Kurisu F, Furumai H, Kasuga I. Dynamics of the Microbial Community and Opportunistic Pathogens after Water Stagnation in the Premise Plumbing of a Building. Microbes Environ 2022; 37. [PMID: 35321996 PMCID: PMC8958293 DOI: 10.1264/jsme2.me21065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In premise plumbing, microbial water quality may deteriorate under certain conditions, such as stagnation. Stagnation results in a loss of disinfectant residual, which may lead to the regrowth of microorganisms, including opportunistic pathogens. In the present study, microbial regrowth was investigated at eight faucets in a building over four seasons in one year. Water samples were obtained before and after 24 h of stagnation. In the first 100 mL after stagnation, total cell counts measured by flow cytometry increased 14- to 220-fold with a simultaneous decrease in free chlorine from 0.17–0.36 mg L–1 to <0.02 mg L–1. After stagnation, total cell counts were not significantly different among seasons; however, the composition of the microbial community varied seasonally. The relative abundance of Pseudomonas spp. was dominant in winter, whereas Sphingomonas spp. were dominant in most faucets after stagnation in other seasons. Opportunistic pathogens, such as Legionella pneumophila, Mycobacterium avium, Pseudomonas aeruginosa, and Acanthamoeba spp., were below the quantification limit for real-time quantitative PCR in all samples. However, sequences related to other opportunistic pathogens, including L. feeleii, L. maceachernii, L. micdadei, M. paragordonae, M. gordonae, and M. haemophilum, were detected. These results indicate that health risks may increase after stagnation due to the regrowth of opportunistic pathogens.
Collapse
Affiliation(s)
- Iftita Rahmatika
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo
| | - Ikuro Kasuga
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo
| |
Collapse
|
32
|
Boivin S, Tanabe S, Fujioka T. Online evaluation of bacterial cells in sand filter effluents during full-scale treatment of drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152508. [PMID: 34968596 DOI: 10.1016/j.scitotenv.2021.152508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Ensuring the microbiological safety of drinking water is critical to protect public health. This study aimed to evaluate the reliability of real-time bacteriological counter coupled with an online dialysis membrane-based pre-treatment system for continuously monitoring bacterial cell counts in sand filter effluents of a full-scale drinking water treatment plant. The pre-treatment system, which included anion exchange resins (porous polymeric microbeads that trap ions for releasing other ions) for dialysate regeneration, successfully achieved the stable attenuation of background interfering substances (humic acids) during the 19-d test. The real-time bacteriological counter equipped with the pre-treatment system provided a continuous profile of bacterial cell counts in the sand filter effluent (0.2-2.5 × 104 counts/mL). The online analysis identified different timing of concentration peaks between particle and bacterial cell counts after backwashing. Bacterial community analysis revealed that Proteobacteria, Planctomycetes, and Cyanobacteria were the dominating phyla. Further, total bacterial cell counts determined by fluorescence microscopy and SYBR® Green I staining, a commonly accepted parameter, was found to be an indicator of online-monitored bacterial cell counts. The results indicated the potential of monitoring the bacterial cell counts in a sand filter process for providing an early warning of filter failures, which can allow plant operators to diagnose the overall system and provide countermeasures.
Collapse
Affiliation(s)
- Sandrine Boivin
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Shuji Tanabe
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takahiro Fujioka
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
33
|
Chen WT, Chien CC, Ho WS, Ou JH, Chen SC, Kao CM. Effects of treatment processes on AOC removal and changes of bacterial diversity in a water treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114853. [PMID: 35276566 DOI: 10.1016/j.jenvman.2022.114853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The effectiveness of different treatment processes on assimilable organic carbon (AOC) removal and bacterial diversity variations was evaluated in a water treatment plant. The van der Kooij technique was applied for AOC analysis and responses of bacterial communities were characterized by the metagenomics assay. Results show that the AOC concentrations were about 93, 148, 43, 51, 37, and 38 μg acetate-C/L in effluents of raw water basin, preozonation, rapid sand filtration (RSF), ozonation, biofiltration [biological activated carbon (BAC) filtration], and chlorination (clear water), respectively. Increased AOC concentrations were observed after preozonation, ozonation, and chlorination units due to the production of biodegradable organic matters after the oxidation processes. Results indicate that the oxidation processes were the main causes of AOC formation, which resulted in significant increases in AOC concentrations (18-59% increment). The AOC removal efficiencies were 47, 28, and 60% in the RSF, biofiltration, and the whole system, respectively. RSF and biofiltration were responsible for the AOC treatment and both processes played key roles in AOC removal. Thus, both RSF and biofiltration processes would contribute to AOC treatment after oxidation. Sediments from the raw water basin and filter samples from RSF and BAC units were collected and analyzed for bacterial communities. Results from scanning electron microscope analysis indicate that bacterial colonization was observed in filter materials. This indicates that the surfaces of the filter materials were beneficial to bacterial growth and AOC removal via the adsorption and biodegradation mechanisms. Next generation sequencing analyses demonstrate that water treatment processes resulted in the changes of bacterial diversity and community profiles in filters of RSF and BAC. According to the findings of bacterial composition and interactions, the dominant bacterial phyla were Proteobacteria (41% in RSF and 56% in BAC) followed by Planctomycetes and Acidobacteria in RSF and BAC systems, which might affect the AOC biodegradation efficiency. Results would be useful in developing AOC treatment and management processes in water treatment plants.
Collapse
Affiliation(s)
- W T Chen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C C Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - W S Ho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - J H Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - S C Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
34
|
Synthetic Musk Fragrances in Water Systems and Their Impact on Microbial Communities. WATER 2022. [DOI: 10.3390/w14050692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The presence of emerging contaminants in aquatic systems and their potential effects on ecosystems have sparked the interest of the scientific community with a consequent increase in their report. Moreover, the presence of emerging contaminants in the environment should be assessed through the “One-Health” approach since all the living organisms are exposed to those contaminants at some point and several works already reported their impact on ecological interactions. There are a wide variety of concerning emerging contaminants in water sources, such as pharmaceuticals, personal care products, house-care products, nanomaterials, fire-retardants, and all the vast number of different compounds of indispensable use in routine tasks. Synthetic musks are examples of fragrances used in the formulation of personal and/or house-care products, which may potentially cause significant ecotoxicological concerns. However, there is little-to-no information regarding the effect of synthetic musks on microbial communities. This study reviews the presence of musk fragrances in drinking water and their impact on aquatic microbial communities, with a focus on the role of biofilms in aquatic systems. Moreover, this review highlights the research needed for a better understating of the impact of non-pharmaceutical contaminants in microbial populations and public health.
Collapse
|
35
|
Gad M, Hou L, Cao M, Adyari B, Zhang L, Qin D, Yu CP, Sun Q, Hu A. Tracking microeukaryotic footprint in a peri-urban watershed, China through machine-learning approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150401. [PMID: 34562761 DOI: 10.1016/j.scitotenv.2021.150401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Microeukaryotes play a significant role in biogeochemical cycling and can serve as bioindicators of water quality in freshwater ecosystems. However, there is a knowledge gap on how freshwater microeukaryotic communities are assembled, especially that how terrestrial microeukaryotes influence freshwater microeukaryotic assemblages. Here, we used a combination of 18S rRNA gene amplicon sequencing and community-based microbial source tracking (MST) approaches (i.e., SourceTracker and FEAST) to assess the contribution of microeukaryotes from surrounding environments (i.e., soils, river sediments, swine wastewater, influents and effluents of decentralized wastewater treatment plants) to planktonic microeukaryotes in the main channel, tributaries and reservoir of a peri-urban watershed, China in wet and dry seasons. The results indicated that SAR (~ 49% of the total communities), Opithokonta (~ 34%), Archaeplastida (~ 9%), and Amoebozoa (~ 2%) were dominant taxa in the watershed. The community-based MST analysis revealed that sewage effluents (7.96 - 21.84%), influents (2.23 - 13.97%), and river sediments (2.56 - 11.71%) were the major exogenous sources of riverine microeukaryotes. At the spatial scale, the downstream of the watershed (i.e., main channel and tributaries) received higher proportions of exogenous microeukaryotic OTUs compared to the upstream reservoirs, while at the seasonal scale, the sewage effluents and influents contributed higher exogenous microeukaryotes to river water in wet season than in dry season. Moreover, the swine and domestic wastewater led to the presence of Apicomplexa in wet season only, implying rainfall runoff may enhance the spread of parasitic microeukaryotes. Taken together, our study provides novel insights into the immigration patterns of microeukaryotes and their dominant supergroups between terrestrial and riverine habitats.
Collapse
Affiliation(s)
- Mahmoud Gad
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Liyuan Hou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Meixian Cao
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bob Adyari
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Lanping Zhang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Qin
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Qian Sun
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
36
|
Wei G, Ning K, Zhang G, Yu H, Yang S, Dai F, Dong L, Chen S. Compartment Niche Shapes the Assembly and Network of Cannabis sativa-Associated Microbiome. Front Microbiol 2021; 12:714993. [PMID: 34675893 PMCID: PMC8524047 DOI: 10.3389/fmicb.2021.714993] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Interactions between plants and microbes may promote the growth of plants and regulate the production of secondary metabolites. Hemp (Cannabis sativa) is an annual herb and an important commercial crop. However, the assembly and network of hemp-associated microbiomes inhabiting in soil and plant compartments have not been comprehensively understood. This work investigated the assembly and network of bacterial and fungal communities living in soils (bulk and rhizosphere) and plant compartments (root, stem, leaf, and flower) of four hemp ecotypes cultivated in the same habitat. Microbiome assembly was predominantly shaped by compartment niche. Microbial alpha diversity was the highest in soil, continually decreased from root to flower. Core bacterial genera Pseudomonas, Bacillus, Rhizobium, Planococcus, and Sphingomonas were mostly enriched in aerial endosphere niches; Clitopilus, Plectosphaerella, and Mortierella were enriched in belowground endosphere. Microbial network complexity and connectivity decreased from root to flower. According to source tracking analysis, hemp microbiota primarily originated from soil and were subsequently filtered in different plant compartments. This work provides details on hemp-associated microbiome along the soil-plant continuum and a comprehensive understanding of the origin and transmission mode of endophytes in hemp.
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haibin Yu
- Yunnan Industrial Investment Group, Yunnan Hemp Seed Industry Co., Ltd., Kunming, China
| | - Shuming Yang
- Yunnan Industrial Investment Group, Yunnan Hemp Seed Industry Co., Ltd., Kunming, China
| | - Fei Dai
- Yunnan Industrial Investment Group, Yunnan Hemp Seed Industry Co., Ltd., Kunming, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Han Z, Lu J, An W, Zhang Y, Yang M. Removal efficacy of opportunistic pathogen gene markers in drinking water supply systems: an in situ and large-scale molecular investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54153-54160. [PMID: 34389952 DOI: 10.1007/s11356-021-15744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The prevalence and interactions with biofilm and disinfectant of opportunistic pathogens in drinking water supply systems (DWSSs) have been extensively interpreted. In contrast, the large geographical distribution and in situ removal of opportunistic pathogens are overlooked aspects. Here, paired source and tap water samples of 36 parallel DWSSs across China were collected, with five common waterborne pathogens characterized by qPCR. From source to tap, the removal of bacterial biomass (16S rRNA gene copy number) was 1.10 log, and gene marker removal of five opportunistic pathogens ranged from 0.66 log to 2.27 log, with the order of Escherichia coli > Mycobacterium spp. > Clostridium perfringens > Bacillus cereus > Aeromonas hydrophila. Different with bacterial community, geographical location and source water types (river or reservoir) were not key contributor to variation of opportunistic pathogens. Gene marker removal efficacies of E. coli, Mycobacterium spp., and C. perfringens from source to tap were restricted to removal efficacy of overall bacterial biomass, while abundance of B. cereus in tap water linked to the input of B. cereus from source water. Although culture-dependent approach is important for pathogen enumeration in drinking water, qPCR-based molecular survey shows advantages of quantifiable high-throughput and easy operation, providing abundant and timely information on pathogen occurrence in water. This study provides the in situ, molecular-level evidence toward differential propagation features of multiple opportunistic pathogens in DWSSs and suggests the source protection and early warning of treatment-resistant pathogens.
Collapse
Affiliation(s)
- Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junying Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei An
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
38
|
Bian K, Wang C, Jia S, Shi P, Zhang H, Ye L, Zhou Q, Li A. Spatial dynamics of bacterial community in chlorinated drinking water distribution systems supplied with two treatment plants: An integral study of free-living and particle-associated bacteria. ENVIRONMENT INTERNATIONAL 2021; 154:106552. [PMID: 33866058 DOI: 10.1016/j.envint.2021.106552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
With the expansion of cities, the deterioration of drinking water quality undergoing complex and long-distance distribution is gaining increasing attention. However, spatial variations between free-living bacteria (FLB) and particle-associated bacteria (PAB) in chlorinated drinking water distribution systems (DWDSs) have not been fully explored, especially in complex water supply areas with multiple interconnected DWDSs. To fill this gap, this study utilized 16S rRNA approaches to characterize the spatial patterns of FLB and PAB in DWDSs with intersection regions. Based on distance-decay analysis, transportation distance is a potential driver of bacterial variation for both FLB (Pearson's r = -0.476, p < 0.01) and PAB. (Pearson's r = -0.352, p < 0.01). Moreover, the influence of transportation distance was further confirmed by a 1.20-99.45% decline in microbial contribution to the source of FLB and PAB communities in pipe water along the transportation pipelines. Meanwhile, significant difference (PERMANOVA, R2 = 0.14, p < 0.01) was found between FLB and PAB in DWDSs. Average proportions of Pseudomonas spp. were 59.84% and 45.59% for the PAB and intersection regions based on the 16S rRNA results, respectively, suggesting that PAB are potential reservoirs for high-risk bacteria, and a greater microbial risk may exist in intersection regions. In summary, transportation distance and pipeline intersection exerted significant impacts on the FLB and PAB in DWDSs. Therefore, precautionary strategies for controlling microbial risks that consider different microbial components and intersection regions in long-distance and multi-plant DWDSs should be implemented.
Collapse
Affiliation(s)
- Kaiqin Bian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Huaicheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
39
|
Miao X, Bai X. Characterization of the synergistic relationships between nitrification and microbial regrowth in the chloraminated drinking water supply system. ENVIRONMENTAL RESEARCH 2021; 199:111252. [PMID: 34015300 DOI: 10.1016/j.envres.2021.111252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Deterioration of water quality is commonly found in secondary water supply systems (SWSSs), especially the growth of microbes. To explore the metabolic mechanism for rapid microbial regrowth in SWSSs, a regrowth potential assessment, flow cytometry, and quantitative PCR were conducted. Metagenomic and 16S rRNA gene sequencing were performed to better understand the microbial communities and metabolism. It was found that the increased biomass in the SWSS was significantly higher than that in the drinking water distribution system (DWDS). Statistical analysis revealed that ammonia oxidation was the dominant driver of increased biomass in the SWSS. The abundances of ammonia oxidation bacteria, concentration of nitrogen species, and related enzymes demonstrated that ammonia oxidation in the SWSS was more vigorous than that in the DWDS. In the SWSS, the metabolism of the ammonia oxidation cluster was more vigorous, and ammonia-oxidizing bacteria (AOB) were the dominant nitrifying bacteria. Incomplete nitrification products were involved in the metabolism of heterotrophic bacteria and promoted the growth of heterotrophic bacteria in the SWSS. More attention should be given to controlling incomplete nitrification to improve tap water quality.
Collapse
Affiliation(s)
- Xiaocao Miao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
40
|
Zhou ZC, Liu Y, Lin ZJ, Shuai XY, Zhu L, Xu L, Meng LX, Sun YJ, Chen H. Spread of antibiotic resistance genes and microbiota in airborne particulate matter, dust, and human airways in the urban hospital. ENVIRONMENT INTERNATIONAL 2021; 153:106501. [PMID: 33836339 DOI: 10.1016/j.envint.2021.106501] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial resistance is an increasingly serious threat to public health worldwide. The presence of antibiotic resistance genes (ARGs) in human airways and relevant environments has not received significant attention. In this study, abundances of ARGs and microbes from airborne particulate matter, dust, and human airways in a hospital were profiled using high-throughput qPCR and 16S rRNA gene sequencing. More diverse ARGs and microbes in indoor dust and higher levels of ARGs in particulate matter PM10 and PM2.5 were observed. Macrolides and aminoglycoside resistance genes were the most abundant ARGs in the airway and environmental samples, respectively. Moreover, the co-occurrences of priority pathogens, ARGs, and mobile genetic elements (MGEs) were shown by the Network analysis. Campylobacter spp. and Staphylococcus spp. positively correlated with fluoroquinolone (vatC-02, mexD) and β-lactams (blaZ, mecA) resistance genes, respectively. In this regard, based on SourceTracker analysis, inhalable particles contributed to 4.0% to 5.5% of ARGs in human airway samples, suggesting an important exchange between airborne inhalable particles and human commensals. This study may advance knowledge about ARGs in airborne particulate matter and dust associated environments, reveal their potential link between environments and humans, and provide a new sight and fundamental data for ARG risk assessment.
Collapse
Affiliation(s)
- Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Liu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan Xu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling-Xuan Meng
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Jie Sun
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Zhou W, Li W, Chen J, Zhou Y, Wei Z, Gong L. Microbial diversity in full-scale water supply systems through sequencing technology: a review. RSC Adv 2021; 11:25484-25496. [PMID: 35478887 PMCID: PMC9037190 DOI: 10.1039/d1ra03680g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/10/2021] [Indexed: 01/07/2023] Open
Abstract
The prevalence of microorganisms in full-scale water supply systems raises concerns about their pathogenicity and threats to public health. Clean tap water is essential for public health safety. The conditions of the water treatment process from the source water to tap water, including source water quality, water treatment processes, the drinking water distribution system (DWDS), and building water supply systems (BWSSs) in buildings, greatly influence the bacterial community in tap water. Given the importance of drinking water biosafety, the study of microbial diversity from source water to tap water is essential. With the development of molecular biology methods and bioinformatics in recent years, sequencing technology has been applied to study bacterial communities in full-scale water supply systems. In this paper, changes in the bacterial community and the influence of each treatment stage on microbial diversity in full-scale water supply systems are classified and analyzed. Microbial traceability analysis and control are discussed, and suggestions for future drinking water biosafety research and its prospects are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
| | - Weiying Li
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
| | - Jiping Chen
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
| | - Yu Zhou
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
| | - Zhongqing Wei
- Fuzhou Water Affairs Investment Development Co., Ltd. Fuzhou 350000 Fujian China
| | | |
Collapse
|
42
|
Li D, Van De Werfhorst LC, Rugh MB, Feraud M, Hung WC, Jay J, Cao Y, Parker EA, Grant SB, Holden PA. Limited Bacterial Removal in Full-Scale Stormwater Biofilters as Evidenced by Community Sequencing Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9199-9208. [PMID: 34106689 DOI: 10.1021/acs.est.1c00510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In urban areas, untreated stormwater runoff can pollute downstream surface waters. To intercept and treat runoff, low-impact or "green infrastructure" approaches such as using biofilters are adopted. Yet, actual biofilter pollutant removal is poorly understood; removal is often studied in laboratory columns, with variable removal of viable and culturable microbial cell numbers including pathogens. Here, to assess bacterial pollutant removal in full-scale planted biofilters, stormwater was applied, unspiked or spiked with untreated sewage, in simulated storm events under transient flow conditions, during which biofilter influents versus effluents were compared. Based on microbial biomass, sequences of bacterial community genes encoding 16S rRNA, and gene copies of the human fecal marker HF183 and of the Enterococcus spp. marker Entero1A, removal of bacterial pollutants in biofilters was limited. Dominant bacterial taxa were similar for influent versus effluent aqueous samples within each inflow treatment of either spiked or unspiked stormwater. Bacterial pollutants in soil were gradually washed out, albeit incompletely, during simulated storm flushing events. In post-storm biofilter soil cores, retained influent bacteria were concentrated in the top layers (0-10 cm), indicating that the removal of bacterial pollutants was spatially limited to surface soils. To the extent that plant-associated processes are responsible for this spatial pattern, treatment performance might be enhanced by biofilter designs that maximize influent contact with the rhizosphere.
Collapse
Affiliation(s)
- Dong Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Laurie C Van De Werfhorst
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Megyn B Rugh
- Department of Civil and Environmental Engineering, UCLA Los Angeles, 420 Westwood Plaza, 5731 Boelter Hall, Los Angeles, California 90095, United States
| | - Marina Feraud
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Wei-Cheng Hung
- Department of Civil and Environmental Engineering, UCLA Los Angeles, 420 Westwood Plaza, 5731 Boelter Hall, Los Angeles, California 90095, United States
| | - Jennifer Jay
- Department of Civil and Environmental Engineering, UCLA Los Angeles, 420 Westwood Plaza, 5731 Boelter Hall, Los Angeles, California 90095, United States
| | - Yiping Cao
- Source Molecular Corporation, 15280 NW 79th Court, St 107, Miami Lakes, Florida 33016, United States
- Santa Ana Regional Water Quality Control Board, 3737 Main Street, St 500, Riverside, California 92501, United States
| | - Emily A Parker
- Occoquan Watershed Monitoring Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, Virginia 20110, United States
| | - Stanley B Grant
- Occoquan Watershed Monitoring Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, Virginia 20110, United States
- Center for Coastal Studies, Virginia Tech, 1068A Derring Hall (0420), Blacksburg, Virginia 24061, United States
| | - Patricia A Holden
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
43
|
van den Berg H, Quaye MN, Nguluve E, Schijven J, Ferrero G. Effect of operational strategies on microbial water quality in small scale intermittent water supply systems: The case of Moamba, Mozambique. Int J Hyg Environ Health 2021; 236:113794. [PMID: 34147023 DOI: 10.1016/j.ijheh.2021.113794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Intermittent drinking water supply affects the health of over 300 million people globally. In Mozambique, it is largely practiced in cities and small towns. This results in frequent microbial contamination of the supplied drinking water posing a health risk to consumers. In Moamba, a small town in Southern Mozambique with 2,500 water connections, the impact of changes in operational strategies, namely increased chlorine dosage, increased supply duration and first-flush, on the microbial water quality was studied to determine best practices. To that aim, water quality monitoring was enhanced to provide sufficient data on the microbial contamination from 452 samples under the different strategies. The water at the outlet of the water treatment plant during all strategies was free of E. coli complying to the national standards. However, E. coli could be detected at household level. By increasing the chlorine dosage, the number of samples that showed E. coli absence increased at the two sampling locations in the distribution network: in Cimento from 72% to 83% and in Matadouro from 52% to 86%. Modifying the number and duration of supply cycles showed a different impact on the water quality at both locations in the distribution network. A positive effect was shown in Cimento, where the mean concentrations decreased slightly from 0.54 to 0.23 CFU/100 mL and 16.7 to 7.3 CFU/100 mL for E. coli and total coliforms respectively. The percentage of samples positive for bacteria was, however, similar. In contrast, a negative effect was shown in Matadouro where the percentage of positive samples increased and the mean bacterial concentrations increased slightly: E. coli from 0.9 to 1.5 CFU/100 mL and total coliforms 17.6 to 23.0 CFU/100 mL. Enhanced water quality monitoring improved operational strategies safeguarding the microbial water quality. The E. coli contamination of the drinking water at household level could point at recontamination in the distribution or unsafe hygienic practices at household level. Presence of faecal contamination at household level indicates potential presence of pathogens posing a health risk to consumers. Increasing chlorine dosage ensured good microbiological drinking water quality but changing the number of supply cycles had no such effect.
Collapse
Affiliation(s)
- Harold van den Berg
- National Institute for Public Health and the Environment (RIVM), WHO Collaborating Centre for Risk Assessment of Pathogens in Food and Water, P.O. Box 1, 3721, MA, Bilthoven, the Netherlands.
| | - Michael Nii Quaye
- IHE Delft Institute for Water Education, Westvest 7, 2611, AX, Delft, the Netherlands.
| | - Eugenia Nguluve
- Collins Ltd, Rua Joseph Ki-zerbo, N. 119 Bairro da Sommerschield, Maputo, Mozambique.
| | - Jack Schijven
- National Institute for Public Health and the Environment (RIVM), WHO Collaborating Centre for Risk Assessment of Pathogens in Food and Water, P.O. Box 1, 3721, MA, Bilthoven, the Netherlands; Earth Sciences, University of Utrecht, Princetonlaan 8a, 3584, CB, Utrecht, the Netherlands.
| | - Giuliana Ferrero
- IHE Delft Institute for Water Education, Westvest 7, 2611, AX, Delft, the Netherlands.
| |
Collapse
|
44
|
Zhu NJ, Ghosh S, Edwards MA, Pruden A. Interplay of Biologically Active Carbon Filtration and Chlorine-Based Disinfection in Mitigating the Dissemination of Antibiotic Resistance Genes in Water Reuse Distribution Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8329-8340. [PMID: 34080846 DOI: 10.1021/acs.est.1c01199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Appropriate management approaches are needed to minimize the proliferation of antibiotic resistance genes (ARGs) in reclaimed water distribution systems (RWDSs). Six laboratory-scale RWDSs were operated over 3 years receiving influent with or without biologically active carbon (BAC) filtration + chlorination, chloramination, or no disinfectant residual. Shotgun metagenomic sequencing was applied toward comprehensive characterization of resistomes, focusing on total ARGs, ARG mobility, and specific ARGs of clinical concern. ARGs such as aadA, bacA, blaOXA, mphE, msrE, sul1, and sul2 were found to be particularly sensitive to varying RWDS conditions. BAC filtration with chlorination most effectively achieved and maintained the lowest levels of nearly all metagenomically derived antibiotic resistance indicators. However, BAC filtration or addition of residual disinfectants alone tended to increase these indicators. Biofilm and sediment compartments harbored ARGs in disinfected systems, presenting a concern for their release to bulk water. Relative and absolute abundances of most ARGs tended to decrease with water age (up to 5 days), with notable exceptions in BAC-filtered chloraminated and no residual systems. Superchlorination of unfiltered water especially raised concerns in terms of elevation of clinically relevant and mobile ARGs. This study revealed that BAC filtration and disinfection must be carefully coordinated in order to effectively mitigate ARG dissemination via RWDSs.
Collapse
Affiliation(s)
- Ni Joyce Zhu
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Sudeshna Ghosh
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marc A Edwards
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
45
|
Preparation and bacteriostatic research of porous polyvinyl alcohol / biochar / nanosilver polymer gel for drinking water treatment. Sci Rep 2021; 11:12205. [PMID: 34108587 PMCID: PMC8190314 DOI: 10.1038/s41598-021-91833-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/27/2021] [Indexed: 11/29/2022] Open
Abstract
Microbial contamination in drinking water has become an important threat to human health. There is thus an urgent need to develop antibacterial materials to treat drinking water. Here, porous silver-loaded biochar (C–Ag) was prepared using corn straw as the substrate and silver as the antibacterial agent. C–Ag was then uniformly distributed in polyvinyl alcohol gel beads of eluted calcium carbonate to prepare p-PVA/C–Ag antibacterial composite. The polymer composites were tested by FT-IR, XRD, SEM and TG-DSC. The results showed that C–Ag was more evenly distributed in the PVA gel spheres. Antibacterial experiments showed that p-PVA/C–Ag greatly inhibited Escherichia coli. Practical application tests revealed that p-PVA/C–Ag showed high and sustained bactericidal inhibition and reusability. Generally, p-PVA/C–Ag composite shows high potential to be applied to drinking water treatment.
Collapse
|
46
|
Zhang C, Qin K, Struewing I, Buse H, Santo Domingo J, Lytle D, Lu J. The Bacterial Community Diversity of Bathroom Hot Tap Water Was Significantly Lower Than That of Cold Tap and Shower Water. Front Microbiol 2021; 12:625324. [PMID: 33967975 PMCID: PMC8102780 DOI: 10.3389/fmicb.2021.625324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Microbial drinking water quality in premise plumbing systems (PPSs) strongly affects public health. Bacterial community structure is the essential aspect of microbial water quality. Studies have elucidated the microbial community structure in cold tap water, while the microbial community structures in hot tap and shower water are poorly understood. We sampled cold tap, hot tap, and shower water from a simulated PPS monthly for 16 consecutive months and assessed the bacterial community structures in those samples via high-throughput sequencing of bacterial 16S rRNA genes. The total relative abundance of the top five most abundant phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes) was greater than 90% among the 24 identified phyla. The most abundant families were Burkholderiaceae, Sphingomonadaceae, unclassified Alphaproteobacteria, unclassified Corynebacteriales, and Mycobacteriaceae. A multiple linear regression suggests that the bacterial community diversity increased with water temperature and the age of the simulated PPS, decreased with total chlorine residual concentration, and had a limited seasonal variation. The bacterial community in hot tap water had significantly lower Shannon and Inverse Simpson diversity indices (p < 0.05) and thus a much lower diversity than those in cold tap and shower water. The paradoxical results (i.e., diversity increased with water temperature, but hot tap water bacterial community was less diverse) were presumably because (1) other environmental factors made hot tap water bacterial community less diverse, (2) the diversity of bacterial communities in all types of water samples increased with water temperature, and (3) the first draw samples of hot tap water could have a comparable or even lower temperature than shower water samples and the second draw samples of cold tap water. In both a three-dimensional Non-metric multidimensional scaling ordination plot and a phylogenetic dendrogram, the samples of cold tap and shower water cluster and are separate from hot tap water samples (p < 0.05). In summary, the bacterial community in hot tap water in the simulated PPS had a distinct structure from and a much lower diversity than those in cold tap and shower water.
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, OH, United States
| | - Ke Qin
- Oak Ridge Institute for Science and Education Participation Program, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Ian Struewing
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Helen Buse
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Jorge Santo Domingo
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Darren Lytle
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
47
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
48
|
Zhou Z, Xu L, Zhu L, Liu Y, Shuai X, Lin Z, Chen H. Metagenomic analysis of microbiota and antibiotic resistome in household activated carbon drinking water purifiers. ENVIRONMENT INTERNATIONAL 2021; 148:106394. [PMID: 33486296 DOI: 10.1016/j.envint.2021.106394] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Existing drinking water treatment systems have limited ability to control emerging contaminants such as antibiotic resistance genes (ARGs). Household activated carbon water purifiers (HWPs) are convenient measures to assure drinking water quality. However, ARGs distribution in HWPs has not been reported. Here, ARGs, mobile genetic elements (MGEs) and bacteria communities were profiled in tap water (TW), filter water (FW) and activated carbon (AC) biofilm from six kinds of HWPs after 80 days operation, using metagenomics. Results showed that the bacteria community diversities in FW and AC were higher than those in TW. A total of 88, 116 and 80 ARG subtypes were detected in TW, AC and FW, respectively. The AC structure was an important factor influencing the bacterial communities and ARG profiles in FW. The network analysis revealed the co-occurrence patterns between ARGs and bacteria. SourceTracker analyses showed AC biofilms were important contributors of microbes (29-79%) and ARGs (17-53%) in FW. Moreover, MGEs e.g. pBBta01, pMKMS02 and pMFLV01 plasmids, and ISMysp3 had significant co-occurrence patterns with ARGs in the AC biofilms. This study helps to understand the actual purification effect of HWPs and provides a theoretical reference for the management and control of ARGs pollution in domestic drinking water.
Collapse
Affiliation(s)
- Zhenchao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan Xu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Liu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zejun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
49
|
Ahmad JI, Dignum M, Liu G, Medema G, van der Hoek JP. Changes in biofilm composition and microbial water quality in drinking water distribution systems by temperature increase induced through thermal energy recovery. ENVIRONMENTAL RESEARCH 2021; 194:110648. [PMID: 33358877 DOI: 10.1016/j.envres.2020.110648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Drinking water distribution systems (DWDSs) have been thoroughly studied, but the concept of thermal energy recovery from DWDSs is very new and has been conceptualized in the past few years. Cold recovery results in a temperature increase of the drinking water. Its effects on drinking water quality and biofilm development are unclear. Hence, we studied both bulk water and biofilm phases for 232 days in two parallel pilot scale distribution systems with two temperature settings after cold recovery, 25 °C and 30 °C, and compared these with a reference pilot system without cold recovery. In all three pilot distributions systems (DSs) our results showed an initial increase in biomass (ATP) in the biofilm phase, along with occurrence of primary colonizers (Betaproteobacteriales) and subsequently a decrease in biomass and an increasing relative abundance of other microbial groups (amoeba resisting groups; Xanthobacteraceae, Legionellales), including those responsible for EPS formation in biofilms (Sphingomonadaceae). The timeline for biofilm microbial development was different for the three pilot DSs: the higher the temperature, the faster the development took place. With respect to the water phase within the three pilot DSs, major microbial contributions came from the feed water (17-100%) and unkown sources (2-80%). Random contributions of biofilm (0-70%) were seen between day 7-77. During this time period six-fold higher ATP concentration (7-11 ng/l) and two-fold higher numbers of high nucleic acid cells (5.20-5.80 × 104 cells/ml) were also observed in the effluent water from all three pilot DSs, compared to the feed water. At the end of the experimental period the microbial composition of effluent water from three pilot DSs revealed no differences, except the presence of a biofilm related microbial group (Sphingomonadaceae), within all three DSs compared to the feed water. In the biofilm phase higher temperatures initiated the growth of primary colonizing bacteria but this did not lead to differences in microbial diversity and composition at the end of the experimental period. Hence, we propose that the microbiological water quality of DWDSs with cold recovery should be monitored more frequently during the first 2-3 months of operation.
Collapse
Affiliation(s)
- Jawairia Imtiaz Ahmad
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands; Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Science and Technology, H-12 Sector, Islamabad, Pakistan.
| | - Marco Dignum
- Waternet, Korte Ouderkerkerdijk 7, 1096 AC, Amsterdam, the Netherlands
| | - Gang Liu
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands; Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Gertjan Medema
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands; KWR Water Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands; Michigan State University, 1405 S Harrison Rd, East-Lansing, 48823, USA
| | - Jan Peter van der Hoek
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands; Waternet, Korte Ouderkerkerdijk 7, 1096 AC, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Pan R, Zhang K, Cen C, Zhou X, Xu J, Wu J, Wu X. Characteristics of biostability of drinking water in aged pipes after water source switching: ATP evaluation, biofilms niches and microbial community transition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116293. [PMID: 33412444 DOI: 10.1016/j.envpol.2020.116293] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Delivering quality-changed water often contributes to the biological instability of drinking water distribution systems (DWDS). However, the potential effects of quality-changed water on the biostability within DWDS are not well understood, especially after water switching to quality-improved water. The objective of this study was to investigate the effects of quality-improved water on DWDS, focusing on the stability of biofilm. The practical aged-pipe was assembled into pipe reactors to simulate the effect of switching to quality-improve water. The adenosine triphosphate (ATP) concentration of bulk water in the pipe reactors increased from ∼1.2 ng/L to almost above 5 ng/L when fed water switching to TP 2. Biomass quantified by measuring ATP concentration confirmed that the risk of biofilm release through aged cast-iron (CI) pipe surfaces after water source switching. The changes in water characteristics due to quality-improved water source could cause bacteria release in DWDS at the initial period (at the first 7 days). However, the DWDS can establish the new stable phase after 42 days. Over time, biomass in the bulk water of the distribution system decreased significantly (The ATP concentration in the bulk maintains around 3 ng/L) after 42 days, indicating the improvement of water quality. The biofilm was dominated by bacteria related to iron-cycling process, and at the genus level, Desulfovibrio had the highest relative abundance, however, it decreased significantly (from 48% to 9.3%) after water source switching. And there was a slightly increase in the fraction of iron-oxidizing bacteria (IOB) and siderophore-producing bacteria (SPB), but a relatively higher increase in nitrate-reducing bacteria (NRB), nitrobacteria (NOB), and iron-reducing bacteria (IRB) was observed. Taken together, these results and the corrosion morphology, indicate that pipe biofilm and corrosion were chemically and microbially stable after re-stability under water source switching. In addition, the bulk water environment showed a marked decrease in selected bacteria at genus level, including pathogenic species, indicating the improvement of quality in drinking water.
Collapse
Affiliation(s)
- Renjie Pan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Cheng Cen
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xinyan Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jia Xu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiajia Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaogang Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|