1
|
Ma P, Jin M, Zhang D, Lv L, Zhang G, Ren Z. Surface engineering-based S, N co-doped biochar for improved anaerobic digestion: Enhancing microbial-pollutant and inter-microbial electron transfer synergistic EPS protection. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136217. [PMID: 39437466 DOI: 10.1016/j.jhazmat.2024.136217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Enhancing extracellular electron transfer (EET) efficiency is crucial for improving the anaerobic digestion (AD) system's capability to treat recalcitrant wastewater. In this study, a novel S, N co-doped biochar (S-N-BC) was prepared through surface engineering to optimize EET within AD systems. The addition of S-N-BC significantly enhanced the performance of a mesophilic AD system treating Congo red wastewater, increasing the decolorization rate by 78 %, COD degradation rate by 82 %, and methane yield by 87 % compared to the control. Additionally, the shock resistance of anaerobic granular sludge was improved, as evidenced by the formation of the protective extracellular polymeric substances (EPS) barrier and the enhanced activities of the electron transport system. Mechanistic analysis revealed that adding S-N-BC did not alter the Congo red decolorization pathway but significantly enriched various electrochemically active bacteria and established EET pathways between microbial-pollutant and inter-microbial. This significantly accelerated EET efficiency within the AD system, ensuring stable and efficient operation under challenging conditions. This study proposed a novel approach using S-N-BC to simultaneously enhance "dual-pathway EET" between microbial-pollutant and inter-microbial while constructing an EPS protective barrier, addressing the issues of low efficiency and fragile stability of AD systems for treating recalcitrant wastewater.
Collapse
Affiliation(s)
- Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Mengting Jin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150086, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
2
|
Song Q, Kong F, Liu BF, Song X, Ren HY. Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100420. [PMID: 38765891 PMCID: PMC11099330 DOI: 10.1016/j.ese.2024.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Chlorinated organic pollutants constitute a significant category of persistent organic pollutants due to their widespread presence in the environment, which is primarily attributed to the expansion of agricultural and industrial activities. These pollutants are characterized by their persistence, potent toxicity, and capability for long-range dispersion, emphasizing the importance of their eradication to mitigate environmental pollution. While conventional methods for removing chlorinated organic pollutants encompass advanced oxidation, catalytic oxidation, and bioremediation, the utilization of biochar has emerged as a prominent green and efficacious method in recent years. Here we review biochar's role in remediating typical chlorinated organics, including polychlorinated biphenyls (PCBs), triclosan (TCS), trichloroethene (TCE), tetrachloroethylene (PCE), organochlorine pesticides (OCPs), and chlorobenzenes (CBs). We focus on the impact of biochar material properties on the adsorption mechanisms of chlorinated organics. This review highlights the use of biochar as a sustainable and eco-friendly method for removing chlorinated organic pollutants, especially when combined with biological or chemical strategies. Biochar facilitates electron transfer efficiency between microorganisms, promoting the growth of dechlorinating bacteria and mitigating the toxicity of chlorinated organics through adsorption. Furthermore, biochar can activate processes such as advanced oxidation or nano zero-valent iron, generating free radicals to decompose chlorinated organic compounds. We observe a broader application of biochar and bioprocesses for treating chlorinated organic pollutants in soil, reducing environmental impacts. Conversely, for water-based pollutants, integrating biochar with chemical methods proved more effective, leading to superior purification results. This review contributes to the theoretical and practical application of biochar for removing environmental chlorinated organic pollutants.
Collapse
Affiliation(s)
- Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
3
|
Yuan M, Chen G, Xiao Y, Qu Y, Ren Y. The mechanisms of yeast extracellular metabolites in stimulating microbial degradation of trichloroethylene: Physiological characteristics and omics analysis. ENVIRONMENTAL RESEARCH 2024; 255:119193. [PMID: 38777296 DOI: 10.1016/j.envres.2024.119193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The biodegradation of Trichloroethylene (TCE) is limited by low microbial metabolic capacity but can be enhanced through biostimulation strategies. This study explored the physiological effects and potential molecular mechanisms of the yeast Yarrowia lipolytica extracellular metabolites (YEMs) on the degradation of TCE by Acinetobacter LT1. Results indicated that YEMs stimulated the efficiency of strain LT1 by 50.28%. At the physiological level, YEMs exhibited protective effects on cell morphology, reduced oxidative stress, lessened membrane damage, and enhanced energy production and conversion. Analysis of omics results revealed that the regulation of various metabolic pathways by YEMs improved the degradation of TCE. Furthermore, RT-qPCR showed that the genes encoding YhhW protein in TCE stress and YEMs stimulation groups were 1.72 and 3.22 times the control group, respectively. Molecular docking results showed that the conformation of YhhW after binding to TCE changed into a more active form, which enhanced enzyme activity. Therefore, it is speculated that YhhW is the primary degradative enzyme involved in the process of YEMs stimulating strain LT1 to degrade TCE. These results reveal how YEMs induce strain LT1 to enhance TCE degradation.
Collapse
Affiliation(s)
- Meng Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Guotao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yibo Xiao
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yujiao Qu
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| |
Collapse
|
4
|
Ge Y, Zhu S, Wang K, Liu F, Zhang S, Wang R, Ho SH, Chang JS. One-step synthesis of a core-shell structured biochar using algae (Chlorella) powder and ferric sulfate for immobilizing Hg(II). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133991. [PMID: 38492405 DOI: 10.1016/j.jhazmat.2024.133991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Mercury (Hg) pollution poses a significant environmental challenge. One promising method for its removal is the sorption of mercuric ions using biochar. FeS-doped biochar (FBC) exhibits effective mercury adsorption, however may release excess iron into the surrounding water. To address this issue, a novel magnetic pyrrhotite/magnetite-doped biochar with a core-shell structure was synthesized for the adsorption of 2-valent mercury (Hg(II)). The proposed synthesis process involved the use of algae powder and ferric sulfate in a one-step method. By varying the ratio of ferric sulfate and alga powder (within the range of 0.18 - 2.5) had a notable impact on the composition of FBC. As the ferric sulfate content increased, the FBC exhibited a higher concentration of oxygen-containing groups. To assess the adsorption capacity, Langmuir and Freundlich adsorption models were applied to the experimental data. The most effective adsorption was achieved with FBC-4, reaching a maximum capacity (Qm) of 95.51 mg/g. In particular, at low Hg(II) concentrations, FBC-5 demonstrated the ability to reduce Hg(II) concentrations to less than 0.05 mg/L within 30 min. Additionally, the stability of FBC was confirmed within the pH range of 3.8 - 7.2. The study also introduced a model to analyze the adsorption preference for different Hg(II) species. Calomel was identified in the mercury saturated FBC, whereas the core-shell structure exhibited excellent conductivity, which most likely contributed to the minimal release of iron. In summary, this research presents a novel and promising method for synthesizing core-shell structured biochar and provides a novel approach to explore the adsorption contribution of different metal species.
Collapse
Affiliation(s)
- Yiming Ge
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Feiyu Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shiyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jo-Shu Chang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
5
|
Zhong H, Lyu H, Wang Z, Tian J, Wu Z. Application of dissimilatory iron-reducing bacteria for the remediation of soil and water polluted with chlorinated organic compounds: Progress, mechanisms, and directions. CHEMOSPHERE 2024; 352:141505. [PMID: 38387660 DOI: 10.1016/j.chemosphere.2024.141505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Chlorinated organic compounds are widely used as solvents, but they are pollutants that can have adverse effects on the environment and human health. Dissimilatory iron-reducing bacteria (DIRB) such as Shewanella and Geobacter have been applied to treat a wide range of halogenated organic compounds due to their specific biological properties. Until now, there has been no systematic review on the mechanisms of direct or indirect degradation of halogenated organic compounds by DIRB. This work summarizes the discussion of DIRB's ability to enhance the dechlorination of reaction systems through different pathways, both biological and biochemical. For biological dechlorination, some DIRB have self-dechlorination capabilities that directly dechlorinate by hydrolysis. Adjustment of dechlorination genes through genetic engineering can improve the dechlorination capabilities of DIRB. DIRB can also adjust the capacity for the microbial community to dechlorinate and provide nutrients to enhance the expression of dechlorination genes in other bacteria. In biochemical dechlorination, DIRB bioconverts Fe(III) to Fe(II), which is capable of dichlorination. On this basis, the DIRB-driven Fenton reaction can efficiently degrade chlorinated organics by continuously maintaining anoxic conditions to generate Fe(II) and oxic conditions to generate H2O2. DIRB can drive microbial fuel cells due to their electroactivity and have a good dechlorination capacity at low levels of energy consumption. The contribution of DIRB to the removal of pesticides, antibiotics and POPs is summarized. Then the DIRB electron transfer mechanism is discussed, which is core to their ability to dechlorinate. Finally, the prospect of future work on the removal of chlorine-containing organic pollutants by DIRB is presented, and the main challenges and further research directions are suggested.
Collapse
Affiliation(s)
- Hua Zhong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
6
|
Ri C, Li F, Mun H, Liu L, Tang J. Impact of different zero valent iron-based particles on anaerobic microbial dechlorination of 2,4-dichlorophenol: Comparison of dechlorination performance and the underlying mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131881. [PMID: 37379603 DOI: 10.1016/j.jhazmat.2023.131881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/14/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
The integration of iron-based materials and anaerobic microbial consortia has been extensively studied owing to its potential to enhance pollutant degradation. However, few studies have compared how different iron materials enhance the dechlorination of chlorophenols in coupled microbial systems. This study systematically compared the combined performances of microbial community (MC) and iron materials (Fe0/FeS2 +MC, S-nZVI+MC, n-ZVI+MC, and nFe/Ni+MC) for the dechlorination of 2,4-dichlorophenol (DCP) as one representative of chlorophenols. DCP dechlorination rate was significantly higher in Fe0/FeS2 +MC and S-nZVI+MC (1.92 and 1.67 times, with no significant difference between two groups) than in nZVI+MC and nFe/Ni+MC (1.29 and 1.25 times, with no significant difference between two groups). Fe0/FeS2 had better performance for the reductive dechlorination process as compared with other three iron-based materials via the consumption of any trace amount of oxygen in anoxic condition and accelerated electron transfer. On the other hand, nFe/Ni could induce different dechlorinating bacteria as compared to other iron materials. The enhanced microbial dechlorination was mainly due to some putative dechlorinating bacteria (Pseudomonas, Azotobacter, Propionibacterium), and due to improved electron transfer of sulfidated iron particles. Therefore, Fe0/FeS2 as a biocompatible as well as low-cost sulfidated material can be a good alternative for possible engineering applications in groundwater remediation.
Collapse
Affiliation(s)
- Cholnam Ri
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Microbiology, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Fengxiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hyokchol Mun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of national energy, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Lyu H, Hu K, Wu Z, Shen B, Tang J. Functional materials contributing to the removal of chlorinated hydrocarbons from soil and groundwater: Classification and intrinsic chemical-biological removal mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163011. [PMID: 36965728 DOI: 10.1016/j.scitotenv.2023.163011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Chlorinated hydrocarbons (CHs) are the main contaminants in soil and groundwater and have posed great challenge on the remediation of soil and ground water. Different remediation materials have been developed to deal with the environmental problems caused by CHs. Remediation materials can be classified into three main categories according to the corresponding technologies: adsorption materials, chemical reduction materials and bioaugmentation materials. In this paper, the classification and preparation of the three materials are briefly described in terms of synthesis and properties according to the different types. Then, a detailed review of the remediation mechanisms and applications of the different materials in soil and groundwater remediation is presented in relation to the various properties of the materials and the different challenges encountered in laboratory research or in the environmental application. The removal trends in different environments were found to be largely similar, which means that composite materials tend to be more effective in removing CHs in actual remediation. For instance, adsorbents were found to be effective when combined with other materials, due to the ability to take advantage of the respective strengths of both materials. The rapid removal of CHs while minimizing the impact of CHs on another material and the material itself on the environment. Finally, suggestions for the next research directions are given in conjunction with this paper.
Collapse
Affiliation(s)
- Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kai Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Zhang H, Sun M, Tian J, Zhu X, Cheng Y. Synergetic effects of pyrrhotite and biochar on simultaneous removal of nitrate and phosphate in autotrophic denitrification system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10855. [PMID: 36949606 DOI: 10.1002/wer.10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
In the trend of upgrading wastewater treatment plants, developing advanced treatment technologies for more efficient nutrient removal is crucial. This study prepared a pyrrhotite-biochar composite (Fex Sy @BC) to investigate its potential for simultaneous removal of nitrate and phosphate under autotrophic denitrification conditions. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterize the novel composite of Fex Sy @BC, which exhibited 9.2 mg N/(L·d) NO3 - -N reduction rate, 97.3% N2 production, and 81.8 mmol N/(kg·d) NO3 - -N material load with small solid/liquid ratio (0.008). The NO3 - -N removal with Fex Sy @BC was 1.2-2.2 times higher than that with pure iron sulfides or biochar or their mixtures, whereas the Δn(S)/Δn(N) of Fex Sy @BC was the lowest (1.80). Moreover, the PO4 3- -P reduction rate of Fex Sy @BC reached 3.23 mg P/(L·d), as high as that of pure pyrite or pyrrhotite. Thiobacillus was the most dominant denitrifying bacterium. Fex Sy @BC exhibited great promise for enhancing nutrient removal from secondary effluent without additional carbon source. PRACTITIONER POINTS: FexSy@BC enhanced nitrate and phosphate removal simultaneously. First-order kinetics and Monod model were fitted for denitrification with FexSy@BC. FexSy@BC had smaller molar ratio of sulfate release to nitrate removal. Thiobacillus was the dominant bacterium in FexSy@BC autotrophic denitrification. Synergistic effects on nutrients removal existed between biochar and pyrrhotite.
Collapse
Affiliation(s)
- Hao Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Min Sun
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
- Key Laboratory of Special Wastewater Treatment, Sichuan Province Higher Education System, Chengdu, China
- Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, China
| | - Xiaoqing Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Yunan Cheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
9
|
Ye J, Mao Y, Meng L, Li J, Li X, Xiao L, Zhang Y, Wang F, Deng H. Polycaprolactone-Modified Biochar Supported Nanoscale Zero-Valent Iron Coupling with Shewanella putrefaciens CN32 for 1,1,1-Trichloroethane Removal from Simulated Groundwater: Synthesis, Optimization, and Mechanism. Molecules 2023; 28:molecules28073145. [PMID: 37049906 PMCID: PMC10095663 DOI: 10.3390/molecules28073145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
1,1,1-Trichloroethane (1,1,1-TCA) is a typical organochloride solvent in groundwater that poses threats to human health and the environment due to its carcinogenesis and bioaccumulation. In this study, a novel composite with nanoscale zero-valent iron (nZVI) supported by polycaprolac-tone (PCL)-modified biochar (nZVI@PBC) was synthesized via solution intercalation and liquid-phase reduction to address the 1,1,1-TCA pollution problem in groundwater. The synergy effect and improvement mechanism of 1,1,1-TCA removal from simulated groundwater in the presence of nZVI@PBC coupling with Shewanella putrefaciens CN32 were investigated. The results were as follows: (1) The composite surface was rough and porous, and PCL and nZVI were loaded uniformly onto the biochar surface as micro-particles and nanoparticles, respectively; (2) the optimal mass ratio of PCL, biochar, and nZVI was 1:7:2, and the optimal composite dosage was 1.0% (w/v); (3) under the optimal conditions, nZVI@PBC + CN32 exhibited excellent removal performance for 1,1,1-TCA, with a removal rate of 82.98% within 360 h, while the maximum removal rate was only 41.44% in the nZVI + CN32 treatment; (4) the abundance of CN32 and the concentration of adsorbed Fe(II) in the nZVI@PBC + CN32 treatment were significantly higher than that in control treatments, while the total organic carbon (TOC) concentration first increased and then decreased during the culture process; (5) the major improvement mechanisms include the nZVI-mediated chemical reductive dechlorination and the CN32-mediated microbial dissimilatory iron reduction. In conclusion, the nZVI@PBC composite coupling with CN32 can be a potential technique to apply for 1,1,1-TCA removal in groundwater.
Collapse
Affiliation(s)
- Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yacen Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Liang Meng
- Key Lab of Eco-Restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang 110044, China
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China
| | - Junjie Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Xilin Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Lishan Xiao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Ying Zhang
- The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Fenghua Wang
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huan Deng
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
10
|
Wu Z, Man Q, Niu H, Lyu H, Song H, Li R, Ren G, Zhu F, Peng C, Li B, Ma X. Recent advances and trends of trichloroethylene biodegradation: A critical review. Front Microbiol 2022; 13:1053169. [PMID: 36620007 PMCID: PMC9813602 DOI: 10.3389/fmicb.2022.1053169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Trichloroethylene (TCE) is a ubiquitous chlorinated aliphatic hydrocarbon (CAH) in the environment, which is a Group 1 carcinogen with negative impacts on human health and ecosystems. Based on a series of recent advances, the environmental behavior and biodegradation process on TCE biodegradation need to be reviewed systematically. Four main biodegradation processes leading to TCE biodegradation by isolated bacteria and mixed cultures are anaerobic reductive dechlorination, anaerobic cometabolic reductive dichlorination, aerobic co-metabolism, and aerobic direct oxidation. More attention has been paid to the aerobic co-metabolism of TCE. Laboratory and field studies have demonstrated that bacterial isolates or mixed cultures containing Dehalococcoides or Dehalogenimonas can catalyze reductive dechlorination of TCE to ethene. The mechanisms, pathways, and enzymes of TCE biodegradation were reviewed, and the factors affecting the biodegradation process were discussed. Besides, the research progress on material-mediated enhanced biodegradation technologies of TCE through the combination of zero-valent iron (ZVI) or biochar with microorganisms was introduced. Furthermore, we reviewed the current research on TCE biodegradation in field applications, and finally provided the development prospects of TCE biodegradation based on the existing challenges. We hope that this review will provide guidance and specific recommendations for future studies on CAHs biodegradation in laboratory and field applications.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Quanli Man
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Hanyu Niu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Honghong Lyu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Haokun Song
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Rongji Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Fujie Zhu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Benhang Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China,*Correspondence: Xiaodong Ma,
| |
Collapse
|
11
|
Yang S, Zhang S, Xu Q, Liu J, Zhong C, Xie Z, Zhao Y. Efficient activation of persulfate by Nickel-supported cherry core biochar composite for removal of bisphenol A. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116305. [PMID: 36166862 DOI: 10.1016/j.jenvman.2022.116305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In this study, low-cost and easily obtained biochar was chosen to prepare nickel-modified biochar materials (Ni/BC) through a one-step activation pyrolysis method. Characterization with X-ray diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy proved the existence of Ni0 and NiO nanocrystals in Ni/BC catalyst. The optimal Ni0.5/BC exhibited excellent peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation efficiency toward bisphenol A (BPA) degradation. The Ni0.5/BC (0.03 g) reacted with 1.0 g L-1 PMS or PDS could completely remove 20 mg L-1 BPA in 10 min with the first-order kinetic constants (k1) of 0.322 min-1 (PMS) and 0.336 min-1 (PDS). More importantly, the composite has better structural and functional attributes for the BPA degradation with universal applicability at wide pH and temperature range, proving as a better degradation mediator with high adaptation for numerous organic pollutants. Catalytic activity decreased slightly even after 4 cycles. Based on the quenching experiment and electron paramagnetic resonance, it was found that SO4•-, •OH and 1O2 were the dominant active species in BPA degradation process. Therefore, this work not only supplies a promising catalyst for the removal of organic contaminants, but also is beneficial for the further development of alternative catalysts for sulfate radical based advanced oxidation processes.
Collapse
Affiliation(s)
- Shuangshuang Yang
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China.
| | - Qiang Xu
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| | - Junshen Liu
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| | - Caijuan Zhong
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| | - Zengrun Xie
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| | - Yiqi Zhao
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| |
Collapse
|
12
|
Zhu J, Zhang L, Liu J, Zhong S, Gao P, Shen J. Trichloroethylene remediation using zero-valent iron with kaolin clay, activated carbon and bacteria. WATER RESEARCH 2022; 226:119186. [PMID: 36244142 DOI: 10.1016/j.watres.2022.119186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Nanoscale particles of zero-valent iron were used to form a permeable reactive barrier whose performance in dechlorinating a solution of trichloroethylene was compared with that of a barrier formed from limestone. The iron was combined with kaolin by calcination. The test liquid contained sewage sludge, and also added NH4Cl and KH2PO4. The average removal rates of trichloroethylene and phosphorus over 365 days both exceeded 94%. Chemical oxygen demand was reduced by 92% and ammonium nitrogen by 43.6%. All were significantly greater than the removals with the limestone barrier. The ceramsite barrier retained 85% of its effectiveness even after 365 days of use. Dechloromonas sp. was the main dechlorinating bacterium, but its removal ability is limited. The removal of trichloroethylene in such a barrier mainly depends on reduction by the zero-valent iron and biodegradation. The results show that the prepared ceramsite is stable and effective in removing trichloroethylene from water. It is a promising in-situ remediation material for groundwater.
Collapse
Affiliation(s)
- Jiayan Zhu
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China
| | - Lishan Zhang
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China.
| | - Junyong Liu
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China
| | - Shan Zhong
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinyou Shen
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, Jiangsu 210094, China
| |
Collapse
|
13
|
Qu J, Zhang W, Bi F, Yan S, Miao X, Zhang B, Wang Y, Ge C, Zhang Y. Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(Ⅵ) and tetracycline from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119398. [PMID: 35525521 DOI: 10.1016/j.envpol.2022.119398] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/24/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-doped biochar loaded with FeS (FeS@NBCBM) was synthesized by two-step ball milling processes. Characterization results revealed that N-doping process successfully introduced pyridinic, pyrrolic, and graphitic N structures, and FeS was subsequently embedded in N-doped biochar (NBCBM). The resultant FeS@NBCBM presented predominant adsorption capacity for Cr(VI) (194.69 mg/g) and tetracycline (TC, 371.29 mg/g) compared with BC (27.28 and 37.89 mg/g) and NBCBM (71.26 and 81.26 mg/g). In addition, the Cr(VI)/TC elimination process by FeS@NBCBM was basically stable with multiple co-existing ions with slight decrease on adsorption performance after three desorption-regeneration cycles. Most importantly, FeS@NBCBM was found to achieve Cr(VI) elimination not only by electrostatic attraction, ion exchange and complexation, but also by electrons-triggered reduction provided by different species of N, Fe2+ as well as S(Ⅱ). Meantime, pore filling, hydrogen bonding, and π-π stacking interactions were demonstrated to contribute to TC adsorption. These results suggested the co-modification of N-doping and FeS loading by ball milling as an innovative decorating method for biochar to adsorptive purification of Cr(VI) and TC-contaminated water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Weihang Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Shaojuan Yan
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, China
| | - Xuemei Miao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China.
| |
Collapse
|
14
|
Liu Y, Chen Y, Li Y, Chen L, Jiang H, Li H, Luo X, Tang P, Yan H, Zhao M, Yuan Y, Hou S. Fabrication, application, and mechanism of metal and heteroatom co-doped biochar composites (MHBCs) for the removal of contaminants in water: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128584. [PMID: 35359100 DOI: 10.1016/j.jhazmat.2022.128584] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The potential risk of various contaminants in water has recently attracted public attention. Biochars and modified biochars have been widely developed for environmental remediation. Metal and heteroatom co-doped biochar composites (MHBCs) quickly caught the interest of researchers with more active sites and higher affinity for contaminants compared to single-doped biochar by metal or heteroatoms. This study provides a comprehensive review of MHBCs in wastewater decontamination. Firstly, the main fabrication methods of MHBCs were external doping and internal doping, with external doping being the most common. Secondly, the applications of MHBCs as adsorbents and catalysts in water treatment were introduced emphatically, which mainly included the removal of metals, antibiotics, dyes, pesticides, phenols, and other organic contaminants. Thirdly, the removal mechanisms of contaminants by MHBCs were deeply discussed in adsorption, oxidation and reduction, and degradation. Furthermore, the influencing factors for the removal of contaminants by MHBCs were also summarized, including the physicochemical properties of MHBCs, and environmental variables of pH and co-existing substance. Finally, futural challenges of MHBCs are proposed in the leaching toxicity of metal from MHBCs, the choice of heteroatoms on the fabrication for MHBCs, and the application in the composite system and soil remediation.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, China
| | - Xinli Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ping Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
15
|
Wang W, Zhang F, Zhang Y, Xu L, Pei Y, Niu J. Liquid-phase hydrodechlorination of trichloroethylene driven by nascent H 2 under an open system: Hydrogenation activity, solvent effect and sulfur poisoning. J Environ Sci (China) 2021; 108:96-106. [PMID: 34465441 DOI: 10.1016/j.jes.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 06/13/2023]
Abstract
Hydrodechlorination is a promising technology for the remediation of water body contaminated with trichloroethylene (TCE). In this work, the liquid-phase hydrogenation of TCE by Raney Ni (R-Ni) and Pd/C under an open system have been studied, in which nascent H2 (Nas-H2) generated in situ from the cathode acted as a hydrogen source. Experimental results showed that TCE was completely eliminate from the solution through the synergistic effects of hydrodechlorination and air flotation due to the formation of continuous micro/nano-sized Nas-H2 bubbles from the cathode. Furthermore, the effects of inorganic anions and organic solvents on R-Ni and Pd/C hydrogenation activity were investigated, respectively. The results showed that NO3- and acetonitrile can form a competitive reaction with TCE; Sulfur with lone-pair electrons will cause irreversible poisoning to these two catalysts, and have a stronger inhibitory effect on Pd/C. This work helps to realize the separation of volatile halogenated compounds from water environment and provides certain data support for the choice of catalyst in the actual liquid-phase hydrogenation system.
Collapse
Affiliation(s)
- Weilai Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fan Zhang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yunfei Zhang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lei Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
16
|
Liu Y, Liu S, Yang Z, Xiao L. Synergetic effects of biochars and denitrifier on nitrate removal. BIORESOURCE TECHNOLOGY 2021; 335:125245. [PMID: 33991877 DOI: 10.1016/j.biortech.2021.125245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Nitrate is one of the most common water contaminants and has caused severe environmental problems. This work aimed to investigate the effects of integration of denitrifier with biochars on nitrate removal and understand the underlying mechanisms. The results showed that physiochemical properties of biochars varied according to different feedstocks, which influenced bacteria attachment and nitrate removal through adsorption. However, bacteria could colonize on biochars no matter biochars surface were favorable for bacteria attachment or not. Immobilization of denitrifier on biochars significantly improved nitrate removal efficiencies and reduced lag time. Underlying mechanisms investigation showed that the integration of denitrifier with biochars had synergetic effects on promoting nitrate removal, which improved not only the expression and activity of nitrate reductase, but also the electron transport system activity.
Collapse
Affiliation(s)
- Yuqi Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Shulei Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Zongcai Yang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China.
| |
Collapse
|
17
|
Tang J, Zhao B, Lyu H, Li D. Development of a novel pyrite/biochar composite (BM-FeS 2@BC) by ball milling for aqueous Cr(VI) removal and its mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125415. [PMID: 33626470 DOI: 10.1016/j.jhazmat.2021.125415] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
As a natural reduction mineral, pyrite (FeS2), was combined with biochar by simply ball milling technology to synthesize FeS2@biochar composite (BM-FeS2@BC) and applied for the removal of hexavalent chromium (Cr(VI)) in aqueous solution. SEM, XRD, FTIR, and XPS characterization results showed that the FeS2 and biochar were successfully combined and biochar suppressed the agglomeration of FeS2. Batch sorption experiments showed that the BM-FeS2@BC700 composite (mass ratio of FeS2-to-biochar = 3:1) had enhanced Cr(VI) removal capacity of 134 mg·g-1, which were 3-25 times higher than those of the corresponding pristine and ball-milled biochar and FeS2. The removal of Cr(VI) by BM-FeS2@BC700 was dosage and pH dependent. The addition of oxalic acid (OA) exhibited a promotion effect on the removal of Cr(VI) by increasing the removal rate of Cr(VI) from 56% to 100%. Reduction, adsorption, and surface complexation were the dominate mechanisms for Cr(VI) removal by BM-FeS2@BC700. At the equilibrium Cr(VI) concentration of 15.7 mg·L-1, 92.25% of Cr(VI) was removed through reduction/precipitation and 8.75% was removed by adsorption/surface complexation. The fitting results of the Langmuir model proved that the removal of Cr(VI) by BM-FeS2@BC700 composite was chemical surface monolayer adsorption. This work demonstrates the potential of ball milling for the preparation of FeS2@BC composite to remove Cr(VI) from water and wastewater.
Collapse
Affiliation(s)
- Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Beibei Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and pollution control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Ding Li
- BCIG Environmental Remediation Co., Ltd, Tianjin 300042, China
| |
Collapse
|
18
|
Li X, Qin Y, Jia Y, Li Y, Zhao Y, Pan Y, Sun J. Preparation and application of Fe/biochar (Fe-BC) catalysts in wastewater treatment: A review. CHEMOSPHERE 2021; 274:129766. [PMID: 33529955 DOI: 10.1016/j.chemosphere.2021.129766] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 05/15/2023]
Abstract
The removal of organic pollutants from water environments is a challenging problem. Fe-based BC (Fe-BC) composites are promising catalysts for generating reactive oxygen species (ROS) for environmental remediation considering their low costs and excellent physicochemical surface characteristics. The synthesis methods, properties, applications, and the mechanism of Fe-BC for removing pollutants are reviewed. Various methods have been used to prepare Fe-BC composites, and the synthetic methods and conditions used affect the properties of the Fe-BC material, thereby influencing its pollutant removal performance. The mechanisms of pollutant removal by Fe-BC are intricate and include adsorption, degradation and reduction. Fe loading on BC could improve the performance of BC by affecting its surface area, surface functional groups and electron transfer rate. Moreover, research gaps and uncertainties that exist in the use of Fe-BC were identified. Finally, the problems that need to be solved to make Fe-BC suitable for future applications are described.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| | - Yang Qin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Yan Jia
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Yanyan Li
- Resources & Environment College, Tibet Key Laboratory of Forest Ecology in Plateau Area, Ministry of Education, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Yixuan Zhao
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jianhui Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
19
|
Yu R, Man M, Yu Z, Wu X, Shen L, Liu Y, Li J, Xia M, Zeng W. A high-efficiency Klebsiella variicola H12-CMC-FeS@biochar for chromium removal from aqueous solution. Sci Rep 2021; 11:6611. [PMID: 33758257 PMCID: PMC7988177 DOI: 10.1038/s41598-021-85975-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
In polluted groundwater, surface water, and industrial sites, chromium is found as one of the most common heavy metals, and one of the 20 main pollutants in China, which poses a great threat to the ecological environment and human health. Combining biological and chemical materials to treat groundwater contaminated by heavy metals is a promising restoration technology. In this research, Klebsiella variicola H12 (abbreviated as K. variicola) was found to have Cr(VI) reduction ability. A high-efficiency Klebsiella variicola H12-carboxymethyl cellulose (abbreviated as CMC)-FeS@biochar system was established for Cr(VI) removal from aqueous solution. The Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), X-ray photoelectron spectroscopy (XPS) results indicated that CMC-FeS was successfully loaded onto the surface of biochar, and K. variicola H12 grew well in the presence of CMC-FeS@biochar with microbial biomass up to 4.8 × 108 cells mL-1. Cr(VI) removal rate of CMC-FeS@biochar system, K. variicola H12 system and K. variicola H12 + CMC-FeS@biochar system were 61.8%, 82.2% and 96.6% respectively. This study demonstrated K. variicola H12-CMC-FeS@biochar system have potential value for efficient removal of Cr(VI) from Cr(VI)-polluted groundwater.
Collapse
Affiliation(s)
- Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Meilian Man
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zhaojing Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Mingchen Xia
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
20
|
Xie H, Yang L, Yang Y, Jiang W, Wang X, Huang M, Zhang J, Zhu Q. C5b-9 membrane attack complex activated NLRP3 inflammasome mediates renal tubular immune injury in trichloroethylene sensitized mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111439. [PMID: 33039874 DOI: 10.1016/j.ecoenv.2020.111439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Trichloroethylene (TCE) induced occupational medicamentosa-like dermatitis (OMLDT) in patients is accompanied, typically, by renal damage. But the role of C5b-9 and IL-1β in TCE-sensitized mouse renal tubular damage is unclear. This study aimed to investigate whether TCE-sensitized mouse renal tubular epithelial cell damage was induced by NLRP3 inflammasome and whether NLRP3 inflammasome was activated by sublytic C5b-9. In total, 52 specific pathogen-free BALB/c female mice, 6- to 8-week-old, were used for establishing the TCE-sensitized mouse model. Renal tubular epithelial cells were isolated and used for determining the sublytic level of C5b-9. Kidney histological examination, serum neutrophil gelatinase associated lipocalin (NGAL) level were used for kidney damage evaluation. Renal protein levels of C5b-9, NLRP3, ASC, Caspase-1, IL-1β, and IL-18 were measured. The renal lesions, serum NGAL level, renal NLRP3, ASC, Caspase-1 and IL-1β protein levels all increased significantly in TCE sensitized positive group. However, pretreatment with recombinant protein sCD59-Cys inhibited the expression of C5b-9, NLRP3 inflammasome, IL-1β, IL-18, and attenuated renal tubular epithelial cell damage. The sublytic C5b-9 activated NLRP3 inflammasome and aggravated renal tubular epithelial cell damage. Pretreatment with recombinant protein sCD59-Cys blocked the expression of the NLRP3 inflammasome by inhibiting the expression of C5b-9, and alleviating renal tubular epithelial cell damage.
Collapse
Affiliation(s)
- Haibo Xie
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Ling Yang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yi Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Xian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.
| |
Collapse
|
21
|
Li T, Li H, Li C. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air. CHEMOSPHERE 2020; 250:126338. [PMID: 32126329 DOI: 10.1016/j.chemosphere.2020.126338] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Chlorinated volatile organic compounds (Cl-VOCs) waste air is a kind of typical recalcitrant organic compounds, which poses a great threat to the ecological environment and human health. At present, the biotechnology is considered as a potential strategy for the Cl-VOCs removal due to the advantages of low energy consumption and less possibility of secondary pollution. This work summarizes the recent researches on strains, bioreactors and technology integration. The dominant pure strains for biodegradation of Cl-VOCs are first outlined with a special focus on the co-metabolism of multi-components. It then summarizes two bioreactors (optimized airlift reactor (ALR) and two-phase partitioning bioreactor (TPPB)) and strategy (addition of surfactant) for improvement of biotrickling filter (BTF), which are benefit to achieve the mass transfer enhancement in the removal of hydrophobic Cl-VOCs from waste air. After that, the integration technologies, such as magnetic field (MF)-BTF, non-thermal plasma (NTP)/ultraviolet light (UV)-BTF, and microbial electrolytic cells (MEC), are elucidated, which provide opportunities for complete mineralization of Cl-VOCs in a more efficient, energy-saving and economical way. Finally, current challenges and a perspective of future research on biotechnology for Cl-VOCs removal are thoroughly discussed.
Collapse
Affiliation(s)
- Tong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300000, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300000, China.
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300000, China
| |
Collapse
|
22
|
Lyu H, Tang J, Cui M, Gao B, Shen B. Biochar/iron (BC/Fe) composites for soil and groundwater remediation: Synthesis, applications, and mechanisms. CHEMOSPHERE 2020; 246:125609. [PMID: 31911329 DOI: 10.1016/j.chemosphere.2019.125609] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 05/24/2023]
Abstract
Biochar/iron (BC/Fe) composites, such as nano zero-valent iron (nZVI)/BC, iron sulfide/BC, and iron oxide/BC, have been developed and applied to deal with various contaminants owing to their excellent physicochemical properties. This work summarizes the progress in the preparation of BC/Fe composites, the properties and applications of BC/Fe, and the mechanism of the synergistic effect between Fe and BC in the composites. Various methods, including pyrolysis, hydrothermal carbonization, fractional precipitation, and ball milling, have been used to synthesize BC/Fe composites. In addition, the introduction of stabilizers, such as carboxymethyl cellulose (CMC), in the fractional precipitation process further prevents the agglomeration of Fe particles, which enhances the stability and fluidity of the resultant composites to facilitate the application of the composites in soil and water remediation. The application of BC/Fe composites in water and soil remediation is discussed in three aspects based on the interaction mechanisms, namely adsorption, reduction, and oxidation. Overall, the composites showed the synergistic effect of BC and Fe owing to the combination of the specific properties of Fe, such as reduction, catalysis, and magnetism, which can enhance the properties of BC with a larger surface area, abundant functional groups, and increased electron transfer efficiency. This review systemically summarizes the recent developments in BC/Fe composites to maximize the efficiency of BC/Fe application in soil and groundwater remediation. Key challenges and further research needs are also suggested.
Collapse
Affiliation(s)
- Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Mengke Cui
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
23
|
Lyu H, Zhang Q, Shen B. Application of biochar and its composites in catalysis. CHEMOSPHERE 2020; 240:124842. [PMID: 31574436 DOI: 10.1016/j.chemosphere.2019.124842] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
With a wide range of raw materials, low cost and large specific surface area, biochar has been widely used in environmental remediation. However, the biochar has a saturated adsorption capacity when it is used as a pollutant adsorbent. Recent efforts have been made to prepare biochar and biochar-based catalysts with enhanced catalytic properties to expand their potential applications. The environmental persistent free radicals (EPFRs) of biochar could react with O2 to induce hydroxyl radicals (•OH) without the addition of oxidants. When oxidants were added, biochar and biochar-based catalysts could activate them to generate •OH and sulfate radicals (SO4•-), respectively. Moreover, biochar could act as an electron acceptor to improve the photodegradation capacity of catalysts. With reference to the information regarding biochar and biochar-based catalysts, this work provides a critical review on recent research development as follows: 1) the preparations of various types of biochar and biochar-based catalysts are summarized; 2) the effects of the synthetic conditions and transition metals on the catalytic activity of biochar-based catalysts are discussed; (3) methods for characterizing the active sites of the biochar-based catalysts are described; and (4) the environmental applications of biochar and biochar-based catalysts are discussed with regards to three aspects based on the interaction mechanisms, namely, oxidation, reduction, and photocatalysis. The synthesis conditions and loading of metal/metal-free catalyst are key parameters controlling the catalysis activity of biochar and biochar-based catalysts. This review provides new insights into the application of biochar in catalysis. Key challenges and further research directions are proposed as well.
Collapse
Affiliation(s)
- Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Qianru Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
24
|
Bin Q, Lin B, Zhu K, Shen Y, Man Y, Wang B, Lai C, Chen W. Superior trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene aerogel composite. J Environ Sci (China) 2020; 88:90-102. [PMID: 31862083 DOI: 10.1016/j.jes.2019.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Sulfide-modified nanoscale zero-valent iron (S-nZVI) is a promising material for removal of organic pollutants from water, but S-nZVI nanoparticles (NPs) easily agglomerate and have poor contact with organic contaminants. Herein, we propose a new S-nZVI/graphene aerogel (S-nZVI/GA) composite which exhibits superior removal capability for trichloroethylene (TCE) from water. Three-dimensional porous graphene aerogel (GA) can improve the efficiency of electron transport, enhance the adsorption of organic pollutants and restrain the agglomeration of the core-shell S-nZVI NPs. The TCE removal rates of FeS, nZVI, GA and S-nZVI were 27.8%, 42%, 63% and 75% in 2 hr, respectively. Furthermore, TCE was completely removed within 50 min by S-nZVI/GA. The TCE removal rate increased with increasing pH and temperature, and TCE removal followed the pseudo-first-order kinetic model. The results demonstrate the great potential of S-nZVI/GA composite as a low-cost, easily separated and superior monolithic adsorbent for removal of organic pollutants.
Collapse
Affiliation(s)
- Qiong Bin
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Bin Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Ke Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yaqian Shen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuanyuan Man
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Boyang Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Changfei Lai
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenjin Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
25
|
A Review of Non-Soil Biochar Applications. MATERIALS 2020; 13:ma13020261. [PMID: 31936099 PMCID: PMC7013903 DOI: 10.3390/ma13020261] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
Biochar is the solid residue that is recovered after the thermal cracking of biomasses in an oxygen-free atmosphere. Biochar has been used for many years as a soil amendment and in general soil applications. Nonetheless, biochar is far more than a mere soil amendment. In this review, we report all the non-soil applications of biochar including environmental remediation, energy storage, composites, and catalyst production. We provide a general overview of the recent uses of biochar in material science, thus presenting this cheap and waste-derived material as a high value-added and carbonaceous source.
Collapse
|