1
|
Huang Z, Gustave W, Bai S, Li Y, Li B, Elçin E, Jiang B, Jia Z, Zhang X, Shaheen SM, He F. Challenges and opportunities in commercializing whole-cell bioreporters in environmental application. ENVIRONMENTAL RESEARCH 2024; 262:119801. [PMID: 39147190 DOI: 10.1016/j.envres.2024.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Since the initial introduction of whole-cell bioreporters (WCBs) nearly 30 years ago, their high sensitivity, selectivity, and suitability for on-site detection have rendered them highly promising for environmental monitoring, medical diagnosis, food safety, biomanufacturing, and other fields. Especially in the environmental field, the technology provides a fast and efficient way to assess the bioavailability of pollutants in the environment. Despite these advantages, the technology has not been commercialized. This lack of commercialization is confusing, given the broad application prospects of WCBs. Over the years, numerous research papers have focused primarily on enhancing the sensitivity and selectivity of WCBs, with little attention paid to their wider commercial applications. So far, there is no a critical review has been published yet on this topic. Therefore, in this article we critically reviewed the research progress of WCBs over the past three decades, assessing the performance and limitations of current systems to understand the barriers to commercial deployment. By identifying these obstacles, this article provided researchers and industry stakeholders with deeper insights into the challenges hindering market entry and inspire further research toward overcoming these barriers, thereby facilitating the commercialization of WCBs as a promising technology for environmental monitoring.
Collapse
Affiliation(s)
- Zefeng Huang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, 4912, Bahamas
| | - Shanshan Bai
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yongshuo Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China; Meadows Center for Water and the Environment, Texas State University, San Marcos, TX, 78666, USA
| | - Evrim Elçin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, 09970, Turkey
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Environmental Sciences, Department of Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Rotureau E, Pagnout C, Duval JFL. Physicochemical Rationale of Matrix Effects Involved in the Response of Hydrogel-Embedded Luminescent Metal Biosensors. BIOSENSORS 2024; 14:552. [PMID: 39590011 PMCID: PMC11591670 DOI: 10.3390/bios14110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
There is currently a critical need for understanding how the response and activity of whole-cell bacterial reporters positioned in a complex biological or environmental matrix are impacted by the physicochemical properties of their micro-environment. Accordingly, a comprehensive analysis of the bioluminescence response of Cd(II)-inducible PzntA-luxCDABE Escherichia coli biosensors embedded in silica-based hydrogels is reported to decipher how metal bioavailability, cell photoactivity and ensuing light bioproduction are impacted by the hydrogel environment and the associated matrix effects. The analysis includes the account of (i) Cd speciation and accumulation in the host hydrogels, in connection with their reactivity and electrostatic properties, and (ii) the reduced bioavailability of resources for the biosensors confined (deep) inside the hydrogels. The measurements of the bioluminescence response of the Cd(II) inducible-lux biosensors in both hydrogels and free-floating cell suspensions are completed by those of the constitutive rrnB P1-luxCDABE E. coli so as to probe cell metabolic activity in these two situations. The approach contributes to unraveling the connections between the electrostatic hydrogel charge, the nutrient/metal bioavailabilities and the resulting Cd-triggered bioluminescence output. Biosensors are hosted in hydrogels with thickness varying between 0 mm (the free-floating cell situation) and 1.6 mm, and are exposed to total Cd concentrations from 0 to 400 nM. The partitioning of bioavailable metals at the hydrogel/solution interface following intertwined metal speciation, diffusion and Boltzmann electrostatic accumulation is addressed by stripping chronopotentiometry. In turn, we detail how the bioluminescence maxima generated by the Cd-responsive cells under all tested Cd concentration and hydrogel thickness conditions collapse remarkably well on a single plot featuring the dependence of bioluminescence on free Cd concentration at the individual cell level. Overall, the construction of this master curve integrates the contributions of key and often overlooked processes that govern the bioavailability properties of metals in 3D matrices. Accordingly, the work opens perspectives for quantitative and mechanistic monitoring of metals by biosensors in environmental systems like biofilms or sediments.
Collapse
Affiliation(s)
- Elise Rotureau
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France;
| | | | | |
Collapse
|
3
|
Ma Y, Li M, Qi X, Cao Y, Zhang W, Gao G, Tang B. A Multimode Optical Sensor for Selective and Sensitive Detection of Harmful Heavy Metal Cr(VI) in Fresh Water and Sea Water. Anal Chem 2024; 96:8705-8712. [PMID: 38717967 DOI: 10.1021/acs.analchem.4c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Water pollution originating from heavy metals has shown great impacts on the ecological environment and human health due to their extremely low biodegradability. Hexavalent chromium Cr(VI), as one harmful heavy metal with strong oxidation, high biological permeability, and high carcinogenicity, is becoming an increasingly serious threat to human health. Therefore, conveniently but accurately, monitoring the Cr(VI) level in water to maintain its normal level and ensuring the stability of the ecosystem and human health become very valuable. However, most of these heavy metal sensors reported are turn-off type single-emission sensors. In this work, a ratiometric fluorescence/colorimetry/smartphone triple-mode turn-on optical sensor for Cr(VI) was developed based on a multifunctional metal-organic framework platform. The detection limits for these three mutual verification modes were only 1.28, 4.89, and 68.4 nM, respectively. Additionally, the color changes of the detection system under sunlight can also be observed directly by the naked eye. The accuracy and practicability of this multimode sensor were further proved by the detection of Cr(VI) in actual water and seawater samples, and the recovery rate ranged from 97.308 to 104.041%.
Collapse
Affiliation(s)
- Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengnan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xin Qi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanyu Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wanting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Guorui Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P. R. China
| |
Collapse
|
4
|
Zhang Q, Charles PD, Bendif EM, Hester SS, Mohammad S, Rickaby REM. Stimulating and toxic effect of chromium on growth and photosynthesis of a marine chlorophyte. THE NEW PHYTOLOGIST 2024; 241:676-686. [PMID: 37974482 DOI: 10.1111/nph.19376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Marine phytoplankton can interchange trace metals in various biochemical functions, particularly under metal-limiting conditions. Here, we investigate the stimulating and toxicity effect of chromium (Cr) on a marine Chlorophyceae Osetreococcus tauri under Fe-replete and Fe-deficient conditions. We determined the growth, photosynthesis, and proteome expressions of Osetreococcus tauri cultured under different Cr and Fe concentrations. In Fe-replete conditions, the presence of Cr(VI) stimulated significantly the growth rate and the maximum yield of photochemistry of photosystem II (Fv /Fm ) of the phytoplankton, while the functional absorption cross-section of photosystem II (σPSII ) did not change. Minor additions of Cr(VI) partially rescued phytoplankton growth under Fe-limited conditions. Proteomic analysis of this alga grown in Fe-replete normal and Fe-replete with Cr addition media (10 μM Cr) showed that the presence of Cr significantly decreased the expression of phosphate-transporting proteins and photosynthetic proteins, while increasing the expression of proteins related to carbon assimilation. Cr can stimulate the growth and photosynthesis of O. tauri, but the effects are dependent on both the Cr(VI) concentration and the availability of Fe. The proteomic results further suggest that Cr(VI) addition might significantly increase starch production and carbon fixation.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau (CORE), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Tang Qi Road, Zhuhai, 519000, China
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Philip D Charles
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - El Mahdi Bendif
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski, Rimouski, G5L 3A1, QC, Canada
| | - Svenja S Hester
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Shabaz Mohammad
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| |
Collapse
|
5
|
Nie M, Cai M, Wu C, Li S, Chen S, Shi G, Wang X, Hu C, Xie J, Tang Y, Zhang H, Zhao X. Selenium-mediated Cr(VI) reduction and SeNPs synthesis accelerated Bacillus cereus SES to remediate Cr contamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131713. [PMID: 37301074 DOI: 10.1016/j.jhazmat.2023.131713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Microbial biotransformation of Cr(VI) is a sustainable approach to reduce Cr(VI) toxicity and remediate Cr(VI) contamination. In this study, Bacillus cereus SES with the capability of reducing both Cr(VI) and Se(IV) was isolated, and the effect of Se supplementation on Cr(VI) reduction by Bacillus cereus SES was investigated. Se(IV) addition enabled 2.6-fold faster Cr(VI) reduction, while B. cereus SES reduced 96.96% Se(IV) and produced more selenium nanoparticles (SeNPs) in the presence of Cr(VI). Co-reduction products of B. cereus SES on Cr(VI) and Se(IV) were SeNPs adsorbed with Cr(III). The relevant mechanisms were further revealed by proteomics. Se(IV) supplementation mediated the synthesis of Cr(VI) reductants and stress-resistant substances, thus enhancing Cr(VI) resistance and promoting Cr(VI) reduction. Meanwhile, high Se(IV) reduction rate was associated with Cr(VI)-induced electron transport processes, and Cr(VI) mediated the up-regulation of flagellar assembly, protein export and ABC transporters pathways to synthesis and export more SeNPs. Furthermore, Se combined with B. cereus SES had the potential to reduce the toxicity of Cr(VI) via reducing the bioavailability of Cr and improving the bioavailability of Se in soil. Results suggested that Se could be an efficient strategy to enhance the remediation of B. cereus SES on Cr contamination.
Collapse
Affiliation(s)
- Min Nie
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming 365004, China
| | - Miaomiao Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chihhung Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming 365004, China
| | - Shiqian Li
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Suhua Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang 330063, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chengxiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanni Tang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Arik N, Elcin E, Tezcaner A, Oktem HA. Optimization of whole-cell bacterial bioreporter immobilization on electrospun cellulose acetate (CA) and polycaprolactone (PCL) fibers for arsenic detection. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:666. [PMID: 37178337 DOI: 10.1007/s10661-023-11227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023]
Abstract
Arsenic contamination is a critical global problem, and its widespread environmental detection is becoming a prominent issue. Herein, electrospun fibers of cellulose acetate (CA) and polycaprolactone (PCL) were successfully fabricated and used as the support material for immobilization of arsenic-sensing bacterial bioreporter for the first time. To date, no attempt has been made to immobilize fluorescent whole-cell bioreporter cells on electrospun fibers for arsenic detection. CA and PCL electrospun fibers were fabricated via traditional electrospinning technique and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and contact angle meter. Following immobilization of the bacterial bioreporter cells, the immobilized bacteria were also characterized by viability assay using AlamarBlue. The effects of growth phase and cell concentration on the fluorescence response of fiber-immobilized arsenic bioreporters to arsenic were also investigated. After immobilization of arsenic bioreporters on 10 wt% PCL fiber, 91% of bacterial cells remained viable, while this value was 55.4% for cells immobilized on 12.5 wt% CA fiber. Bioreporter cells in the exponential growth phase were shown to be more sensitive to arsenic compared to aged cells. While both the electropsun PCL- and CA-immobilized bioreporters successfully detected 50 and 100 µg/L of arsenite (As (III)) concentrations, the PCL-immobilized bioreporter showed better fluorescence performance which should be investigated in future studies. This study helps to fill some gaps in the literature and demonstrates the potential for using electrospun fiber-immobilized arsenic whole-cell bioreporter for arsenic detection in water.
Collapse
Affiliation(s)
- Nehir Arik
- Department of Molecular Biology and Genetics, Middle East Technical University, 06800, Ankara, Turkey
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Aydın Adnan Menderes University, 09970, Aydın, Turkey
| | - Aysen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Hüseyin Avni Oktem
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
7
|
Zhu Y, Elcin E, Jiang M, Li B, Wang H, Zhang X, Wang Z. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Front Chem 2022; 10:1018124. [PMID: 36247665 PMCID: PMC9561917 DOI: 10.3389/fchem.2022.1018124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination has become increasingly a critical global environmental issue that threatens human and ecosystems’ health. Monitoring and risk assessment of toxic pollutants in water bodies is essential to identifying water pollution treatment needs. Compared with the traditional monitoring approaches, environmental biosensing via whole-cell bioreporters (WCBs) has exhibited excellent capabilities for detecting bioavailability of multiple pollutants by providing a fast, simple, versatile and economical way for environmental risk assessment. The performance of WCBs is determined by its elements of construction, such as host strain, regulatory and reporter genes, as well as experimental conditions. Previously, numerous studies have focused on the design and construction of WCB rather than improving the detection process and commercialization of this technology. For investigators working in the environmental field, WCB can be used to detect pollutants is more important than how they are constructed. This work provides a review of the development of WCBs and a brief introduction to genetic construction strategies and aims to summarize key studies on the application of WCB technology in detection of water contaminants, including organic pollutants and heavy metals. In addition, the current status of commercialization of WCBs is highlighted.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mengyuan Jiang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
- *Correspondence: Xiaokai Zhang,
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
She J, Liu J, He H, Zhang Q, Lin Y, Wang J, Yin M, Wang L, Wei X, Huang Y, Chen C, Lin W, Chen N, Xiao T. Microbial response and adaption to thallium contamination in soil profiles. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127080. [PMID: 34523503 DOI: 10.1016/j.jhazmat.2021.127080] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Thallium (Tl) is a trace metal with high toxicity. Comprehensive investigation of spatial distribution of Tl and microorganism is still limited in soils from mining area. In this study, 16S rRNA sequencing and network analysis were used for deciphering the co-occurrence patterns of bacterial communities in two different types of soil profiles around a typical Tl-bearing pyrite mine. The results showed that geochemical parameters (such as pH, S, Tl, Fe and TOM) were the driving forces for shaping the vertical distribution of microbial community. According to network analysis, a wide diversity of microbial modules were present in both soil profiles and affected by depth, significantly associated with variations in Tl geochemical fractionation. Phylogenetic information further unveiled that the microbial modules were mainly dominated by Fe reducing bacteria (FeRB), Fe oxidizing bacteria (FeOB), S oxidizing bacteria and Mn reducing bacteria. The results of metagenome indicated that Fe, Mn and S cycle in soil are closely involved in the biogeochemical cycle of Tl. The findings of co-occurrence patterns in the bacterial network and correlation between microorganisms and different geochemical fractions of Tl may benefit the strategy of bioremediation of Tl-contaminated soils with indigenous microbes.
Collapse
Affiliation(s)
- Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yeliang Huang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Changzhi Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenli Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Nan Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
9
|
Shangguan Y, Zheng R, Ge Q, Feng X, Wang R, Zhou Y, Luo S, Duan L, Lin J, Chen H. Interfacial engineering of CuFeS 2 quantum dots via platinum decoration with enhanced Cr(VI) reduction dynamics under UV-Vis-NIR radiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126701. [PMID: 34339984 DOI: 10.1016/j.jhazmat.2021.126701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Configuring reactive and stable catalytic interfaces is crucial to design efficient photocatalysts for Cr(VI) reduction. Herein, via the platinum decoration approach based on interfacial engineering, we developed an effective catalytic interface within novel semiconducting chalcopyrite quantum dots (Pt/CuFeS2 QDs). Benefiting from the catalytic merits of the Pt modulated interfacial structure and electronic structure, Pt/CuFeS2 QDs show a broader light absorption capability extending to near-infrared radiation (NIR) range with superior carriers separation performance and faster charge transfer efficiency, which delivers a three-folder faster photocatalytic Cr(VI) reduction efficiency comparing to the original CuFeS2 QDs. Density functional theory (DFT) calculations unravel that Pt atoms prefer to be anchored with the surface S atoms to form a stable interfacial structure with faster electron transfer and Cr(VI) reduction dynamics. This work demonstrates that platinum decoration based on interfacial engineering is an effective strategy to simultaneously modulate the band structure and accelerate the interfacial reaction dynamics for semiconductor photocatalysts, which paves the way for designing highly efficient photocatalysts for light-driven environmental and energy engineering applications.
Collapse
Affiliation(s)
- Yangzi Shangguan
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Renji Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiuyue Ge
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xuezhen Feng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ranhao Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanhao Zhou
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Luo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lele Duan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia Lin
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
10
|
Wang GH, Cheng CY, Tsai TH, Chiang PK, Chung YC. Highly Sensitive Luminescent Bioassay Using Recombinant Escherichia coli Biosensor for Rapid Detection of Low Cr(VI) Concentration in Environmental Water. BIOSENSORS-BASEL 2021; 11:bios11100357. [PMID: 34677313 PMCID: PMC8534196 DOI: 10.3390/bios11100357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/24/2023]
Abstract
In this study, we constructed a recombinant Escherichia coli strain with different promoters inserted between the chromate-sensing regulator chrB and the reporter gene luxAB to sense low hexavalent chromium (Cr(VI)) concentrations (<0.05 mg/L); subsequently, its biosensor characteristics (sensitivity, selectivity, and specificity) for measuring Cr(VI) in various water bodies were evaluated. The luminescence intensity of each biosensor depended on pH, temperature, detection time, coexisting carbon source, coexisting ion, Cr(VI) oxyanion form, Cr(VI) concentration, cell type, and type of medium. Recombinant lux-expressing E. coli with the T7 promoter (T7-lux-E. coli, limit of detection (LOD) = 0.0005 mg/L) had the highest luminescence intensity or was the most sensitive for Cr(VI) detection, followed by E. coli with the T3 promoter (T3-lux-E. coli, LOD = 0.001 mg/L) and that with the SP6 promoter (SP6-lux-E. coli, LOD = 0.005 mg/L). All biosensors could be used to determine whether the Cr(VI) standard was met in terms of water quality, even when using thawing frozen cells as biosensors after 90-day cryogenic storage. The SP6-lux-E. coli biosensor had the shortest detection time (0.5 h) and the highest adaptability to environmental interference. The T7-lux-E. coli biosensor—with the optimal LOD, a wide measurement range (0.0005–0.5 mg/L), and low deviation (−5.0–7.9%) in detecting Cr(VI) from industrial effluents, domestic effluents, and surface water—is an efficient Cr(VI) biosensor. This unprecedented study is to evaluate recombinant lux E. coli with dissimilar promoters for their possible practice in Cr(VI) measurement in water bodies, and the biosensor performance is clearly superior to that of past systems in terms of detection time, LOD, and detection deviation for real water samples.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen 361008, China;
| | - Chiu-Yu Cheng
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan; (C.-Y.C.); (P.-K.C.)
| | - Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Pin-Kuan Chiang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan; (C.-Y.C.); (P.-K.C.)
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan; (C.-Y.C.); (P.-K.C.)
- Correspondence: ; Tel.: +886-22782-1862; Fax: +886-22786-5456
| |
Collapse
|
11
|
Kim K, Chung HY, Kim B, Wong G, Nguyen AQK, Kim S, Kim J. Freezing-Induced Simultaneous Reduction of Chromate and Production of Molecular Iodine: Mechanism, Kinetics, and Practical Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:16204-16211. [PMID: 33125224 DOI: 10.1021/acs.est.0c05322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new method for the concurrent treatment of Cr(VI)-contaminated wastewater and production of the useful I2 chemical was developed. The method is based on the redox reaction between Cr(VI) and I- that occurs when an aqueous wastewater solution containing Cr(VI) and I- is frozen, producing I2 and allowing for the effective removal of Cr. The redox reaction occurs primarily because of the accumulation of Cr(VI), I-, and protons in the ice grain boundaries formed during freezing (i.e., the freeze concentration effect). This effect was verified by confocal Raman spectroscopy and the experiments varying I- concentration and pH. The reduction of Cr(VI) (20 μM) was near complete after freezing at I- concentrations ≥ 100 μM, pH ≤ 3.0, and temperatures ≤ -10 °C. The freezing method (liquid cooling vs air cooling) had little effect on the final Cr(VI) reduction efficiency but had a significant effect on the Cr(VI) reduction rate. The freezing method was also tested with Cr(VI)-contaminated electroplating wastewater samples, and simultaneous Cr(VI) reduction and I2 production proceeded rapidly in a frozen solution but was not observed in an aqueous solution. Additionally, other substances in electroplating wastewater did not reduce the rate and final efficiency of Cr(VI) reduction and I2 production. Therefore, the freezing/Cr(VI)/I- system can be considered a feasible approach to water-energy nexus technology for simultaneous I2 production and Cr(VI)-contaminated wastewater treatment.
Collapse
Affiliation(s)
- Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Hyun Young Chung
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Bomi Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Gracie Wong
- Department of Earth System Science, University of California, Irvine, Irvine, California 92697, United States
| | - Anh Quoc Khuong Nguyen
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Saewung Kim
- Department of Earth System Science, University of California, Irvine, Irvine, California 92697, United States
| | - Jungwon Kim
- Department of Earth System Science, University of California, Irvine, Irvine, California 92697, United States
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| |
Collapse
|
12
|
Wang J, She J, Zhou Y, Tsang DCW, Beiyuan J, Xiao T, Dong X, Chen Y, Liu J, Yin M, Wang L. Microbial insights into the biogeochemical features of thallium occurrence: A case study from polluted river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139957. [PMID: 32544689 DOI: 10.1016/j.scitotenv.2020.139957] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Thallium (Tl) is a trace element with extreme toxicity. Widespread Tl pollution in riverine systems, mainly due to escalating mining and smelting activities of Tl-bearing sulfide minerals, has attracted increasing attention. Insights into the function of the microbial communities with advanced characterization tools are critical for understanding the biogeochemical cycle of Tl. Herein, microbial communities and their adaptive evolution strategies in river sediments from a representative Tl-bearing pyrite mine area in southern China were profiled via 16S rRNA gene sequence analysis and shotgun metagenomic analysis. In total, 64 phyla and 778 genera of microorganisms were observed in the studied sediments. The results showed that pH, Tl, Pb, Zn and total organic carbon (TOC) had a significant influence on microbial community structure. Some important reductive microorganisms (such as Erysipelothrix, Geobacter, desulfatiferula, desulfatihabadium and fusibacter) were involved in the biogeochemical cycle of Tl. The ruv, rec, ars and other resistance genes enhanced the tolerance of microorganisms to Tl. The study suggested that relevant C, N and S cycle genes were the main metabolic paths of microorganisms surviving in the high Tl-polluted environment. The findings were critical for establishment, operation and regulation in the microbial treatment of Tl containing or related wastewater.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jingye She
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuchen Zhou
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Tangfu Xiao
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xinjiao Dong
- School of Life & Environmental Science, Wenzhou University, Wenzhou 325027, China
| | - Yongheng Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Meiling Yin
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lulu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|
13
|
Zhou S, Zhang B, Liao Z, Zhou L, Yuan Y. Autochthonous N-doped carbon nanotube/activated carbon composites derived from industrial paper sludge for chromate (VI) reduction in microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136513. [PMID: 31931188 DOI: 10.1016/j.scitotenv.2020.136513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The performance of microbial electrochemical system for hexavalent chromium (Cr(VI)) contaminant has been a severe challenge remaining active for further development. In this study, we developed a novel biochar material from industrial paper sludge for microbial fuel cell cathode fabrication to reduce aquatic Cr(VI) to non-toxic Cr(III). With additive melamine as nitrogen source and self-containing small portion of Fe as catalyst, the sludge evolved into electroactive biochar (BC-M) rendering a unique N-doped carbon nanotubes/activated carbon (N-CNT/AC) frame after pyrolyzed at 900 °C for 2 h. Electrochemical analysis revealed enhanced electron transference capacity of this composite material, such effectiveness was attributed to the increased surface area and superior electroconductivity of N-doped CNTs. For performance of Cr(VI) reduction, a 55.1% reduction efficiency was achieved in an microbial fuel cell equipped with BC-M cathode while it reduced to about 41.8% when the cathode was replaced by electrode modified with no-melamine-involved biochar. The strategy of biochar upgrading from industrial paper sludge proposed in this work is expected to not only bring technical solution for low-cost CNT materials preparation for Cr(VI) reduction, but also put forward further research on value-added chemical synthesis from waste in various fields of energy and environment.
Collapse
Affiliation(s)
- Shaofeng Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Beiping Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyang Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lihua Zhou
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
14
|
Theberge AL, Alsabia SM, Mortensen CT, Blair AG, Wendel NM, Biffinger JC. Soluble electron acceptors affect bioluminescence from Shewanella woodyi. LUMINESCENCE 2019; 35:427-433. [PMID: 31828931 DOI: 10.1002/bio.3744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 11/10/2022]
Abstract
Shewanella woodyi cultures were used to correlate bioluminescence intensity with changes in the electrochemical potential of a saltwater medium using soluble electron acceptors. A relationship between the concentration of NaNO3 or CoCl2 to bioluminescence intensity was confirmed using aerobic cultures of S. woodyi at 20°C with glucose as the sole carbon source. In general, increasing the concentration of nitrate or Co(II) reduced the bioluminescence per cell, with complete luminescence being repressed at ≥5 mM nitrate and ≥0.5 mM Co(II). Results from cell viability fluorescent staining concluded that increasing the concentration of Co(II) or nitrate did not affect the overall viability of the cells when compared with cultures lacking Co(II) or nitrate. These data show that potentials of <0.2 V vs Normal Hydrogen Electrode (NHE) repress the luminescence from the cells, but the exact mechanism is unclear. Our results indicated that the luminescence intensity from S. woodyi could be systematically reduced using these two soluble electron acceptors, making S. woodyi a potential model bacterium for whole-cell luminescence bioelectrochemical sensor applications.
Collapse
Affiliation(s)
- Allison L Theberge
- Chemistry Department, University of Dayton, 300 College Park, Dayton, OH, USA
| | - Sahar M Alsabia
- Chemistry Department, University of Dayton, 300 College Park, Dayton, OH, USA
| | | | - Anna G Blair
- Chemistry Department, University of Dayton, 300 College Park, Dayton, OH, USA
| | - Nina M Wendel
- Chemistry Department, University of Dayton, 300 College Park, Dayton, OH, USA
| | - Justin C Biffinger
- Chemistry Department, University of Dayton, 300 College Park, Dayton, OH, USA
| |
Collapse
|