1
|
Mei S, Wang K, Schmitt H, Hofstra N. Modelling Escherichia coli concentrations: 45.6 %-78.1 % of China's rivers show poor microbial water quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126184. [PMID: 40187524 DOI: 10.1016/j.envpol.2025.126184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Water quality is under threat due to the presence of pathogenic and antibiotic-resistant bacteria. Escherichia coli (E. coli) serves as an indicator of faecal contamination and the potential presence of other harmful pathogens. Understanding E. coli concentrations helps in assessing the overall health risks associated with waterborne diseases and developing effective water management strategies. Therefore, we developed the first large-scale model, GloWPa-Ecoli C1 to simulate E. coli loads and concentrations in rivers and apply this model to China. The model provides the first comprehensive overview of microbial water quality across China's rivers. The model simulates E. coli concentrations in 2020 to range from 10-1.2 to 106.3 CFU/L, with 45.6 %-78.1 % of rivers exhibiting poor microbial water quality. Major hotspots of E. coli pollution are Haihe, Huaihe and Pearl River Basins. Direct discharge of human faecal waste contributes 80.2 % of the total E. coli load, while directly discharged livestock waste accounts for 13.1 %. To mitigate E. coli pollution in rivers in China, we recommend increasing human faecal waste collection rates, expanding wastewater treatment plant (WWTP) coverage, phasing out primary treatment WWTPs and eliminating direct livestock faecal waste discharge, particularly from smallholder farms. The study underscores the urgent need to improve microbial water quality in China's rivers. The findings provide actionable insights to inform policy development aimed at safeguarding water quality and public health. Furthermore, the modelling approach is applicable to other regions and microorganisms, offering a foundation for developing models to address antibiotic-resistant bacteria and other emerging water quality challenges.
Collapse
Affiliation(s)
- Songtao Mei
- Earth Systems and Global Change Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, PR China.
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, PR China.
| | - Heike Schmitt
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Nynke Hofstra
- Earth Systems and Global Change Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
2
|
Borkens Y. [Therapeutics and (hypothetical) vaccinations against human cryptosporidia]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025. [PMID: 40300634 DOI: 10.1055/a-2551-1670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Cryptosporidium (or cryptosporidiosis caused by them) is one of the most relevant infections of the intestinal tract. The unicellular parasites infect the intestinal cells and cause cramps, weight loss and diarrhea. Cryptosporidia play a special role in AIDS patients. Here they are counted among the diseases that define the acquired immunodeficiency syndrome. Because of this relevance, the search for vaccines is a relevant goal of gastroenterological research. But how realistic are such vaccines? This article describes the disease cryptosporidiosis and reviews current therapeutics and hypothetical vaccine candidates.
Collapse
Affiliation(s)
- Yannick Borkens
- Institute of Pathology, Charite Medical Faculty Berlin, Berlin, Germany
- Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
3
|
Chen X, Niu Q, Li J, Zhou Z, Wu Y, Song G, Liu R. Anaerobic Digestion of High-Solid Chicken Manure (CM) at Different Temperature: Intestinal Microbiome Efficiency, Inhibition, and Microbial Community Evolution. Microorganisms 2025; 13:724. [PMID: 40284560 PMCID: PMC12029704 DOI: 10.3390/microorganisms13040724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/29/2025] Open
Abstract
Anaerobic digestion (AD) of high-solid mono-chicken manure (CM) holds great promise for resource utilization. However, the effects of substrate overload (high-solid mixture inside the reactor) on AD performance at various temperatures are still unclear, moreover, the metabolic processes with and without inoculation are also seldom reported. In this study, three key impact factors of different temperatures (4 °C, 35 °C, 55 °C and 75 °C), total solids (TS) inside, and inoculation were conducted to comprehensively explore the process variation. EEM-FRI results revealed that high temps boost coenzyme F420, while TS predominately driver the microbial production. High TS and temperature synthetically result in high free ammonia (FA) (>600 mg/L) associated with free volatile fatty acid (FVFA) (>450 mg/L), reducing CH4 production but increasing VFAs accumulation (12 g/L at 55 °C). Notably, intestinal microbiota alone without inoculation even achieved 11 g/L of VFA. The cross-feeding symbiosis between fermentative bacteria (Caldicoprobacter, Bacteroidetes, Tepidimicrobium) and hydrogenotrophic Methanobacterium enhanced CH4 production (68 mL/gVS at 35 °C). Moreover, high temperatures reduced microbial diversity but made heat-resistant hydrolytic bacteria dominant. This study precisely analyzes the effects of temperature and inoculation factors on the acidification efficiency of high-solid CM digestion, providing a crucial scientific basis for optimizing the resource utilization of CM waste.
Collapse
Affiliation(s)
- Xujing Chen
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (X.C.); (J.L.); (Z.Z.); (Y.W.); (R.L.)
| | - Qigui Niu
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (X.C.); (J.L.); (Z.Z.); (Y.W.); (R.L.)
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute, Shandong University, A301 Virtual University Park in South District, Shenzhen 518000, China
| | - Jingyi Li
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (X.C.); (J.L.); (Z.Z.); (Y.W.); (R.L.)
| | - Zijing Zhou
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (X.C.); (J.L.); (Z.Z.); (Y.W.); (R.L.)
| | - Yue Wu
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (X.C.); (J.L.); (Z.Z.); (Y.W.); (R.L.)
| | - Guixue Song
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| | - Rutao Liu
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (X.C.); (J.L.); (Z.Z.); (Y.W.); (R.L.)
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Serra Comineti CDS, Schlindwein MM, de Oliveira Hoeckel PH. Socio-environmental externalities of sewage waste management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174109. [PMID: 38908579 DOI: 10.1016/j.scitotenv.2024.174109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Conventional sewage management is expensive and inefficient, putting the environment and public health at risk, making access to sewage services difficult for everyone. Reusing sewage waste has agricultural and economic potential, but can contain harmful contaminants if not treated properly. This review is based on the hypothesis that the destination of sewage waste generates environmental and social externalities, which have not yet been widely compared. With the aim of identifying, from the literature, the socio-environmental externalities generated by different sewage waste management approaches, a systematic review of the literature was carried out, including 244 documents, with 50 % of these discussing impacts of conventional treatment and 37 % analyzing the reuse of waste. The main impacts and externalities were evaluated in three situations: untreated sewage, treated sewage, and reused waste. The results indicate that sewage waste has an underutilized economic value and can generate revenue, reduce operational costs and electricity expenses. Six negative externalities generated by conventional sewage treatment were identified: health costs; environmental cleaning; carbon offsetting; damage to tourism; damage to fishing and agriculture; and real estate depreciation. In reuse, there is a risk of two negative externalities: health costs and environmental cleaning, but two positive externalities were also identified: the reduction of phosphate rock mining and the neutralization of carbon credits. The complexity of the transition to sustainable sewage treatment practices is highlighted given the lack of consensus on the safe use of sewage waste, the lack of regulatory standardization, implementation costs and differences in regional parameters, highlighting the need for preliminary experimentation in a multidisciplinary and contextualized approach, considering comparative externalities among the available sewage waste management possibilities.
Collapse
Affiliation(s)
- Camila da Silva Serra Comineti
- Federal University of Grande Dourados (UFGD), Rodovia Dourados/Itahum, Km 12, Cidade Universitária, Dourados 79.804-970, Brazil; Federal University of Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n° | Bairro Universitário, Campo Grande 79.070-900, Brazil.
| | - Madalena Maria Schlindwein
- Federal University of Grande Dourados (UFGD), Rodovia Dourados/Itahum, Km 12, Cidade Universitária, Dourados 79.804-970, Brazil.
| | | |
Collapse
|
5
|
van Puijenbroek PJTM, Beusen AHW, Bouwman AF, Ayeri T, Strokal M, Hofstra N. Quantifying future sanitation scenarios and progress towards SDG targets in the shared socioeconomic pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118921. [PMID: 37738725 DOI: 10.1016/j.jenvman.2023.118921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Two main targets of SDG 6 (Sustainable Development Goal), clean water and sanitation, are SDG 6.2, to achieve universal and equitable access to improved sanitation and to phase out unimproved sanitation (include pit latrines without a slab or platform, hanging latrines, bucket latrines and open defecation) and SDG 6.3, to halve the proportion of untreated wastewater by 2030. We compiled a global sanitation database for 200 countries. Starting from recent trends, we constructed a wide spectrum of contrasting future scenarios, i.e. the five Shared Socio-economic Pathways (SSP1-5) whereby the SSP2 scenario is 'middle of the road' scenario. The sanitation scenarios differ due to contrasting pathways for population growth and urbanization, economic growth and the SSP narratives. Our results indicate that it will be difficult to achieve the SDG 6 target. Target 6.2 on improved sanitation is expected to be achieved between 2070 and 2090 in SSP1, SSP2 and SSP5, while the target will not be achieved by 2100 in SSP3 and SSP4. Unimproved sanitation is projected to be phased out by 2070 in SSP1 and SSP5, or beyond 2100 in SSP3 and SSP4. The percentage of households with sewerage connection will be between 51% in SSP3 and 75% in SSP5 in 2050, and respectively 60% and 95% in 2100. Target SDG 6.3 on improving wastewater treatment will be reached by 2030 only in SSP1, followed by SSP2 and SSP5 between 2040 and 2050, while in SSP3 and SSP4 this target is not reached by 2100. The developments in wastewater treatment, expressed as percentage nutrient removal, showed an increase from 14% in 2015 to 45% in 2050 and 80% in 2100 in SSP1. But in SSP3, the global percentage is expected to have hardly changed by 2050 and have declined to 12% by 2100 due to the population growth in Sub-Saharan Africa. There is a major contrast between countries and regions. In the period between 2000 and 2015, although globally the percentage of people with unimproved sanitation declined, in 7% of the 200 countries the number of people with unimproved sanitation increased. Also, wastewater treatment globally improved, but in 16 countries it deteriorated. This inequality is particularly important in SSP3 and SSP4 where the lack of improved sanitation will continue till 2100.
Collapse
Affiliation(s)
- P J T M van Puijenbroek
- PBL Netherlands Environmental Assessment Agency, PO Box 30314, 2500, GH The Hague, the Netherlands.
| | - A H W Beusen
- PBL Netherlands Environmental Assessment Agency, PO Box 30314, 2500, GH The Hague, the Netherlands; Department of Earth Sciences, Geochemistry, Faculty of Geosciences, Utrecht University, PO Box 80021, 3508, TA Utrecht, the Netherlands
| | - A F Bouwman
- Department of Earth Sciences, Geochemistry, Faculty of Geosciences, Utrecht University, PO Box 80021, 3508, TA Utrecht, the Netherlands
| | - T Ayeri
- Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, 6500, GL, Nijmegen, the Netherlands
| | - M Strokal
- Water Systems and Global Change Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - N Hofstra
- Water Systems and Global Change Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
6
|
Hayes L, Robinson G, Chalmers RM, Ormerod SJ, Paziewska-Harris A, Chadwick EA, Durance I, Cable J. The occurrence and zoonotic potential of Cryptosporidium species in freshwater biota. Parasit Vectors 2023; 16:209. [PMID: 37344906 PMCID: PMC10283333 DOI: 10.1186/s13071-023-05827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Protozoan pathogens from the genus Cryptosporidium cause the diarrhoeal disease cryptosporidiosis in humans and animals globally. Freshwater biota could act as potential reservoirs or zoonotic sources of Cryptosporidium infections for livestock and people, but Cryptosporidium occurrence in aquatic biota is largely unexplored. The aim of this study was to investigate the occurrence of Cryptosporidium in a range of freshwater organisms in upland rivers across England and Wales. METHODS Fish were sampled by electrofishing, invertebrate larvae by kick sampling and the otter Lutra lutra and mink Mustela vison through faecal samples collected opportunistically as part of a nation-wide study. PCR targeting the small subunit ribosomal RNA gene was used to detect Cryptosporidium species. RESULTS Cryptosporidium occurred in just 0.8% of all the samples and in none of 73 samples from nine invertebrate genera. Cryptosporidium was detected in two of 2/74 fish samples (2.7%), both salmonids, and in 2/92 otter faecal samples (2.17%), but there were no positive samples in mink (0/24) or the bullhead Cottus gobio (0/16). CONCLUSIONS Low detection rate of human-infective Cryptosporidium species in aquatic fauna indicates they may present a low risk of contamination of some upland freshwaters.
Collapse
Affiliation(s)
- Laura Hayes
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea Medical School, Swansea University, Swansea, SA2 8QA, UK
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea Medical School, Swansea University, Swansea, SA2 8QA, UK
| | - Steve J Ormerod
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Anna Paziewska-Harris
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Lukasiewicz Research Network, PORT Polish Centre for Technology Development, Stablowicka 147, 54-066, Wroclaw, Poland
| | | | - Isabelle Durance
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| |
Collapse
|
7
|
Huang Q, Huang S, Li B, Xiong Y, Kuang W, Xiao S, Yi J, Zhao F, Xiao G. Spatially explicit model of the Cryptosporidium and Giardia disease burden from surface and ground waters in urban and rural areas of the Three Gorges Reservoir watershed in Chongqing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37127-37142. [PMID: 36571686 PMCID: PMC10039849 DOI: 10.1007/s11356-022-24690-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Cryptosporidium and Giardia (major causes of diarrhea) are widely distributed in Chinese source waters and threaten human health. A new spatially explicit GloWPa-TGR-Crypt-Giar C1 model is presented to simultaneously estimate mean monthly (oo)cyst concentrations in surface and ground waters in the Three Gorges Reservoir (TGR) watershed. A quantitative risk assessment of protozoal infections considered different source waters, transmission pathways, regions, susceptible subpopulations, and drinking water treatments. Monthly mean Cryptosporidium oocyst and Giardia cyst concentrations ranged between 0.5-19.3 oocysts/10 L and 0.2-5.0 cysts/10 L in surface water, respectively, and 0.007-0.3 oocysts/10 L and 0.002-0. 2 cysts/10 L in groundwater. The cumulative disease burdens attributable to cryptosporidiosis and giardiasis were, respectively, 5.77×10-5 DALYs (disability-adjusted life years/person/year) and 4.63×10-6 DALYs in urban areas, and 6.35×10-4 DALYs and 8.84×10-5 DALYs in rural areas, which were much higher than the reference risk level recommended by the World Health Organization ([Formula: see text] DALYs). The annual burden associated with consuming surface water was calculated to be 3.84×10-4 DALYs for Cryptosporidium and [Formula: see text] DALYs for Giardia, whereas consuming groundwater entailed the lower burdens (1.26×10-5 and 3.50×10-6 DALYs, respectively). Most DALYs were a consequence of consumption of directly supplied surface water. Fifty percent of the health burden was carried by immunodeficiency with HIV. Children (0-4 years) were more likely to have an individual disease burden than adults (15-64 years). Males were more susceptible than females. Improving sanitation through adequate ozone and microfiltration treatment should be considered when attempting to reduce disease burden. Sensitivity analysis highlighted the importance of reducing (oo)cyst loads to protect the watershed. The methodology and results described will help in evaluating and reducing the burden of protozoal infection associated with surface and ground waters in the TGR and similar watersheds.
Collapse
Affiliation(s)
- Qian Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404130, China
| | - Shan Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404130, China
| | - Yanhong Xiong
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404130, China
| | - Weijie Kuang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404130, China
| | - Shunxin Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404130, China
| | - Jianghui Yi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404130, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404130, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404130, China.
| |
Collapse
|
8
|
Strokal M, Strokal V, Kroeze C. The future of the Black Sea: More pollution in over half of the rivers. AMBIO 2023; 52:339-356. [PMID: 36074247 PMCID: PMC9453707 DOI: 10.1007/s13280-022-01780-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/24/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The population in the Black Sea region is expected to decline in the future. However, a better understanding of how river pollution is affected by declining trends in population and increasing trends in economic developments and urbanization is needed. This study aims to quantify future trends in point-source emissions of nutrients, microplastics, Cryptosporidium, and triclosan to 107 rivers draining into the Black Sea. We apply a multi-pollutant model for 2010, 2050, and 2100. In the future, over half of the rivers will be more polluted than in 2010. The population in 74 sub-basins may drop by over 25% in our economic scenario with poor wastewater treatment. Over two-thirds of the people will live in cities and the economy may grow 9-fold in the region. Advanced wastewater treatment could minimize trade-offs between economy and pollution: our Sustainability scenario projects a 68-98% decline in point-source pollution by 2100. Making this future reality will require coordinated international efforts.
Collapse
Affiliation(s)
- Maryna Strokal
- Water Systems and Global Change, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - Vita Strokal
- National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony 15, Kiev, 03041 Ukraine
| | - Carolien Kroeze
- Water Systems and Global Change, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
9
|
Strokal V, Kuiper EJ, Bak MP, Vriend P, Wang M, van Wijnen J, Strokal M. Future microplastics in the Black Sea: River exports and reduction options for zero pollution. MARINE POLLUTION BULLETIN 2022; 178:113633. [PMID: 35398693 DOI: 10.1016/j.marpolbul.2022.113633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The Black Sea receives increasing amounts of microplastics from rivers. In this study, we explore options to reduce future river export of microplastics to the Black Sea. We develop five scenarios with different reduction options and implement them to a Model to Assess River Inputs of pollutaNts to seA (MARINA-Global) for 107 sub-basins. Today, European rivers draining into the Black Sea export over half of the total microplastics. In 2050, Asian rivers draining into the sea will be responsible for 34-46% of microplastic pollution. Implemented advanced treatment will reduce point-source pollution. Reduced consumption or more collection of plastics will reduce 40% of microplastics in the sea by 2050. In the optimistic future, sea pollution is 84% lower than today when the abovementioned reduction options are combined. Reduction options affect the share of pollution sources. Our insights could support environmental policies for a zero pollution future of the Black Sea.
Collapse
Affiliation(s)
- Vita Strokal
- The National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Eke J Kuiper
- Water Systems and Global Change, Wageningen University & Research, Wageningen, the Netherlands; Independent researcher, The Netherlands
| | - Mirjam P Bak
- Water Systems and Global Change, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul Vriend
- Water Systems and Global Change, Wageningen University & Research, Wageningen, the Netherlands; Independent researcher, The Netherlands
| | - Mengru Wang
- Water Systems and Global Change, Wageningen University & Research, Wageningen, the Netherlands
| | - Jikke van Wijnen
- Open Universiteit, Faculty of Science - Environmental Sciences Department, Heerlen, the Netherlands
| | - Maryna Strokal
- Water Systems and Global Change, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
10
|
Li Y, Wang M, Chen X, Cui S, Hofstra N, Kroeze C, Ma L, Xu W, Zhang Q, Zhang F, Strokal M. Multi-pollutant assessment of river pollution from livestock production worldwide. WATER RESEARCH 2022; 209:117906. [PMID: 34896811 DOI: 10.1016/j.watres.2021.117906] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Livestock production is often a source of multiple pollutants in rivers. However, current assessments of water pollution seldomly take a multi-pollutant perspective, while this is essential for improving water quality. This study quantifies inputs of multiple pollutants to rivers from livestock production worldwide, by animal types and spatially explicit. We focus on nitrogen (N), phosphorus (P), and Cryptosporidium (pathogen). We developed the MARINA-Global-L (Model to Assess River Inputs of pollutaNts to seAs for Livetsock) model for 10,226 sub-basins and eleven livestock species. Global inputs to land from livestock are around 94 Tg N, 19 Tg P, and 2.9 × 1021 oocysts from Cryptosporidium in 2010. Over 57% of these amounts are from grazed animals. Asia, South America, and Africa account for over 68% of these amounts on land. The inputs to rivers are around 22 Tg Total Dissolved Nitrogen (TDN), 1.8 Tg Total Dissolved P (TDP), and 1.3 × 1021 oocysts in 2010. Cattle, pigs, and chickens are responsible for 74-88% of these pollutants in rivers. One-fourth of the global sub-basins can be considered pollution hotspots and contribute 71-95% to the TDN, TDP, and oocysts in rivers. Our study could contribute to effective manure management for individual livestock species in sub-basins to reduce multiple pollutants in rivers.
Collapse
Affiliation(s)
- Yanan Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China; Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands.
| | - Mengru Wang
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
| | - Xuanjing Chen
- College of Resources and Environment, Southwest University, Tiansheng Road 02, Chongqing, 400715, PR China
| | - Shilei Cui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Nynke Hofstra
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, PR China
| | - Wen Xu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China.
| | - Qi Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China; Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Maryna Strokal
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
| |
Collapse
|
11
|
Couso-Pérez S, Ares-Mazás E, Gómez-Couso H. A review of the current status of Cryptosporidium in fish. Parasitology 2022; 149:1-13. [PMID: 35166202 PMCID: PMC10090634 DOI: 10.1017/s0031182022000099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/06/2022]
Abstract
Species of the genus Cryptosporidium (phylum Apicomplexa) infect the epithelium of the gastrointestinal tract of several vertebrate hosts, including humans and domestic and wild animals. In the past 20 years, several studies have focused on Cryptosporidium in fish. To date, a total of four piscine-host-specific species (Cryptosporidium molnari, Cryptosporidium huwi, Cryptosporidium bollandi and Cryptosporidium abrahamseni), nine piscine genotypes and more than 29 unnamed genotypes have been described in fish hosts. In addition, Cryptosporidium species and genotypes typical of other groups of vertebrates have also been identified. This review summarizes the history, biology, pathology and clinical manifestations, as well as the transmission, prevalence and molecular epidemiology of Cryptosporidium in wild, cultured and ornamental fish from both marine and freshwater environments. Finally, the potential role of piscine hosts as a reservoir of zoonotic Cryptosporidium species is also discussed.
Collapse
Affiliation(s)
- Seila Couso-Pérez
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782Santiago de Compostela, A Coruña, Spain
| | - Elvira Ares-Mazás
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782Santiago de Compostela, A Coruña, Spain
| | - Hipólito Gómez-Couso
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782Santiago de Compostela, A Coruña, Spain
- Institute of Research on Chemical and Biological Analysis, University of Santiago de Compostela, 15782Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
12
|
Development and evaluation of a molecular based protocol for detection and quantification of Cryptosporidium spp. In wastewater. Exp Parasitol 2022; 234:108216. [DOI: 10.1016/j.exppara.2022.108216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
13
|
Tuholske C, Halpern BS, Blasco G, Villasenor JC, Frazier M, Caylor K. Mapping global inputs and impacts from of human sewage in coastal ecosystems. PLoS One 2021; 16:e0258898. [PMID: 34758036 PMCID: PMC8580218 DOI: 10.1371/journal.pone.0258898] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022] Open
Abstract
Coastal marine ecosystems face a host of pressures from both offshore and land-based human activity. Research on terrestrial threats to coastal ecosystems has primarily focused on agricultural runoff, specifically showcasing how fertilizers and livestock waste create coastal eutrophication, harmful algae blooms, or hypoxic or anoxic zones. These impacts not only harm coastal species and ecosystems but also impact human health and economic activities. Few studies have assessed impacts of human wastewater on coastal ecosystems and community health. As such, we lack a comprehensive, fine-resolution, global assessment of human sewage inputs that captures both pathogens and nutrient flows to coastal waters and the potential impacts on coastal ecosystems. To address this gap, we use a new high-resolution geospatial model to measure and map nitrogen (N) and pathogen-fecal indicator organisms (FIO)-inputs from human sewage for ~135,000 watersheds globally. Because solutions depend on the source, we separate nitrogen and pathogen inputs from sewer, septic, and direct inputs. Our model indicates that wastewater adds 6.2Tg nitrogen into coastal waters, which is approximately 40% of total nitrogen from agriculture. Of total wastewater N, 63% (3.9Tg N) comes from sewered systems, 5% (0.3Tg N) from septic, and 32% (2.0Tg N) from direct input. We find that just 25 watersheds contribute nearly half of all wastewater N, but wastewater impacts most coastlines globally, with sewered, septic, and untreated wastewater inputs varying greatly across watersheds and by country. Importantly, model results find that 58% of coral and 88% of seagrass beds are exposed to wastewater N input. Across watersheds, N and FIO inputs are generally correlated. However, our model identifies important fine-grained spatial heterogeneity that highlight potential tradeoffs and synergies essential for management actions. Reducing impacts of nitrogen and pathogens on coastal ecosystems requires a greater focus on where wastewater inputs vary across the planet. Researchers and practitioners can also overlay these global, high resolution, wastewater input maps with maps describing the distribution of habitats and species, including humans, to determine the where the impacts of wastewater pressures are highest. This will help prioritize conservation efforts.Without such information, coastal ecosystems and the human communities that depend on them will remain imperiled.
Collapse
Affiliation(s)
- Cascade Tuholske
- Department of Geography, University of California, Santa Barbara, CA, United States of America
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, United States of America
- Center for International for International Earth Science Information Network, the Columbia Climate School and its Earth Institute, Columbia University, Palisades, NY, United States of America
- * E-mail:
| | - Benjamin S. Halpern
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, United States of America
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, United States of America
| | - Gordon Blasco
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, United States of America
| | - Juan Carlos Villasenor
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, United States of America
| | - Melanie Frazier
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, United States of America
| | - Kelly Caylor
- Department of Geography, University of California, Santa Barbara, CA, United States of America
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, United States of America
| |
Collapse
|
14
|
Okaali DA, Kroeze C, Medema G, Burek P, Murphy H, Tumwebaze IK, Rose JB, Verbyla ME, Sewagudde S, Hofstra N. Modelling rotavirus concentrations in rivers: Assessing Uganda's present and future microbial water quality. WATER RESEARCH 2021; 204:117615. [PMID: 34492362 DOI: 10.1016/j.watres.2021.117615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Faecal pathogens can be introduced into surface water through open defecation, illegal disposal and inadequate treatment of faecal sludge and wastewater. Despite sanitation improvements, poor countries are progressing slowly towards the United Nation's Sustainable Development Goal 6 by 2030. Sanitation-associated pathogenic contamination of surface waters impacted by future population growth, urbanization and climate change receive limited attention. Therefore, a model simulating human rotavirus river inputs and concentrations was developed combining population density, sanitation coverage, rotavirus incidence, wastewater treatment and environmental survival data, and applied to Uganda. Complementary surface runoff and river discharge data were used to produce spatially explicit rotavirus outputs for the year 2015 and for two scenarios in 2050. Urban open defecation contributed 87%, sewers 9% and illegal faecal sludge disposal 3% to the annual 15.6 log10 rotavirus river inputs in 2015. Monthly concentrations fell between -3.7 (Q5) and 2.6 (Q95) log10 particles per litre, with 1.0 and 2.0 median and mean log10 particles per litre, respectively. Spatially explicit outputs on 0.0833 × 0.0833° grids revealed hotspots as densely populated urban areas. Future population growth, urbanization and poor sanitation were stronger drivers of rotavirus concentrations in rivers than climate change. The model and scenario analysis can be applied to other locations.
Collapse
Affiliation(s)
- Daniel A Okaali
- Water Systems and Global Change Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Gertjan Medema
- KWR Watercycle Research Institute, Nieuwegein, The Netherlands
| | - Peter Burek
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Heather Murphy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Innocent K Tumwebaze
- School of Architecture, Building & Civil Engineering, Loughborough University, Loughborough, United Kingdom
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Matthew E Verbyla
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA, USA
| | - Sowed Sewagudde
- Directorate of Water Resources Management, Ministry of Water and Environment, Kampala, Uganda
| | - Nynke Hofstra
- Water Systems and Global Change Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
15
|
Zini LB, Lorenzini R, Camelo LGG, Gutterres M. Occurrence of Cryptosporidium and Giardia in surface water supply from 2016 to 2020 in South Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:496. [PMID: 34282498 DOI: 10.1007/s10661-021-09280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The objectives of this research are to evaluate Giardia and Cryptosporidium contamination in surface water supply in Rio Grande do Sul (RS) State in South Brazil in the years 2016 to 2020, assess seasonality, and to infer the population that may have been exposed to these protozoa through drinking water based on drinking water treatment efficiency. Data were obtained through the drinking water surveillance national information system. From 204 DWT plants in the state, 66 have been analyzed for protozoa. A total of 2304 analyses of protozoa in raw water were evaluated, of which 223 had both Giardia spp. cysts and/or Cryptosporidium spp. oocysts in concentrations that varied from 0.1 to 21.5/L. A total of 2,712,125 people from 48 cities were at risk of having the presence of pathogenic protozoa in their drinking water. The probability of finding these protozoa was higher in winter. Giardia cysts were more likely to be found in a period without rain, suggesting that sewage was the main source of contamination. It is concluded that the springs of Rio Grande do Sul are impacted and the circulation of pathogenic protozoa through the territory is endemic with a probable source of contamination to sewage and livestock activity.
Collapse
Affiliation(s)
- Luciano Barros Zini
- Chemical Engineering Department, Federal University of Rio Grande do Sul, Luiz Englert s/nº, downtown, Porto Alegre, RS, 90040-040, Brazil.
- Health State Secretary of Rio Grande do Sul, Environmental Vigilance, Av. Ipiranga, Porto Alegre, RS, 5400, 90610-000, Brazil.
| | - Rafaela Lorenzini
- Health State Secretary of Rio Grande do Sul, Environmental Vigilance, Av. Ipiranga, Porto Alegre, RS, 5400, 90610-000, Brazil
| | - Luana Gabriele Gomes Camelo
- Health State Secretary of Rio Grande do Sul, Environmental Vigilance, Av. Ipiranga, Porto Alegre, RS, 5400, 90610-000, Brazil
| | - Mariliz Gutterres
- Chemical Engineering Department, Federal University of Rio Grande do Sul, Luiz Englert s/nº, downtown, Porto Alegre, RS, 90040-040, Brazil
| |
Collapse
|
16
|
Vega-Rodríguez MA, Pérez CJ, Reder K, Flörke M. A stage-based approach to allocating water quality monitoring stations based on the WorldQual model: The Jubba River as a case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144162. [PMID: 33383304 DOI: 10.1016/j.scitotenv.2020.144162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Ensuring adequate freshwater quality is an important aspect of integrated environmental management and sustainable development. One contribution towards this end is to monitor the water quality of river basins. An important issue in constructing a water quality monitoring network is how to allocate the stations. This is usually done by using in situ measurements of pollutants together with other information. A stage-based optimization approach has been developed to find the optimal sites to allocate the monitoring stations. The proposed approach constructs a network in a sequence of stages without the need for in situ pollution measurements. Instead, it uses pollutant estimates from the WorldQual model together with other social and hydrological criteria. The approach is computationally efficient and provides an ordered list of stations that can be used to initialize or augment a water quality network. This is especially relevant for consideration by developing countries since, with this approach, they can get an overview of their river basins, and then prioritize the initial distributions of the networks. The approach was applied successfully to the 741,751 km2 of the Jubba River basin, but it is applicable to river basins of any size.
Collapse
Affiliation(s)
- Miguel A Vega-Rodríguez
- Escuela Politécnica, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain.
| | - Carlos J Pérez
- Facultad de Veterinaria, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain.
| | - Klara Reder
- Fraunhofer Institute for Energy Economics and Energy System Technology, Königstor 59, 34119 Kassel, Germany.
| | - Martina Flörke
- Hydrological Engineering and Water Resources Management, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
17
|
Huang Q, Yang L, Li B, Du H, Zhao F, Han L, Wang Q, Deng Y, Xiao G, Wang D. Cryptosporidium spp. and Giardia duodenalis emissions from humans and animals in the Three Gorges Reservoir in Chongqing, China. PeerJ 2020; 8:e9985. [PMID: 33194374 PMCID: PMC7646300 DOI: 10.7717/peerj.9985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022] Open
Abstract
Cryptosporidium spp. and Giardia duodenalis are two waterborne protozoan parasites that can cause diarrhea. Human and animal feces in surface water are a major source of these pathogens. This paper presents a GloWPa-TGR-Crypto model that estimates Cryptosporidium and G. duodenalis emissions from human and animal feces in the Three Gorges Reservoir (TGR), and uses scenario analysis to predict the effects of sanitation, urbanization, and population growth on oocyst and cyst emissions for 2050. Our model estimated annual emissions of 1.6 × 1015 oocysts and 2.1 × 1015 cysts from human and animal feces, respectively. Humans were the largest contributors of oocysts and cysts, followed by pigs and poultry. Cities were hot-spots for human emissions, while districts with high livestock populations accounted for the highest animal emissions. Our model was the most sensitive to oocyst excretion rates. The results indicated that 74% and 87% of total emissions came from urban areas and humans, respectively, and 86% of total human emissions were produced by the urban population. The scenario analysis showed a potential decrease in oocyst and cyst emissions with improvements in urbanization, sanitation, wastewater treatment, and manure management, regardless of population increase. Our model can further contribute to the understanding of environmental pathways, the risk assessment of Cryptosporidium and Giardia pollution, and effective prevention and control strategies that can reduce the outbreak of waterborne diseases in the TGR and other similar watersheds.
Collapse
Affiliation(s)
- Qian Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Ling Yang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Bo Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Huihui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China.,Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Lin Han
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China.,Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Qilong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Yunjia Deng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China.,Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China.,Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
García-Gil Á, Abeledo-Lameiro MJ, Gómez-Couso H, Marugán J. Kinetic modeling of the synergistic thermal and spectral actions on the inactivation of Cryptosporidium parvum in water by sunlight. WATER RESEARCH 2020; 185:116226. [PMID: 32738603 DOI: 10.1016/j.watres.2020.116226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Water contamination with the enteroprotozoan parasite Cryptosporidium is a current challenge worldwide. Solar water disinfection (SODIS) has been proved as a potential alternative for its inactivation, especially at household level in low-income environments. This work presents the first comprehensive kinetic model for the inactivation of Cryptosporidium parvum oocysts by sunlight that, based on the mechanism of the process, is able to describe not only the individual thermal and spectral actions but also their synergy. Model predictions are capable of estimating the required solar exposure to achieve the desired level of disinfection under variable solar spectral irradiance and environmental temperature conditions for different locations worldwide. The thermal contribution can be successfully described by a modified Arrhenius equation while photoinactivation is based on a series-event mechanistic model. The wavelength-dependent spectral effect is modeled by means of the estimation of the C. parvum extinction coefficients and the determination of the quantum yield of the inactivation process. Model predictions show a 3.7% error with respect to experimental results carried out under a wide range of temperature (30 to 45 °C) and UV irradiance (0 to 50 W·m-2). Furthermore, the model was validated in three scenarios in which the spectral distribution radiation was modified using different plastic materials common in SODIS devices, ensuring accurate forecasting of inactivation rates for real conditions.
Collapse
Affiliation(s)
- Ángela García-Gil
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C / Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - María Jesús Abeledo-Lameiro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain; Research Institute on Chemical and Biological Analysis, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| | - Hipólito Gómez-Couso
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain; Research Institute on Chemical and Biological Analysis, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| | - Javier Marugán
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C / Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
19
|
Robertson LJ, Johansen ØH, Kifleyohannes T, Efunshile AM, Terefe G. Cryptosporidium Infections in Africa-How Important Is Zoonotic Transmission? A Review of the Evidence. Front Vet Sci 2020; 7:575881. [PMID: 33195574 PMCID: PMC7580383 DOI: 10.3389/fvets.2020.575881] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 01/25/2023] Open
Abstract
Cryptosporidium, a protozoan parasite in the phylum Apicomplexa, is the etiological agent of cryptosporidiosis, an intestinal infection characterized by profuse watery diarrhea. Over 30 species of Cryptosporidium are recognized, some host specific whereas others infect a broader host range. Cryptosporidium hominis and Cryptosporidium parvum are the species most commonly associated with human infection; C. hominis is largely associated only with human infections, but C. parvum is also associated with infection in animals, especially young ruminants. In some regions, cryptosporidiosis is a serious veterinary problem, particularly for calves, and lambs. Many outbreaks of human cryptosporidiosis have been associated with zoonotic transmission following contact with infected animals. In Africa, where cryptosporidiosis is a major contributor to pediatric morbidity and mortality, evidence suggests transmission is principally anthroponotic. Given the frequent close contact between humans and animals in Africa, the apparent predominance of human-to-human transmission is both interesting and puzzling. In this article, after a brief "text book" introduction to the parasite, we consider in separate sections the different aspects of relevance to Cryptosporidium transmission in African countries, describing different aspects of the various species and subtypes in human and animal infections, considering livestock management practices in different African countries, and looking for any characteristic "hot spots" where zoonotic transmission has apparently occurred. Studies where transmission networks have been investigated are particularly relevant. Finally, in a separate section, we try to gather these different strands of evidence together in order to assess the reasons behind the apparent predominance of anthroponotic transmission in Africa. Reviewing the available evidence provides an opportunity to re-think transmission pathways, not only in Africa but also elsewhere, and also to pose questions. Does the predominance of human-to-human transmission in Africa reflect a relative absence of zoonotic C. parvum in African livestock? Are Africans less susceptible to zoonotic Cryptosporidium infection, perhaps resulting from early immunostimulation by C. hominis or due to inherent genetic traits? Is the African environment-in all its variety-simply more detrimental to oocyst survival? Will the so-called hypertransmissible subtypes, currently relatively rare in Africa, be introduced from Europe or elsewhere, and, if so, will they fade out or establish and spread? Our intention with this manuscript is not only to summarize and consolidate diverse data, thereby providing an overview of data gaps, but also to provide food for thought regarding transmission of a parasite that continues to have a considerable impact on both human and animal health.
Collapse
Affiliation(s)
- Lucy J. Robertson
- Parasitology Laboratory, Department of Paraclinical Science, Faculty of Veterinary Medicine Norwegian University of Life Sciences, Oslo, Norway
| | - Øystein Haarklau Johansen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Tsegabirhan Kifleyohannes
- Parasitology Laboratory, Department of Paraclinical Science, Faculty of Veterinary Medicine Norwegian University of Life Sciences, Oslo, Norway
- Department of Veterinary Basic and Diagnostic Sciences, College of Veterinary Medicine, Mekelle University, Mekelle, Ethiopia
| | - Akinwale Michael Efunshile
- Department of Medical Microbiology, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
- Department of Medical Microbiology, Ebonyi State University, Abakaliki, Nigeria
| | - Getachew Terefe
- College of Veterinary Medicine and Agriculture, Department of Pathology and Parasitology, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
20
|
Géba E, Aubert D, Durand L, Escotte S, La Carbona S, Cazeaux C, Bonnard I, Bastien F, Palos Ladeiro M, Dubey JP, Villena I, Geffard A, Bigot-Clivot A. Use of the bivalve Dreissena polymorpha as a biomonitoring tool to reflect the protozoan load in freshwater bodies. WATER RESEARCH 2020; 170:115297. [PMID: 31756612 DOI: 10.1016/j.watres.2019.115297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Cryptosporidium parvum, Toxoplasma gondii and Giardia duodenalis are worldwide pathogenic protozoa recognized as major causal agents of waterborne disease outbreaks. To overcome the normative process (ISO 15553/2006) limitations of protozoa detection in aquatic systems, we propose to use the zebra mussel (Dreissena polymorpha), a freshwater bivalve mollusc, as a tool for biomonitoring protozoan contamination. Mussels were exposed to three concentrations of C. parvum oocysts, G. duodenalis cysts or T. gondii oocysts for 21 days followed by 21 days of depuration in clear water. D. polymorpha accumulated protozoa in its tissues and haemolymph. Concerning T. gondii and G. duodenalis, the percentage of protozoa positive mussels reflected the contamination level in water bodies. As for C. parvum detection, oocysts did accumulate in mussel tissues and haemolymph, but in small quantities, and the limit of detection was high (between 50 and 100 oocysts). Low levels of T. gondii (1-5 oocysts/mussel) and G. duodenalis (less than 1 cyst/mussel) were quantified in D. polymorpha tissues. The ability of zebra mussels to reflect contamination by the three protozoa for weeks after the contamination event makes them a good integrative matrix for the biomonitoring of aquatic ecosystems.
Collapse
Affiliation(s)
- Elodie Géba
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France; EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | - Dominique Aubert
- EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | - Loïc Durand
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50000, Saint-Lô, France
| | - Sandy Escotte
- EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | | | - Catherine Cazeaux
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50000, Saint-Lô, France
| | - Isabelle Bonnard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Fanny Bastien
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Mélissa Palos Ladeiro
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Jitender P Dubey
- United States Department Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, building 1001, Beltsville, MD, 20705-2350, USA
| | - Isabelle Villena
- EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | - Alain Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Aurélie Bigot-Clivot
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France.
| |
Collapse
|
21
|
Wang M, Tang T, Burek P, Havlík P, Krisztin T, Kroeze C, Leclère D, Strokal M, Wada Y, Wang Y, Langan S. Increasing nitrogen export to sea: A scenario analysis for the Indus River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133629. [PMID: 31756824 DOI: 10.1016/j.scitotenv.2019.133629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The Indus River Basin faces severe water quality degradation because of nutrient enrichment from human activities. Excessive nutrients in tributaries are transported to the river mouth, causing coastal eutrophication. This situation may worsen in the future because of population growth, economic development, and climate change. This study aims at a better understanding of the magnitude and sources of current (2010) and future (2050) river export of total dissolved nitrogen (TDN) by the Indus River at the sub-basin scale. To do this, we implemented the MARINA 1.0 model (Model to Assess River Inputs of Nutrients to seAs). The model inputs for human activities (e.g., agriculture, land use) were mainly from the GLOBIOM (Global Biosphere Management Model) and EPIC (Environmental Policy Integrated Model) models. Model inputs for hydrology were from the Community WATer Model (CWATM). For 2050, three scenarios combining Shared Socio-economic Pathways (SSPs 1, 2 and 3) and Representative Concentration Pathways (RCPs 2.6 and 6.0) were selected. A novelty of this study is the sub-basin analysis of future N export by the Indus River for SSPs and RCPs. Result shows that river export of TDN by the Indus River will increase by a factor of 1.6-2 between 2010 and 2050 under the three scenarios. >90% of the dissolved N exported by the Indus River is from midstream sub-basins. Human waste is expected to be the major source, and contributes by 66-70% to river export of TDN in 2050 depending on the scenarios. Another important source is agriculture, which contributes by 21-29% to dissolved inorganic N export in 2050. Thus a combined reduction in both diffuse and point sources in the midstream sub-basins can be effective to reduce coastal water pollution by nutrients at the river mouth of Indus.
Collapse
Affiliation(s)
- Mengru Wang
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands.
| | - Ting Tang
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 - A-2361, Laxenburg, Austria
| | - Peter Burek
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 - A-2361, Laxenburg, Austria
| | - Petr Havlík
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 - A-2361, Laxenburg, Austria
| | - Tamás Krisztin
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 - A-2361, Laxenburg, Austria
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands
| | - David Leclère
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 - A-2361, Laxenburg, Austria
| | - Maryna Strokal
- Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands
| | - Yoshihide Wada
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 - A-2361, Laxenburg, Austria
| | - Yaoping Wang
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, United States of America
| | - Simon Langan
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 - A-2361, Laxenburg, Austria; International Water Management Institute, PO Box 2075, Colombo, Sri Lanka
| |
Collapse
|
22
|
Zueter AM, Hijjawi NS, Hamadeneh KN, Al-Sheyab MM, Hatamleh AM. Cryptosporidiosis among Hemodialysis Patients in Jordan: First Preliminary Screening Surveillance. Trop Med Infect Dis 2019; 4:E131. [PMID: 31635249 PMCID: PMC6958476 DOI: 10.3390/tropicalmed4040131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Few studies have reported the incidence of cryptosporidiosis among hemodialysis patients worldwide. Currently many molecular and immunological assays have been developed for the sensitive diagnosis of cryptosporidiosis, but still, the microscopic detection of the parasitic infective stage (oocysts) in stool specimens using modified acid stain is regarded as a reliable sensitive technique which is widely used in many clinical labs. In the present study, a total of 133 stool samples were collected from hemodialysis patients and were screened for Cryptosporidium oocyst using formalin-ether concentration and modified acid-fast staining technique. Clinical and demographic data were also collected and analyzed. Cryptosporidium oocysts were recovered in 15/133 (11%) of the investigated hemodialysis patients. The age of patients ranged from 25 to 80 years (mean: 57.84 ± 12.22). Most of the Cryptosporidium-positive cases were recovered from males (73.7%) residing in rural villages in Irbid city (86.6%). The most repeatedly reported symptoms in the Cryptosporidium-positive patients were gastrointestinal symptoms, including diarrhea (15%), nausea (24%), abdominal pain (23%) and bloating (17%), in addition to general fatigue (32%) and weight loss (19%). No statistically significant associations for certain clinical symptoms or risk factors were found. The present study is the first preliminary study in Jordan that provided a brief screening for the incidence of cryptosporidiosis among hemodialysis patients.
Collapse
Affiliation(s)
- AbdelRahman M Zueter
- Department of Medical Laboratory Sciences, The Hashemite University, Zarqa 13133, Jordan.
| | - Nawal S Hijjawi
- Department of Medical Laboratory Sciences, The Hashemite University, Zarqa 13133, Jordan.
| | - Khaled N Hamadeneh
- Nephrology Department, King Hussein Medical Center, Amman 11118, Jordan.
| | - Maysa M Al-Sheyab
- Medical Microbiology Department, Prince Rashed Bin AL-Hassan Military Hospital, Irbid 21110, Jordan.
| | - Amal M Hatamleh
- Medical Hematology Department, Prince Rashed Bin AL-Hassan Military Hospital, Irbid 21110, Jordan.
| |
Collapse
|