1
|
Poopedi E, Pierneef R, Singh T, Gomba A. Antibiotic resistance profiles and mutations that might affect drug susceptibility in metagenome-assembled genomes of Legionella pneumophila and Aeromonas species from municipal wastewater. BMC Microbiol 2025; 25:237. [PMID: 40269715 PMCID: PMC12016116 DOI: 10.1186/s12866-025-03957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Antibiotic resistance (AR) has emerged as a significant global health issue. Wastewater treatment plants (WWTPs) contain diverse bacterial communities, including pathogens, and have been identified as crucial reservoirs for the emergence and dissemination of AR. The present study aimed to identify antibiotic resistance genes (ARGs) and screen for the presence of mutations associated with AR in Legionella pneumophila and Aeromonas spp. from municipal wastewater. Metagenome-assembled genomes (MAGs) of L. pneumophila and Aeromonas spp. were reconstructed to investigate the molecular mechanisms of AR in these organisms. A total of 138 nonsynonymous single nucleotide variants (SNVs) in seven genes associated with AR and one deletion mutation in the lpeB gene were identified in L. pneumophila. In Aeromonas spp., two (aph(6)-Id and aph(3'')-Ib) and five (blaMOX-4, blaOXA-1143, blaOXA-724, cepH, and imiH) ARGs conferring resistance to aminoglycosides and β-lactams were identified, respectively. Moreover, this study presents β-lactam resistance genes, blaOXA-1143 and blaOXA-724, for the first time in Aeromonas spp. from a municipal WWTP. In conclusion, these findings shed light on the molecular mechanisms through which clinically relevant pathogenic bacteria such as L. pneumophila and Aeromonas spp. found in natural environments like municipal wastewater acquire AR.
Collapse
Affiliation(s)
- Evida Poopedi
- Department of Oral and Maxillofacial Pathology, Oral Microbiology and Oral Biology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa.
- Department of Clinical Microbiology and Infectious Diseases, University of the Witwatersrand, Johannesburg, South Africa.
| | - Rian Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Tanusha Singh
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Department of Environmental Health, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Annancietar Gomba
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
2
|
Helliwell R, Ewin I, Williams AD, Levine DT, Singer AC, Raman S, Morris C, Stekel DJ. Rethinking the words hostspot reservoir and pristine in the environmental dimensions of antimicrobial resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:11. [PMID: 39984758 PMCID: PMC11845593 DOI: 10.1038/s44259-025-00080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
We assess three words commonly used to represent the environmental dimensions of antimicrobial resistance (AMR) - 'hotspot', 'reservoir' and 'pristine' - through two questions: how are these terms used in published research; and how do these terms shape research being conducted? We advocate for the community to reflect on and improve its use of language, and suggest four potentially more productive and precise terms for AMR hazard: presence; transmission; evolution and connectivity.
Collapse
Affiliation(s)
- Richard Helliwell
- School of Geography, University of Nottingham, University Park Campus, Nottingham, UK
- Ruralis, University Centre Dragvoll, Trondheim, Norway
| | - Isabel Ewin
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, UK
| | - Alexander D Williams
- Laboratory of Data Discovery for Health Ltd, Hong Kong Science and Technology Park, Tai Po, Hong Kong, PR China
- School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - Diane T Levine
- School of Criminology, Sociology and Social Policy, University of Leicester, Leicester, UK
- Centre for Social Development in Africa, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Andrew C Singer
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
| | - Sujatha Raman
- Centre for Public Awareness of Science, Australian National University, Linnaeus Way, Acton ACT 2601, Canberra, Australia
| | - Carol Morris
- School of Geography, University of Nottingham, University Park Campus, Nottingham, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, UK.
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park Kingsway Campus, Rossmore, Johannesburg, South Africa.
| |
Collapse
|
3
|
La Rosa MC, Maugeri A, Favara G, La Mastra C, Magnano San Lio R, Barchitta M, Agodi A. The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. Antibiotics (Basel) 2025; 14:131. [PMID: 40001375 PMCID: PMC11851908 DOI: 10.3390/antibiotics14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (M.C.L.R.); (A.M.); (G.F.); (C.L.M.); (R.M.S.L.); (M.B.)
| |
Collapse
|
4
|
de Farias BO, Saggioro EM, Montenegro KS, Magaldi M, Santos HSO, Gonçalves-Brito AS, Pimenta RL, Ferreira RG, Spisso BF, Pereira MU, Bianco K, Clementino MM. Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60880-60894. [PMID: 39395082 DOI: 10.1007/s11356-024-35287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Kaylanne S Montenegro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Hugo Sérgio Oliveira Santos
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa Silva Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ramon Loureiro Pimenta
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Km 07, Zona Rural, BR-465, Seropédica, RJ, Brazil
| | - Rosana Gomes Ferreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mararlene Ulberg Pereira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Philo SE, Monteiro S, Fuhrmeister ER, Santos R, Meschke JS. Wastewater surveillance for antibiotic resistance genes during the late 2020 SARS-CoV-2 peak in two different populations. JOURNAL OF WATER AND HEALTH 2024; 22:1683-1694. [PMID: 39340381 DOI: 10.2166/wh.2024.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 09/30/2024]
Abstract
The United States Centers for Disease Control and Prevention reported a rise in resistant infections after the coronavirus disease 2019 (COVID-19) pandemic started. How and if the pandemic contributed to antibiotic resistance in the larger population is not well understood. Wastewater treatment plants are good locations for environmental surveillance because they can sample entire populations. This study aimed to validate methods used for COVID-19 wastewater surveillance for bacterial targets and to understand how rising COVID-19 cases from October 2020 to February 2021 in Portugal (PT) and King County, Washington contributed to antibiotic resistance genes in wastewater. Primary influent wastewater was collected from two treatment plants in King County and five treatment plants in PT, and hospital effluent was collected from three hospitals in PT. Genomic extracts were tested with the quantitative polymerase chain reaction for antibiotic resistance genes conferring resistance against antibiotics under threat. Random-effect models were fit for log-transformed gene abundances to assess temporal trends. All samples collected tested positive for multiple resistance genes. During the sampling period, mecA statistically significantly increased in King County and PT. No statistical evidence exists of correlation between samples collected in the same Portuguese metro area.
Collapse
Affiliation(s)
- Sarah E Philo
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sílvia Monteiro
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Erica R Fuhrmeister
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Ricardo Santos
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA E-mail:
| |
Collapse
|
6
|
Brooks C, Mitchell E, Brown J, O'Donovan S, Carnaghan KA, Bleakney E, Arnscheidt J. Carbapenemase gene blaOXA-48 detected at six freshwater sites in Northern Ireland discharging onto identified bathing locations. Lett Appl Microbiol 2024; 77:ovae062. [PMID: 38925640 DOI: 10.1093/lambio/ovae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Faecal contamination of surface waters has the potential to spread not only pathogenic organisms but also antimicrobial resistant organisms. During the bathing season of 2021, weekly water samples, from six selected coastal bathing locations (n = 93) and their freshwater tributaries (n = 93), in Northern Ireland (UK), were examined for concentrations of faecal indicator bacteria Escherichia coli and intestinal enterococci. Microbial source tracking involved detection of genetic markers from the genus Bacteroides using PCR assays for the general AllBac marker, the human HF8 marker and the ruminant BacR marker for the detection of human, and ruminant sources of faecal contamination. The presence of beta-lactamase genes blaOXA-48, blaKPC, and blaNDM-1 was determined using PCR assays for the investigation of antimicrobial resistance genes that are responsible for lack of efficacy in major broad-spectrum antibiotics. The beta-lactamase gene blaOXA-48 was found in freshwater tributary samples at all six locations. blaOXA-48 was detected in 83% of samples that tested positive for the human marker and 69% of samples that tested positive for the ruminant marker over all six locations. This study suggests a risk of human exposure to antimicrobial resistant bacteria where bathing waters receive at least episodically substantial transfers from such tributaries.
Collapse
Affiliation(s)
- Catherine Brooks
- Bacteriology Department, Veterinary Sciences Division, Agri-food and Biosciences Institute, Stoney Road, Stormont, Belfast. BT4 3SD, UK
| | - Elaine Mitchell
- Bacteriology Department, Veterinary Sciences Division, Agri-food and Biosciences Institute, Stoney Road, Stormont, Belfast. BT4 3SD, UK
| | - James Brown
- Bacteriology Department, Veterinary Sciences Division, Agri-food and Biosciences Institute, Stoney Road, Stormont, Belfast. BT4 3SD, UK
| | - Sinéad O'Donovan
- Bacteriology Department, Veterinary Sciences Division, Agri-food and Biosciences Institute, Stoney Road, Stormont, Belfast. BT4 3SD, UK
| | - Kelly-Anne Carnaghan
- Bacteriology Department, Veterinary Sciences Division, Agri-food and Biosciences Institute, Stoney Road, Stormont, Belfast. BT4 3SD, UK
| | - Eoin Bleakney
- Bacteriology Department, Veterinary Sciences Division, Agri-food and Biosciences Institute, Stoney Road, Stormont, Belfast. BT4 3SD, UK
| | - Joerg Arnscheidt
- School of Geography and Environmental Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry. BT52 1SA, UK
| |
Collapse
|
7
|
Lin Z, Zhou Z, Shuai X, Zeng G, Bao R, Chen H. Landscape of plasmids encoding β-lactamases in disinfection residual Enterobacteriaceae from wastewater treatment plants. WATER RESEARCH 2024; 255:121549. [PMID: 38564891 DOI: 10.1016/j.watres.2024.121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Conventional disinfection processes, such as chlorination and UV radiation, are ineffective in controling antibiotic-resistant bacteria, especially disinfection residual Enterobacteriaceae (DRE) encoding β-lactamases, some of which have been classified as "critical priority pathogens" by the World Health Organization. However, few studies have focused on the transferability, phenotype, and genetic characteristics of DRE-derived plasmids encoding β-lactamases, especially extended-spectrum β-lactamases and carbapenemases. In this study, we isolated 10 typical DRE harboring plasmid-mediated blaNDM, blaCTX-M, or blaTEM in post-disinfection effluent from two wastewater treatment plants (WWTPs), with transfer frequency ranging from 1.69 × 10-6 to 3.02 × 10-5. According to genomic maps of plasmids, all blaNDM and blaTEM were cascaded with IS26, and blaCTX-M was adjacent to ISEcp1 or IS26, indicating the important role of these elements in the movement of β-lactamase-encoding genes. The presence of intact class 1 integrons on pWTPN-01 and pWTPC-03 suggested the ability of these DRE-derived plasmids to integrate other exogenous antibiotic resistance genes (ARGs). The coexistence of antibiotic, disinfectant, and heavy metal resistance genes on the same plasmid (e.g., pWTPT-03) implied the facilitating role of disinfectants and heavy metals in the transmission of DRE-derived ARGs. Notably, two plasmid transconjugants exhibited no discernible competitive fitness cost, suggesting a heightened environmental persistence. Furthermore, enhanced virulence induced by β-lactamase-encoding plasmids in their hosts was confirmed using Galleria mellonella infection models, which might be attributed to plasmid-mediated virulence genes. Overall, this study describes the landscape of β-lactamase-encoding plasmids in DRE, and highlights the urgent need for advanced control of DRE to keep environmental and ecological security.
Collapse
Affiliation(s)
- Zejun Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenchao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shuai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangshu Zeng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruiqi Bao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China.
| |
Collapse
|
8
|
Wang Y, Zhang Z, Kang J, Chen B, Hong W, Lv B, Wang T, Qian H. Phages in different habitats and their ability to carry antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133941. [PMID: 38447371 DOI: 10.1016/j.jhazmat.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
As the most abundant organisms on Earth, phages play a key role in the evolution of bacterial antibiotic resistance. Although previous studies have demonstrated the molecular mechanisms of horizontal gene transfer mediated by mobile genetic elements, our understanding of the intertwined relationships between antibiotic resistance genes (ARGs) and phages is limited. In this study, we analysed 2781 metagenomic samples to reveal the composition and species interactions of phage communities in different habitats as well as their capacity to carry ARGs with health risks. The composition of phage communities varies in different habitats and mainly depends on environmental conditions. Terrestrial habitats display more complex and robust interactions between phages than aquatic and human-associated habitats, resulting in the highest biodiversity of phages. Several types of phages in certain taxa (4.95-7.67%, mainly belonging to Caudoviricetes) have the capacity to carry specific ARGs and display a high potential risk to human health, especially in human-associated habitats. Overall, our results provide insights into the assembly mechanisms of phage communities and their effects on the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jian Kang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; College of Ecology and Environment, Anhui Normal University, Wuhu 241002, PR China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wenjie Hong
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, PR China
| | - Binghai Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
9
|
Singh R, Ryu J, Park SS, Kim S, Kim K. Monitoring viruses and beta-lactam resistance genes through wastewater surveillance during a COVID-19 surge in Suwon, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171223. [PMID: 38417514 DOI: 10.1016/j.scitotenv.2024.171223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
The present study reports data on a long-term campaign for monitoring SARS-CoV-2, norovirus, hepatitis A virus, and beta-lactam resistance genes in wastewater samples from a wastewater treatment plant during COVID-19 surge in Suwon, South Korea. Real-time digital PCR (RT-dPCR) assays indicated 100 % occurrence of all but hepatitis A virus and blaNDM gene in influent wastewater samples. CDC-N1 assay detected SARS-CoV-2 in all influent samples with an average log-transformed concentration of 5.1 ± 0.39 and the highest level at 6.02 gene copies/L. All samples were also positive for norovirus throughout the study with a mean concentration 5.67 ± 0.65 log10 gene copies/L. On the contrary, all treated wastewater (effluent) tested negative for both viruses' genetic materials. Furthermore, plasmid-mediated AmpC β-lactamases (PABLs) genes blaDHA, blaACC, and blaFOX, extended-spectrum β-lactamases (ESBLs) genes blaTEM and blaCTX, and Klebsiella pneumoniae carbapenemase (blaKPC) gene were measured at average concentrations of 7.05 ± 0.26, 5.60 ± 0.35, 7.82 ± 0.43, 8.38 ± 0.20, 7.64 ± 0.29, and 7.62 ± 0.41 log10 gene copies/L wastewater, respectively. Beta-lactam resistance genes showed strong correlations (r), the highest being 0.86 for blaKPC - blaFOX, followed by 0.82 for blaTEM - blaCTX and 0.79 for blaTEM - blaDHA. SARS-CoV-2 RNA occurrence in the wastewater was strongly associated (r = 0.796) with COVID-19 cases in the catchment during the initial study period of six months. A positive association of the SARS-CoV-2 RNA with the prevalence of COVID-19 cases showed a promising role of community-scale monitoring of pathogens to provide considerable early signals of infection dynamics. High concentrations of beta-lactam resistance genes in wastewater indicated a high concern for one of the biggest global health threats in South Korea and the need to find control measures. Moreover, antibiotic-resistance genes in treated wastewater flowing through water bodies and agricultural environments indicate further dissemination of antibiotic resistance traits and increasing microbial antibiotic resistance.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Sung Soo Park
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Sungpyo Kim
- Department of Environmental Systems Engineering, Korea University, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea.
| |
Collapse
|
10
|
Schachner-Groehs I, Koller M, Leopold M, Kolm C, Linke RB, Jakwerth S, Kolarević S, Kračun-Kolarević M, Kandler W, Sulyok M, Vierheilig J, Toumi M, Farkas R, Toth E, Kittinger C, Zarfel G, Farnleitner AH, Kirschner AKT. Linking antibiotic resistance gene patterns with advanced faecal pollution assessment and environmental key parameters along 2300 km of the Danube River. WATER RESEARCH 2024; 252:121244. [PMID: 38340455 DOI: 10.1016/j.watres.2024.121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The global spread of antimicrobial resistance (AMR) in the environment is a growing health threat. Large rivers are of particular concern as they are highly impacted by wastewater discharge while being vital lifelines serving various human needs. A comprehensive understanding of occurrence, spread and key drivers of AMR along whole river courses is largely lacking. We provide a holistic approach by studying spatiotemporal patterns and hotspots of antibiotic resistance genes (ARGs) along 2311 km of the navigable Danube River, combining a longitudinal and temporal monitoring campaign. The integration of advanced faecal pollution diagnostics and environmental and chemical key parameters allowed linking ARG concentrations to the major pollution sources and explaining the observed patterns. Nine AMR markers, including genes conferring resistance to five different antibiotic classes of clinical and environmental relevance, and one integrase gene were determined by probe-based qPCR. All AMR targets could be quantified in Danube River water, with intI1 and sul1 being ubiquitously abundant, qnrS, tetM, blaTEM with intermediate abundance and blaOXA-48like, blaCTX-M-1 group, blaCTX-M-9 group and blaKPC genes with rare occurrence. Human faecal pollution from municipal wastewater discharges was the dominant factor shaping ARG patterns along the Danube River. Other significant correlations of specific ARGs were observed with discharge, certain metals and pesticides. In contrast, intI1 was not associated with wastewater but was already established in the water microbiome. Animal contamination was detected only sporadically and was correlated with ARGs only in the temporal sampling set. During temporal monitoring, an extraordinary hotspot was identified emphasizing the variability within natural waters. This study provides the first comprehensive baseline concentrations of ARGs in the Danube River and lays the foundation for monitoring future trends and evaluating potential reduction measures. The applided holistic approach proved to be a valuable methodological contribution towards a better understanding of the environmental occurrence of AMR.
Collapse
Affiliation(s)
- Iris Schachner-Groehs
- Institute of Hygiene and Applied Immunology - Water Microbiology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna 1090, Austria
| | - Michael Koller
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Melanie Leopold
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria
| | - Claudia Kolm
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics, Technische Universität Wien, Gumpendorfer Straße 1A/166, Vienna 1060, Austria
| | - Rita B Linke
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics, Technische Universität Wien, Gumpendorfer Straße 1A/166, Vienna 1060, Austria
| | - Stefan Jakwerth
- Institute of Hygiene and Applied Immunology - Water Microbiology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna 1090, Austria
| | - Stoimir Kolarević
- Department of Hydroecology and Water Protection, Institute for Biological Research ¨Siniša Stanković¨, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia
| | - Margareta Kračun-Kolarević
- Department of Hydroecology and Water Protection, Institute for Biological Research ¨Siniša Stanković¨, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia
| | - Wolfgang Kandler
- Department of Agrotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, Tulln an der Donau 3430, Austria
| | - Michael Sulyok
- Department of Agrotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, Tulln an der Donau 3430, Austria
| | - Julia Vierheilig
- Institute of Water Quality and Resource Management, Technische Universität Wien, Karlsplatz 13/226-1, Wien 1040, Austria
| | - Marwene Toumi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., H-1117, Budapest, Hungary
| | - Rózsa Farkas
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., H-1117, Budapest, Hungary
| | - Erika Toth
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., H-1117, Budapest, Hungary
| | - Clemens Kittinger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Gernot Zarfel
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Andreas H Farnleitner
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics, Technische Universität Wien, Gumpendorfer Straße 1A/166, Vienna 1060, Austria.
| | - A K T Kirschner
- Institute of Hygiene and Applied Immunology - Water Microbiology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna 1090, Austria; Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria.
| |
Collapse
|
11
|
Xue X, Li X, Liu J, Zhu L, Zhou L, Jia J, Wang Z. Field-realistic dose of cefotaxime enhances potential mobility of β-lactam resistance genes in the gut microbiota of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106459. [PMID: 36857871 DOI: 10.1016/j.aquatox.2023.106459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/17/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
With large amounts of cephalosporin end up in natural ecosystems, water has been acknowledged as the large reservoir of β-lactam resistance over the past decades. However, there is still insufficient knowledge available on the function of the living organisms to the transmission of antibiotic resistance. For this reason, in this study, using adult zebrafish (Danio rerio) as animal model, exposing them to environmentally relevant dose of cefotaxime for 150 days, we asked whether cefotaxime contamination accelerated β-lactam resistance in gut microbiota as well as its potential transmission. Results showed that some of β-lactam resistance genes (βRGs) were intrinsic embedded in intestinal microbiome of zebrafish even without antibiotic stressor. Across cefotaxime treatment, the abundance of most βRGs in fish gut microbiome decreased apparently in the short term firstly, and then increased with the prolonged exposure, forming distinctly divergent βRG profiles with antibiotic-untreated zebrafish. Meanwhile, with the rising concentration of cefotaxime, the range of βRGs' host-taxa expanded and the co-occurrence relationships of mobile genetics elements (MGEs) with βRGs intensified, indicating the enhancement of βRGs' mobility in gut microbiome when the fish suffered from cefotaxime contamination. Furthermore, the path of partial least squares path modeling (PLS-PM) gave an integral assessment on the specific causality of cefotaxime treatment to βRG profiles, showing that cefotaxime-mediated βRGs variation was most ascribed to the alteration of MGEs under cefotaxime stress, followed by bacterial community, functioning both direct influence as βRG-hosts and indirect effects via affecting MGEs. Finally, pathogenic bacteria Aeromonas was identified as the critical host for multiple βRGs in fish guts, and its β-lactam resistance increased over the duration time of cefotaxime exposure, suggesting the potential spreading risks for the antibiotic-resistant pathogens from environmental ecosystems to clinic. Overall, our finding emphasized cefotaxime contamination in aquatic surroundings could enhance the β-lactam resistance and its transmission mobility in fish bodies.
Collapse
Affiliation(s)
- Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Linjun Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
He H, Choi Y, Wu SJ, Fang X, Anderson AK, Liou SY, Roberts MC, Lee Y, Dodd MC. Application of Nucleotide-Based Kinetic Modeling Approaches to Predict Antibiotic Resistance Gene Degradation during UV- and Chlorine-Based Wastewater Disinfection Processes: From Bench- to Full-Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15141-15155. [PMID: 36098629 DOI: 10.1021/acs.est.2c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated antibiotic resistance gene (ARG) degradation kinetics in wastewaters during bench- and full-scale treatment with UV light and chlorine─with the latter maintained as free available chlorine (FAC) in low-ammonia wastewater and converted into monochloramine (NH2Cl) in high-ammonia wastewater. Twenty-three 142-1509 bp segments (i.e., amplicons) of seven ARGs (blt, mecA, vanA, tet(A), ampC, blaNDM, blaKPC) and the 16S rRNA gene from antibiotic resistant bacteria (ARB) strains Bacillus subtilis, Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were monitored as disinfection targets by qPCR. Rate constants for ARG and 16S rRNA gene amplicon degradation by UV, FAC, and NH2Cl were measured in phosphate buffer and used to expand and validate several recently developed approaches to predict DNA segment degradation rate constants based solely on their nucleotide contents, which were then applied to model ARG degradation during bench-scale treatment in buffer and wastewater matrixes. Kinetics of extracellular and intracellular ARG degradation by UV and FAC were well predicted up to ∼1-2-log10 elimination, although with decreasing accuracy at higher levels for intracellular genes, while NH2Cl yielded minimal degradation under all conditions (agreeing with predictions). ARB inactivation kinetics varied substantially across strains, with intracellular gene degradation lagging cell inactivation in each case. ARG degradation levels observed during full-scale disinfection at two wastewater treatment facilities were consistent with bench-scale measurements and predictions, where UV provided ∼1-log10 ARG degradation, and chlorination of high-ammonia wastewater (dominated by NH2Cl) yielded minimal ARG degradation.
Collapse
Affiliation(s)
- Huan He
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sean J Wu
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Xuzhi Fang
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Annika K Anderson
- Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sin-Yi Liou
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| |
Collapse
|
13
|
Wang M, Jiang L, Wei J, Zhu H, Zhang J, Liu Z, Zhang W, He X, Liu Y, Li R, Xiao X, Sun Y, Zeng Z, Wang Z. Similarities of P1-Like Phage Plasmids and Their Role in the Dissemination of blaCTX-M-55. Microbiol Spectr 2022; 10:e0141022. [PMID: 36069562 PMCID: PMC9603915 DOI: 10.1128/spectrum.01410-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/18/2022] [Indexed: 12/30/2022] Open
Abstract
The P1-like phage plasmid (PP) has been widely used as a molecular biology tool, but its role as an active accessory cargo element is not fully understood. In this study, we provide insights into the structural features and gene content similarities of 77 P1-like PPs in the RefSeq database. We also describe a P1-like PP carrying a blaCTX-M-55 gene, JL22, which was isolated from a clinical strain of Escherichia coli from a duck farm. P1-like PPs were very similar and conserved based on gene content similarities, with only eight highly variable regions. Importantly, two kinds of replicon types, namely, IncY and p0111, were identified and can be used to specifically identify the P1-like phage. JL22 is similar to P1, acquiring an important foreign DNA fragment with two obvious features, namely, the plasmid replication gene repA' (p0111) replacing the gene repA (IncY) and a 4,200-bp fragment mobilized by IS1380 and IS5 and containing a blaCTX-M-55 gene and a trpB gene encoding tryptophan synthase (indole salvaging). The JL22 phage could be induced but had no lytic capacities. However, a lysogenic recipient and intact structure of JL22 virions were observed, showing that the extended-spectrum β-lactamase blaCTX-M-55 gene was successfully transferred. Overall, conserved genes can be a good complement to improve the identification efficiency and accuracy in future screening for P1-like PPs. Moreover, the highly conserved structures may be important for their prevalence and dissemination. IMPORTANCE As a PP, P1 DNA exists as a low-copy-number plasmid and replicates autonomously with a lysogenization style. This unique mode of P1-like elements probably indicates a stable contribution to antibiotic resistance. After analyzing these elements, we show that P1-like PPs are very similar and conserved, with only eight highly variable regions. Moreover, we observed the occurrence of replicon IncY and p0111 only in the P1-like PP community, implying that these conserved regions, coupled with IncY and p0111, can be an important complement in future screening of P1-like PPs. Identification and characterization of JL22 confirmed our findings that major changes were located in variable regions, including the first detection of blaCTX-M-55 in such a mobile genetic element. This suggests that these variable regions may facilitate foreign DNA mobilization. This study features a comprehensive genetic analysis of P1-like PPs, providing new insights into the dissemination mechanisms of antibiotic resistance through P1 PPs.
Collapse
Affiliation(s)
- Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou, China
| | - Li Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou, China
| | - Jingyi Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou, China
| | - Heng Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou, China
| | - Junxuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou, China
| | - Wenhui Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou, China
| | - Xiaolu He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou, China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou, China
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou, China
- International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
| |
Collapse
|
14
|
Waśko I, Kozińska A, Kotlarska E, Baraniak A. Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113829. [PMID: 36360709 PMCID: PMC9657204 DOI: 10.3390/ijerph192113829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health's concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).
Collapse
Affiliation(s)
- Izabela Waśko
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
- Correspondence: ; Tel.: +48-228-410-623
| | - Aleksandra Kozińska
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| | - Ewa Kotlarska
- Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
| | - Anna Baraniak
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|
15
|
Andersson T, Adell AD, Moreno‐Switt AI, Spégel P, Turner C, Overballe‐Petersen S, Fuursted K, Lood R. Biogeographical variation in antimicrobial resistance in rivers is influenced by agriculture and is spread through bacteriophages. Environ Microbiol 2022; 24:4869-4884. [PMID: 35799549 PMCID: PMC9796506 DOI: 10.1111/1462-2920.16122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/29/2022] [Indexed: 01/01/2023]
Abstract
Antibiotic resistance is currently an extensive medical challenge worldwide, with global numbers increasing steadily. Recent data have highlighted wastewater treatment plants as a reservoir of resistance genes. The impact of these findings for human health can best be summarized using a One Health concept. However, the molecular mechanisms impacting resistance spread have not been carefully evaluated. Bacterial viruses, that is bacteriophages, have recently been shown to be important mediators of bacterial resistance genes in environmental milieus and are transferrable to human pathogens. Herein, we investigated the biogeographical impact on resistance spread through river-borne bacteriophages using amplicon deep sequencing of the microbiota, absolute quantification of resistance genes using ddPCR, and phage induction capacity within wastewater. Microbial biodiversity of the rivers is significantly affected by river site, surrounding milieu and time of sampling. Furthermore, areas of land associated with agriculture had a significantly higher ability to induce bacteriophages carrying antibiotic resistance genes, indicating their impact on resistance spread. It is imperative that we continue to analyse global antibiotic resistance problem from a One Health perspective to gain novel insights into mechanisms of resistance spread.
Collapse
Affiliation(s)
| | - Aiko D. Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile,Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB‐R)SantiagoChile
| | - Andrea I. Moreno‐Switt
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB‐R)SantiagoChile,Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de MedicinaPontificia Universidad Católica de ChileSantiagoChile
| | - Peter Spégel
- Department of ChemistryLund UniversityLundSweden
| | | | | | - Kurt Fuursted
- Statens Serum InstituteBacterial Reference CenterCopenhagenDenmark
| | - Rolf Lood
- Department of Clinical SciencesLund UniversityLundSweden
| |
Collapse
|
16
|
OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother 2022; 66:e0021622. [PMID: 35856662 PMCID: PMC9380527 DOI: 10.1128/aac.00216-22] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modern medicine is threatened by the rising tide of antimicrobial resistance, especially among Gram-negative bacteria, where resistance to β-lactams is most often mediated by β-lactamases. The penicillin and cephalosporin ascendancies were, in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-spectrum β-lactamases. These class A β-lactamases have long been considered the most important. For carbapenems, however, the threat is increasingly from the insidious rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past 20 years, OXA-48 and "OXA-48-like" enzymes have proliferated to become the most prevalent enterobacterial carbapenemases across much of Europe, Northern Africa, and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because they often cause only low-level in vitro resistance to carbapenems, meaning that the true burden is likely underestimated. Despite this, they are associated with carbapenem treatment failures. A highly conserved incompatibility complex IncL plasmid scaffold often carries blaOXA-48 and may carry other antimicrobial resistance genes, leaving limited treatment options. High conjugation efficiency means that this plasmid is sometimes carried by multiple Enterobacterales in a single patient. Producers evade most β-lactam-β-lactamase inhibitor combinations, though promising agents have recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular machinery enabling global spread, current treatment options, and the development pipeline of potential new therapies for Enterobacterales that produce OXA-48-like β-lactamases form the focus of this review.
Collapse
|
17
|
Behera BK, Dehury B, Rout AK, Patra B, Mantri N, Chakraborty HJ, Sarkar DJ, Kaushik NK, Bansal V, Singh I, Das BK, Rao AR, Rai A. Metagenomics study in aquatic resource management: Recent trends, applied methodologies and future needs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Jiang C, Pan X, Grossart HP, Lin L, Shi J, Yang Y. Vertical and horizontal distributions of clinical antibiotic resistance genes and bacterial communities in Danjiangkou Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61163-61175. [PMID: 34173145 DOI: 10.1007/s11356-021-15069-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/18/2021] [Indexed: 05/12/2023]
Abstract
The Danjiangkou Reservoir is an important water source for the middle route of the South-to-North Water Diversion Project in China. The current anthropogenic pollution of this reservoir is a great public health concern. Therefore, the horizontal and vertical distributions of seven clinical antibiotic resistance genes (ARGs) and bacterial communities in the Danjiangkou Reservoir were investigated using qPCR and next-generation sequencing, respectively. The average relative abundance of ARGs was 3.01 × 10-4 to 1.90 × 10-3 and 4.66 × 10-4 to 1.85 × 10-3 in horizontal and vertical profiles, respectively. There was a significant difference in the vertical composition of ARGs, which was caused by different media (i.e. water column vs. sediment). No significant differences in the composition of ARGs were found in the horizontal profile. Proteobacteria was the most abundant phylum, followed by Actinobacteria in the Danjiangkou Reservoir. The beta diversity pattern of the microbial communities in the vertical profile was consistent with that of the ARGs. Moreover, a significant difference in the horizontal composition of the bacterial communities among these water columns was found. All of these factors have resulted in noticeably different co-occurrence patterns of ARGs and bacterial communities between water columns and surface sediment samples. ARGs were closely associated with Proteobacteria and Chloroflexi in the sediment samples, indicating potential anthropogenic pollution in the Danjiangkou Reservoir. Although there was no significant correlation between the occurrence of ARGs and 11 opportunistic pathogens, our results point to potential risks for the development of multi-resistant pathogens due to the simultaneous presence of ARGs and pathogens in the study area. These results provide a good basis for thorough ecological evaluation and remediation of the Danjiangkou Reservoir.
Collapse
Affiliation(s)
- Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Lumo Road No.1, Wuchang District, Wuhan, 430074, China
- Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430014, China
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Neuglobsow, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469, Potsdam, Germany
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430014, China
| | - Jingya Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Lumo Road No.1, Wuchang District, Wuhan, 430074, China
- Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Lumo Road No.1, Wuchang District, Wuhan, 430074, China.
- Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
19
|
Billaud M, Lamy-Besnier Q, Lossouarn J, Moncaut E, Dion MB, Moineau S, Traoré F, Le Chatelier E, Denis C, Estelle J, Achard C, Zemb O, Petit MA. Analysis of viromes and microbiomes from pig fecal samples reveals that phages and prophages rarely carry antibiotic resistance genes. ISME COMMUNICATIONS 2021; 1:55. [PMID: 37938642 PMCID: PMC9723715 DOI: 10.1038/s43705-021-00054-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 05/09/2023]
Abstract
Understanding the transmission of antibiotic resistance genes (ARGs) is critical for human health. For this, it is necessary to identify which type of mobile genetic elements is able to spread them from animal reservoirs into human pathogens. Previous research suggests that in pig feces, ARGs may be encoded by bacteriophages. However, convincing proof for phage-encoded ARGs in pig viromes is still lacking, because of bacterial DNA contaminating issues. We collected 14 pig fecal samples and performed deep sequencing on both highly purified viral fractions and total microbiota, in order to investigate phage and prophage-encoded ARGs. We show that ARGs are absent from the genomes of active, virion-forming phages (below 0.02% of viral contigs from viromes), but present in three prophages, representing 0.02% of the viral contigs identified in the microbial dataset. However, the corresponding phages were not detected in the viromes, and their genetic maps suggest they might be defective. We conclude that among pig fecal samples, phages and prophages rarely carry ARG. Furthermore, our dataset allows for the first time a comprehensive view of the interplay between prophages and viral particles, and uncovers two large clades, inoviruses and Oengus-like phages.
Collapse
Affiliation(s)
- Maud Billaud
- Université Paris- Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Pherecydes Pharma 22 Bd Benoni Goullin, Nantes, France
| | - Quentin Lamy-Besnier
- Université Paris- Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Julien Lossouarn
- Université Paris- Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elisabeth Moncaut
- Université Paris- Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Moira B Dion
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Felix D'Hérelle Reference Center for Bacterial Viruses, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | | | | | | | - Jordi Estelle
- Université Paris-Saclay, INRAE, GABI, Jouy-en-Josas, France
| | - Caroline Achard
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet-Tolosan, France
| | - Olivier Zemb
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet-Tolosan, France
| | - Marie-Agnès Petit
- Université Paris- Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
20
|
Jian Z, Zeng L, Xu T, Sun S, Yan S, Yang L, Huang Y, Jia J, Dou T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J Basic Microbiol 2021; 61:1049-1070. [PMID: 34651331 DOI: 10.1002/jobm.202100201] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
The production and use of antibiotics are becoming increasingly common worldwide, and the problem of antibiotic resistance is increasing alarmingly. Drug-resistant infections threaten human life and health and impose a heavy burden on the global economy. The origin and molecular basis of bacterial resistance is the presence of antibiotic resistance genes (ARGs). Investigations on ARGs mostly focus on the environments in which antibiotics are frequently used, such as hospitals and farms. This literature review summarizes the current knowledge of the occurrence of antibiotic-resistant bacteria in nonclinical environments, such as air, aircraft wastewater, migratory bird feces, and sea areas in-depth, which have rarely been involved in previous studies. Furthermore, the mechanism of action of plasmid and phage during horizontal gene transfer was analyzed, and the transmission mechanism of ARGs was summarized. This review highlights the new mechanisms that enhance antibiotic resistance and the evolutionary background of multidrug resistance; in addition, some promising points for controlling or reducing the occurrence and spread of antimicrobial resistance are also proposed.
Collapse
Affiliation(s)
- Zonghui Jian
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Li Zeng
- The Chenggong Department, Kunming Medical University Affiliated Stomatological Hospital, Kunming, Yunnan, China
| | - Taojie Xu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuai Sun
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shixiong Yan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lan Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junjing Jia
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tengfei Dou
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
21
|
Nguyen AQ, Vu HP, Nguyen LN, Wang Q, Djordjevic SP, Donner E, Yin H, Nghiem LD. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146964. [PMID: 33866168 DOI: 10.1016/j.scitotenv.2021.146964] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 05/29/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to human and animal health. Progress in molecular biology has revealed new and significant challenges for AMR mitigation given the immense diversity of antibiotic resistance genes (ARGs), the complexity of ARG transfer, and the broad range of omnipresent factors contributing to AMR. Municipal, hospital and abattoir wastewater are collected and treated in wastewater treatment plants (WWTPs), where the presence of diverse selection pressures together with a highly concentrated consortium of pathogenic/commensal microbes create favourable conditions for the transfer of ARGs and proliferation of antibiotic resistant bacteria (ARB). The rapid emergence of antibiotic resistant pathogens of clinical and veterinary significance over the past 80 years has re-defined the role of WWTPs as a focal point in the fight against AMR. By reviewing the occurrence of ARGs in wastewater and sludge and the current technologies used to quantify ARGs and identify ARB, this paper provides a research roadmap to address existing challenges in AMR control via wastewater treatment. Wastewater treatment is a double-edged sword that can act as either a pathway for AMR spread or as a barrier to reduce the environmental release of anthropogenic AMR. State of the art ARB identification technologies, such as metagenomic sequencing and fluorescence-activated cell sorting, have enriched ARG/ARB databases, unveiled keystone species in AMR networks, and improved the resolution of AMR dissemination models. Data and information provided in this review highlight significant knowledge gaps. These include inconsistencies in ARG reporting units, lack of ARG/ARB monitoring surrogates, lack of a standardised protocol for determining ARG removal via wastewater treatments, and the inability to support appropriate risk assessment. This is due to a lack of standard monitoring targets and agreed threshold values, and paucity of information on the ARG-pathogen host relationship and risk management. These research gaps need to be addressed and research findings need to be transformed into practical guidance for WWTP operators to enable effective progress towards mitigating the evolution and spread of AMR.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Steven P Djordjevic
- Institute of Infection, Immunity and Innovation, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
22
|
Ranjan R, Thatikonda S. β-Lactam Resistance Gene NDM-1 in the Aquatic Environment: A Review. Curr Microbiol 2021; 78:3634-3643. [PMID: 34410464 DOI: 10.1007/s00284-021-02630-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
New Delhi Metallo-β-lactamase-1 (NDM-1) offers carbapenem antibiotics resistance that creates an evolving challenge in treating bacterial infections. NDM-1-bearing strains were observed in surface waters around New Delhi in 2010 and after then identified globally. The usage of antibiotics may hasten the growth of the NDM-1-producing bacteria, which pose severe hazards to human and animal health. The emergence of the NDM-1 in the aquatic environment is turning out to be a growing concern worldwide. NDM-1 gene conferring resistance to a widespread class of antibiotics has been observed in bacteria disseminated in animal production wastewaters, hospital sewage, domestic sewage, industrial effluents, wastewater treatment plants, drinking water, surface water, and even in groundwater. This review recapitulates the currently published research studies on the prevalence and geographical distribution of the NDM-1 gene in the aquatic environment, its habitats, and healthcare risk associated with NDM-1-producing bacteria, in addition to molecular techniques employed to reveal the occurrence of the NDM-1 in the aquatic environment, including conventional polymerase chain reaction, real-time qPCR, DNA hybridization, and microarray-based methods.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India.
| |
Collapse
|
23
|
Sala-Comorera L, Nolan TM, Reynolds LJ, Venkatesh A, Cheung L, Martin NA, Stephens JH, Gitto A, O'Hare GMP, O'Sullivan JJ, Meijer WG. Bacterial and Bacteriophage Antibiotic Resistance in Marine Bathing Waters in Relation to Rivers and Urban Streams. Front Microbiol 2021; 12:718234. [PMID: 34381437 PMCID: PMC8350879 DOI: 10.3389/fmicb.2021.718234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Fecal pollution of surface water may introduce bacteria and bacteriophages harboring antibiotic resistance genes (ARGs) into the aquatic environment. Watercourses discharging into the marine environment, especially close to designated bathing waters, may expose recreational users to fecal pollution and therefore may increase the likelihood that they will be exposed to ARGs. This study compares the bacterial and bacteriophage ARG profiles of two rivers (River Tolka and Liffey) and two small urban streams (Elm Park and Trimleston Streams) that discharge close to two marine bathing waters in Dublin Bay. Despite the potential differences in pollution pressures experienced by these waterways, microbial source tracking analysis showed that the main source of pollution in both rivers and streams in the urban environment is human contamination. All ARGs included in this study, blaTEM, blaSHV, qnrS, and sul1, were present in all four waterways in both the bacterial and bacteriophage fractions, displaying a similar ARG profile. We show that nearshore marine bathing waters are strongly influenced by urban rivers and streams discharging into these, since they shared a similar ARG profile. In comparison to rivers and streams, the levels of bacterial ARGs were significantly reduced in the marine environment. In contrast, the bacteriophage ARG levels in freshwater and the marine were not significantly different. Nearshore marine bathing waters could therefore be a potential reservoir of bacteriophages carrying ARGs. In addition to being considered potential additional fecal indicators organism, bacteriophages may also be viewed as indicators of the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Tristan M Nolan
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Anjan Venkatesh
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Lily Cheung
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Jayne H Stephens
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Aurora Gitto
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Gregory M P O'Hare
- UCD School of Computer Science, UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research, UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Pérez-Valdespino A, Pircher R, Pérez-Domínguez CY, Mendoza-Sanchez I. Impact of flooding on urban soils: Changes in antibiotic resistance and bacterial community after Hurricane Harvey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142643. [PMID: 33077230 DOI: 10.1016/j.scitotenv.2020.142643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Major perturbations in soil and water quality are factors that can negatively impact human health. In soil environments of urban areas, changes in antibiotic-resistance profiles may represent an increased risk of exposure to antibiotic-resistant bacteria via oral, dermal, or inhalation routes. We studied the perturbation of antibiotic-resistance profiles and microbial communities in soils following a major flooding event in Houston, Texas, caused by Hurricane Harvey. The main objective of this study was to examine the presence of targeted antibiotic-resistance genes and changes in the diversity of microbial communities in soils a short time (3-5 months) and a long time (18 months) after the catastrophic flooding event. Using polymerase chain reaction, we surveyed fourteen antibiotic-resistance elements: intI1, intI2, sul1, sul2, tet(A) to (E), tet(M), tet(O), tet(W), tet(X), and blaCMY-2. The number of antibiotic-resistance genes detected were higher in short-time samples compared to samples taken a long time after flooding. From all the genes surveyed, only tet(E), blaCMY-2, and intI1 were prevalent in short-time samples but not observed in long-time samples; thus, we propose these genes as indicators of exogenous antibiotic resistance in the soils. Sequencing of the V3-V4 region of the bacterial 16S rRNA gene was used to find that flooding may have affected bacterial community diversity, enhanced differences among bacterial lineages profiles, and affected the relative abundance of Actinobacteria, Verrucomicrobia, and Gemmatimonadetes. A major conclusion of this study is that antibiotic resistance profiles of soil bacteria are impacted by urban flooding events such that they may pose an enhanced risk of exposure for up to three to five months following the hurricane. The occurrence of targeted antibiotic-resistance elements decreased eighteen months after the hurricane indicating a reduction of the risk of exposure long time after Harvey.
Collapse
Affiliation(s)
- Abigail Pérez-Valdespino
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ryan Pircher
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, United States of America
| | - Citlali Y Pérez-Domínguez
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itza Mendoza-Sanchez
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, United States of America.
| |
Collapse
|
25
|
Athanasakopoulou Z, Tsilipounidaki K, Sofia M, Chatzopoulos DC, Giannakopoulos A, Karakousis I, Giannakis V, Spyrou V, Touloudi A, Satra M, Galamatis D, Diamantopoulos V, Mpellou S, Petinaki E, Billinis C. Poultry and Wild Birds as a Reservoir of CMY-2 Producing Escherichia coli: The First Large-Scale Study in Greece. Antibiotics (Basel) 2021; 10:antibiotics10030235. [PMID: 33652621 PMCID: PMC7996950 DOI: 10.3390/antibiotics10030235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Resistance mediated by β-lactamases is a globally spread menace. The aim of the present study was to determine the occurrence of Escherichia coli producing plasmid-encoded AmpC β-lactamases (pAmpC) in animals. Fecal samples from chickens (n = 159), cattle (n = 104), pigs (n = 214), and various wild bird species (n = 168), collected from different Greek regions during 2018-2020, were screened for the presence of pAmpC-encoding genes. Thirteen E. coli displaying resistance to third-generation cephalosporins and a positive AmpC confirmation test were detected. blaCMY-2 was the sole pAmpC gene identified in 12 chickens' and 1 wild bird (Eurasian magpie) isolates and was in all cases linked to an upstream ISEcp1-like element. The isolates were classified into five different sequence types: ST131, ST117, ST155, ST429, and ST1415. Four chickens' stains were assigned to ST131, while five chickens' strains and the one from the Eurasian magpie belonged to ST117. Seven pAmpC isolates co-harbored genes conferring resistance to tetracyclines (tetM, tetB, tetC, tetD), 3 carried sulfonamide resistance genes (sulI and sulII), and 10 displayed mutations in the quinolone resistance-determining regions of gyrA (S83L+D87N) and parC (S80I+E84V). This report provides evidence of pAmpC dissemination, describing for the first time the presence of CMY-2 in chickens and wild birds from Greece.
Collapse
Affiliation(s)
- Zoi Athanasakopoulou
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (D.C.C.); (A.G.); (A.T.)
| | | | - Marina Sofia
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (D.C.C.); (A.G.); (A.T.)
| | - Dimitris C. Chatzopoulos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (D.C.C.); (A.G.); (A.T.)
| | - Alexios Giannakopoulos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (D.C.C.); (A.G.); (A.T.)
| | | | | | - Vassiliki Spyrou
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece;
| | - Antonia Touloudi
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (D.C.C.); (A.G.); (A.T.)
| | - Maria Satra
- Faculty of Public and Integrated Health, University of Thessaly, 43100 Karditsa, Greece;
| | - Dimitrios Galamatis
- Hellenic Agricultural Organization DIMITRA (ELGO DIMITRA), 57001 Thessaloniki, Greece;
| | | | - Spyridoula Mpellou
- Bioefarmoges Eleftheriou LP-Integrated Mosquito Control, 19007 Marathon, Greece;
| | - Efthymia Petinaki
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (E.P.)
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (D.C.C.); (A.G.); (A.T.)
- Faculty of Public and Integrated Health, University of Thessaly, 43100 Karditsa, Greece;
- Correspondence:
| |
Collapse
|
26
|
Yang Y, Xing S, Chen Y, Wu R, Wu Y, Wang Y, Mi J, Liao X. Profiles of bacteria/phage-comediated ARGs in pig farm wastewater treatment plants in China: Association with mobile genetic elements, bacterial communities and environmental factors. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124149. [PMID: 33069996 DOI: 10.1016/j.jhazmat.2020.124149] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/06/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
In this study, the profiles of bacteria/phage-comediated antibiotic resistance genes (b/pARGs) were monitored in water samples collected from 45 pig farm wastewater treatment plants (WWTPs) in seven different regions of China. We found that 8 major types and 112 subtypes of b/pARGs were detected in all the water samples, and the detected number ranged from 53 to 92. The absolute abundances of bARGs and pARGs in the influent were as high as 109 copies/mL and 106 copies/mL, respectively. Anaerobic anoxic/oxic (AAO) and anaerobic short-cut nitrification/denitrification (ASND) treatment plants can effectively reduce the absolute abundance and amount of b/pARGs. Anaerobic treatment plants cannot reduce the absolute abundance of pARGs, and even increase the amount of pARGs. Mobile genetic elements (MGEs), bacterial communities and environmental factors were important factors impacting the b/pARG profile. Among these factors, the bacterial community was the major driver that impacted the bARG profile, while bacterial community and MGEs were the major codrivers impacting the pARG profile. This study was the first to investigate the profiles of b/pARGs in pig farm WWTPs in China on such a large scale, providing a reference for the prevention and control of ARG pollution in agricultural environments.
Collapse
Affiliation(s)
- Yiwen Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou 510642, China
| | - Sicheng Xing
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou 510642, China
| | - Yingxi Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou 510642, China
| | - Ruiting Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
27
|
Maganha de Almeida Kumlien AC, Borrego CM, Balcázar JL. Antimicrobial Resistance and Bacteriophages: An Overlooked Intersection in Water Disinfection. Trends Microbiol 2021; 29:517-527. [PMID: 33500192 DOI: 10.1016/j.tim.2020.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/23/2022]
Abstract
This article focuses on how bacteriophages (phages), antibiotic-resistance genes (ARGs), and disinfection practices intersect. Phages are considered to be the most abundant biological entities on Earth and they have the potential to transfer genes (including ARGs) among their bacterial hosts. In the urban water cycle, phages are used as indicators of fecal pollution and surrogates for human viral pathogens but they are also known to withstand common disinfection treatments deployed to produce safe drinking/reclaimed water. Recent studies also suggest that phages have the potential to become an additional footprint to monitor water safety. A precautionary approach should therefore include phages in surveillance programs aimed at monitoring antimicrobial resistance (AMR) in the urban water cycle. This article argues that phages ought to be used to assess the efficiency of disinfection treatments (both classical and novel) on reducing the risk associated with antibiotic resistance. Finally, this article discusses contributions to the advancement of AMR stewardship in aquatic settings and is relevant for researchers and water industry practitioners.
Collapse
Affiliation(s)
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain; University of Girona, 17004 Girona, Spain
| |
Collapse
|
28
|
Tsunoda R, Usui M, Tagaki C, Fukuda A, Boonla C, Anomasiri W, Sukpanyatham N, Akapelwa ML, Nakajima C, Tamura Y, Suzuki Y. Genetic characterization of coliform bacterial isolates from environmental water in Thailand. J Infect Chemother 2021; 27:722-728. [PMID: 33468426 DOI: 10.1016/j.jiac.2020.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION In contrast to the study in other part of the world, information about characteristics of plasmids carrying antimicrobial resistance genes (ARGs) in Enterobacteriaceae derived from environmental water in tropical Asian countries including Thailand is limited. This study, therefore, aimed to gain insight into genetic information of antimicrobial resistance in environmental water in Thailand. METHODS Coliform bacteria were isolated from environmental water collected at 20 locations in Thailand and identified. Then, susceptibility profiles to ampicillin, cefazoline, cefotaxime, kanamycin, ciprofloxacin, sulfamethoxazole, tetracycline, and nalidixic acid were assessed. In addition, antimicrobial resistant genes integrons, and replicon types were analyzed. And furthermore, plasmids carrying blaTEM and tetM were identified by S1-PFGE analysis and confirmed transmissibility by transconjugation experiments. RESULTS In 130 coliform bacteria isolated, 89 were resistant to cefazoline while 41 isolates were susceptible. Cefazoline-resistant coliform bacteria were found to be significantly resistant to cefotaxime and tetracycline as compared to susceptible isolates. Hence, blaTEM and tetM correlating with β-lactam antibiotics and tetracycline, respectively, were analyzed found to co-localize on the IncFrepB plasmids in isolates from pig farms' wastewater by S1-PFGE analysis. And furthermore, transmissibility of the plasmids was confirmed. CONCLUSIONS Results obtained in this study suggested that ARGs in coliform bacteria may have been spreading on the farm via IncFrepB plasmids. Hence, appropriate use of antimicrobials and good hygiene management on the farm are required to prevent the emergence and spread of resistant bacteria.
Collapse
Affiliation(s)
- Risa Tsunoda
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| | - Chie Tagaki
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Chanchai Boonla
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Wilai Anomasiri
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Nop Sukpanyatham
- Quality Vet Product Co., Ltd, Klongsamwa District, Bangkok, Thailand
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
29
|
Ji M, Liu Z, Sun K, Li Z, Fan X, Li Q. Bacteriophages in water pollution control: Advantages and limitations. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:84. [PMID: 33294248 PMCID: PMC7716794 DOI: 10.1007/s11783-020-1378-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 05/11/2023]
Abstract
Wastewater is a breeding ground for many pathogens, which may pose a threat to human health through various water transmission pathways. Therefore, a simple and effective method is urgently required to monitor and treat wastewater. As bacterial viruses, bacteriophages (phages) are the most widely distributed and abundant organisms in the biosphere. Owing to their capacity to specifically infect bacterial hosts, they have recently been used as novel tools in water pollution control. The purpose of this review is to summarize and evaluate the roles of phages in monitoring pathogens, tracking pollution sources, treating pathogenic bacteria, infecting bloom-forming cyanobacteria, and controlling bulking sludge and biofilm pollution in wastewater treatment systems. We also discuss the limitations of phage usage in water pollution control, including phage-mediated horizontal gene transfer, the evolution of bacterial resistance, and phage concentration decrease. This review provides an integrated outlook on the use of phages in water pollution control.
Collapse
Affiliation(s)
- Mengzhi Ji
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Zichen Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Kaili Sun
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Zhongfang Li
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899 China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| |
Collapse
|
30
|
Balcázar JL. Implications of bacteriophages on the acquisition and spread of antibiotic resistance in the environment. Int Microbiol 2020; 23:475-479. [PMID: 32002743 DOI: 10.1007/s10123-020-00121-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/30/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Although bacteriophages (or simply phages) are the most abundant biological entities and have the potential to transfer genetic material between bacterial hosts, their contribution to the acquisition and spread of antibiotic resistance genes in the environment has not been extensively studied. The environment is continually exposed to a wide variety of pollutants from anthropogenic sources, which may promote horizontal gene transfer events, including those mediated by phages. Considering the significant and growing concern of antibiotic resistance, phages should be taken into consideration during the implementation of mitigation measures. This review is focused on the emergence and spread of antibiotic resistance in the environment, with a special emphasis on the role of phages.
Collapse
Affiliation(s)
- José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain.
- University of Girona, 17004, Girona, Spain.
| |
Collapse
|