1
|
Zhou S, Li Y, Yang S, Lin L, Deng T, Gan C, An W, Xu M. The role of electroactive biofilms in enhanced para-chlorophenol transformation collaborated with biosynthetic palladium nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126312. [PMID: 40288628 DOI: 10.1016/j.envpol.2025.126312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Bioremediation is a cost-effective strategy for decomposition of chlorinated organic contaminants, but its application is often hindered by the generation of toxic chlorinated byproducts. Though the design of functional biofilms, incorporating microbially-inspired catalytic materials, has emerged as a promising solution for tackling the byproducts issues, the microbial mechanisms driving these processes remain inadequately understood. This study demonstrates a hybrid electroactive biofilm (EAB)-palladium nanoparticles (Pd NPs) system that effectively separates the dechlorination and mineralization of para-chlorophenol (4-CP), and most importantly, it provides new insights into the microbial and genetic roles of EABs in this process. Under an applied potential of -0.6 V, Pd NPs via palladate reduction were biogenically synthesized and deposited on the cytomembranes within the biofilm, achieving an 82 % decrease in 4-CP concentration within 48 h. The ultra-performance liquid chromatogram and mass spectrum confirmed that 4-CP was initially dechlorinated to phenol by the biogenic Pd NPs before undergoing further degradation by the biofilm, effectively preventing toxic chlorinated byproducts. The Dechloromonas, Pseudomonas, and Geobacter were identified as predominant genera in the system and the metagenomics analysis noted increased relative abundance of ring-cleavage genes like pcaG, dmpB/xylE, and catA. Importantly, the abundance of dmpB/xylE was primarily associated with Dechloromonas and Pseudomonas, further highlighted that the dmpB/xylE-pathway was important for rapid 4-CP decomposition in the system. This study advances the understanding of EAB-Pd NPs synergy, showcasing an innovative and sustainable approach for the efficient removal of halogenated pollutants.
Collapse
Affiliation(s)
- Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yanjing Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tongchu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Cuifen Gan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Wenwen An
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
2
|
Xie J, Wu X, Zhang L, Zhong F, Cheng S. Optimization of anode positioning in constructed wetlands coupled with microbial fuel cells based on C/O microenvironment for simultaneous removal of disinfection by-products and nitrogen. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137826. [PMID: 40048788 DOI: 10.1016/j.jhazmat.2025.137826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/01/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
Constructed wetland coupled with microbial fuel cell (CW-MFC) has been applied for the advanced removal of emerging contaminants and nitrogen due to its sustainability potential. However, the impact of anode positioning on the synergistic removal of disinfection by-products (DBPs) and nitrogen in CW-MFC remains insufficiently understood. In this study, three CW-MFCs with different anode positions were constructed to explore the response differences in the removal of DBPs (represented by haloacetic acids-HAAs) and nitrogen. It was observed that the CW-MFC with the anode positioned centrally exhibited considerable nitrogen removal (TN removal efficiency: 56.3 ± 8.6 %) and HAAs degradation performance (dichloroacetic acid removal efficiency: 97.8 ± 1.3 %). Correlation analysis identified the advantageous carbon-oxygen environment at the anode as the most critical factor. Furthermore, this carbon-oxygen environment (CODcr-anode/DO=27.7) directly provided favorable conditions for electroactive bacteria to inhabit the anode, significantly enriching denitrifiers and HAAs-degrading bacteria at the cathode. Key genes (HAAs and carbon-nitrogen metabolic) were upregulated, clarifying the mechanisms of synergistic removal of HAAs and nitrogen in CW-MFCs with centrally positioned anodes. This study highlights the importance of CW-MFCs with anode positioning in the synergistic removal of DBPs and nitrogen, providing straightforward and feasible strategy for optimizing CW-MFC performance and scaling up.
Collapse
Affiliation(s)
- Jiawei Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Institute of Eco-environmental Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xue Wu
- Shanghai International College of Intellectual Property, Tongji University, Shanghai 200092, China
| | - Liming Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Institute of Eco-environmental Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Shuiping Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Institute of Eco-environmental Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Shao G, Dong J, Zhang W, Sun S, Li C, Li Y. In situ bioelectrochemical remediation of contaminated soil and groundwater: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126250. [PMID: 40228729 DOI: 10.1016/j.envpol.2025.126250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Contamination of the subsurface environment poses a serious hazard to the environment and human health. Recently, the bioelectrochemical system (BES) has drawn great attention in soil and groundwater remediation as it does not necessitate the addition of chemicals and exhibits minimal energy consumption to facilitate microbial degradation of pollutants. However, the complexity of the subsurface environment and the design parameters of the BES significantly affect the remediation performance and the current literature on BES primarily concentrates on its application in wastewater treatment, with a lack of summary of that in the subsurface environment. Therefore, the purpose of this review was to provide the current status, challenges, and outlooks of BES in situ treatment of pollutants from soil and groundwater. Firstly, the principles and efficacies of BES in treating the typical pollutants from the subsurface environment were discussed. Secondly, the factors that impact the BES treatment efficiencies, especially soil properties, the distinctive and pivotal factors for BES in situ application, were discussed specifically. Finally, the challenges and outlooks of BES for the in situ remediation of the contaminated soil and groundwater were addressed. BES is a green and sustainable in situ remediation technology and future advancements may necessitate the integration with complementary technologies and innovative system configurations to advance the practical implementation of BES.
Collapse
Affiliation(s)
- Guohao Shao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Jun Dong
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Weihong Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Sifan Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Chenlu Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Yan Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Liu H, Wu D, Wang W. A review of enhancement of chlorophenol bioremediation using synergistic effects between zero-valent iron and microorganisms. Biodegradation 2025; 36:47. [PMID: 40388055 DOI: 10.1007/s10532-025-10133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
Chlorophenols (CPs) are a class of synthetic organic chemicals that are widely distributed in soil and groundwater, posing significant risks to human health and the environment due to persistence, acute toxicity, and potential carcinogenicity. Zero-valent iron (ZVI) has emerged as a promising remediation technique for CPs, but its efficacy is often hindered by surface passivation, non-target competition, and limited mobility in the subsurface. While CPs are inherently biodegradable, their high toxicity and the lack of functional enzymes in indigenous microbial systems restrict the effectiveness of bioremediation. Recently, a hybrid system integrating ZVI with microbial degradation draws increasingly research interests, paving out a new path for sustainable degradation of CPs. These systems leverage the synergistic interactions between ZVI and microorganisms to enhance CP biodegradation. This review provides a comprehensive analysis of the advancement. Key topics include the enhancement of electron transfer, alterations to microbial communities, mitigation of toxicity, and the interplay between other processes. Operation modes, ZVI dosage, and interactions with naturally occurring iron minerals, are also discussed in the context of applications in soil and groundwater remediation. Despite research efforts and successful implementations, critical knowledge gaps remain, particularly in regard to the characterization of microbial processes in natural systems, highlighting the need for future research.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
- Shanghai Jianke Environmental Technology Co., Ltd, Shanghai, 200032, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| | - Weishi Wang
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO, 80401, USA
| |
Collapse
|
5
|
Zhao T, Liu Z, Guo Z, Yin X, Zhu W, He Z, Liu W, Yue X, Zhou A. External voltage regulates hydrogen and vivianite recovery from fermentation liquid in microbial electrolysis cell equipped with iron anode: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125209. [PMID: 40185019 DOI: 10.1016/j.jenvman.2025.125209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Employing an iron anode in microbial electrolysis cell (MEC) can promote hydrogen yield and vivianite recovery from waste biomass by accelerating electron transport, but the performance is highly dependent on the functional microbial community present and the ferrous ion content. An external voltage had a significant effect on enriching functional microbes and controlling the release of ferrous ions. In this study, the effects of different voltages, i.e., 0.4 V, 0.6 V, 0.8 V and 1.0 V, on hydrogen production and vivianite recovery were explored. The results indicated that an applied voltage of 0.8 V resulted in the maximum hydrogen productivity of 11.17 mmol/g COD, representing an increase of 18∼91 % compared with the other voltage conditions. The removal efficiency of phosphorus reached 100 % at 3 d in the 0.8 V group, with vivianite as the main product at a purity of 92.7 %. An external voltage of 0.8 V notably enhanced the electrochemical performance of the MEC. The relative abundances of bio-cathodic microbes, i.e., electrochemically active bacteria, anaerobic fermentation bacteria, dissimilatory iron-reducing bacteria and homoacetogens, greatly changed with different voltages, reaching 9.6 %, 3.2 %, 3.1 % and 23.7 %, respectively, in the 0.8 V group. The expression of key functional genes related hydrogen production, i.e., the ferredoxin-dependent hydrogenase pathway and pyruvate ferredoxin oxidoreductase pathway, was significantly upregulated, whereas that related to homo-acetogenesis was downregulated under 0.8 V. This work reveals the performance and mechanism of synergistic hydrogen production and phosphorus recovery under an applied voltage, and provides new insights and feasible measures for improving hydrogen production and phosphorus recovery in MECs.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, China
| | - Zhihong Liu
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan, China.
| | - Zhengtong Guo
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, China
| | - Xiaoyun Yin
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, China
| | - Wenhai Zhu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China.
| | - Zhangwei He
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Shanxi, China
| | - Wenzong Liu
- Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Xiuping Yue
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, China; Shanxi Engineer Research Institute of Sludge Disposition, and Resources, Taiyuan University of Technology, Taiyuan, China
| | - Aijuan Zhou
- Department of Water Supply and Drainage, Taiyuan University of Technology, Taiyuan, China; Shanxi Engineer Research Institute of Sludge Disposition, and Resources, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
6
|
Chen X, Li Z, Zhang Z, Nan J, Zhao G, Ho SH, Liang B, Wang A. How Pseudomonas conducts reductive dechlorination of 2,4,6-trichlorophenol: Insights into metabolic performance and organohalide respiration process. WATER RESEARCH 2025; 273:123014. [PMID: 39719803 DOI: 10.1016/j.watres.2024.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
Organohalide-respiring bacteria (OHRB) play a key role in facilitating the detoxification of halogenated organics, but their slow growth and harsh growth conditions often limit their application in field remediation. In this study, we investigated the metabolic performance and organohalide respiration process of a non-obligate OHRB, Pseudomonas sp. CP-1, demonstrating favorable anaerobic reductive dechlorination ability of 2,4,6-trichlorophenol to 4-chlorophenol with a removal rate constant (k) of 0.46 d-1. Due to its facultative anaerobic nature, strain CP-1 exhibited unique metabolic properties. In aerobic conditions, strain CP-1 preferentially utilized oxygen for rapid proliferation, and anaerobic reductive dechlorination was initiated once the oxygen was depleted. The aerobic proliferation facilitated the subsequent reductive dechlorination process. Through multi-tool analysis, a modified tricarboxylic acid cycle was proposed to be linked to organohalide respiration when acetate served as the sole carbon source. A predictive model for the electron transport chain (ETC) for reductive dechlorination was constructed, with complex Ⅰ, complex Ⅱ, ubiquinone, complex Fix (flavoprotein), and reductive dehalogenase (RDase) as the major components. A specific RDase facilitating reductive dechlorination was identified. It shared a 64.35 % amino acid similarity with biochemically characterized RDases and was designated CprA-2. Its ortho-dechlorination catalytic process was proposed through molecular docking. The discovery of highly adaptable Pseudomonas with favorable dechlorination activity and the elucidation of its metabolic properties provide valuable insights into the understanding of non-obligate OHRBs and their application regulation.
Collapse
Affiliation(s)
- Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Zimeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Guanshu Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| |
Collapse
|
7
|
Ren B, Shi X, Guo J, Jin P. Interaction of sulfate-reducing bacteria and methanogenic archaea in urban sewers, leads to increased risk of proliferation of antibiotic resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125777. [PMID: 39894155 DOI: 10.1016/j.envpol.2025.125777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/07/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Sewers are considered a potential reservoir of antibiotic resistance. However, the generation of antibiotic resistance genes (ARGs) in microbial communities in pipeline biofilms under antibiotic stress remains unexplored. In this study, the biodegradation efficiency of tetracycline (TCY) and sulfamethoxazole (SMX) was evaluated in a pilot reactor of the sewers. The results showed that under TCY and SMX stress, the degradation efficiency of sewage water was inhibited. The most abundant ARGs detected in the biofilm samples were TCY-related genes (e.g., tetW/N/W, tetC, and tetM), accounting for 34.1%. The microbial community composition varied, and the correlation analysis showed that antibiotic stress had a certain impact on the biological metabolic activity and function of the urban sewers. The community structure and diversity of biofilms enabled the evaluation of the bioconversion of antibiotics. Notably, Anaerocella and Paludibacter directly influenced the methanogenesis and sulfate reduction processes, playing a key role in the interaction between sulfate-reducing bacteria and methanogenic archaea. These microorganisms facilitated the proliferation of ARGs (tet and sul) in the biofilms through horizontal gene transfer. This study provides insight into the front-end control of ARGs, further improving sewage treatment plant processes and reducing the environmental and health risks caused by antibiotic abuse.
Collapse
Affiliation(s)
- Bo Ren
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China.
| |
Collapse
|
8
|
Lin XQ, Li ZL, Chen XQ, Wang L, Wang AJ. Simultaneous deep removal of nitrate and tetrabromobisphenol A in microbial electrochemical system-constructed wetland. BIORESOURCE TECHNOLOGY 2025; 416:131723. [PMID: 39477166 DOI: 10.1016/j.biortech.2024.131723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Microbial electrochemical system-constructed wetland (MES-CW) is environmentally friendly in removing organic contaminants from wastewater. Tetrabromobisphenol A (TBBPA) is an emerging pollutant that is inefficiently removed in conventional wastewater treatment. The feasibility of deep removal of TBBPA and nitrate and the related mechanism in MES-CW remains unclear. This study demonstrated the enhanced TBBPA detoxification in MES-CW accompanied by nitrate removal. Nitrate significantly suppressed the TBBPA reductive debromination and methane generation. It altered the microbial community and enriched Acinetobacter in the electrode, stimulating the TBBPA hydrolytic debromination and metabolite oxidation. The biocathode supplied electrons for dehalogenators in TBBPA reductive debromination, while the anode served as the electron acceptor for function bacteria in TBBPA metabolite oxidation. Nitrate and anodic electricity optimized the microbial community and provided electron acceptors for TBBPA metabolites oxidation in MES-CW, guiding the deep removal of nitrate and emerging pollutants in wastewater.
Collapse
Affiliation(s)
- Xiao-Qiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xue-Qi Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
9
|
Shi K, Xu JM, Cui HL, Cheng HY, Liang B, Wang AJ. Microbiome regulation for sustainable wastewater treatment. Biotechnol Adv 2024; 77:108458. [PMID: 39343082 DOI: 10.1016/j.biotechadv.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sustainable wastewater treatment is essential for attaining clean water and sanitation, aligning with UN Sustainable Development Goals. Wastewater treatment plants (WWTPs) have utilized environmental microbiomes in biological treatment processes in this effort for over a century. However, the inherent complexity and redundancy of microbial communities, and emerging chemical and biological contaminants, challenge the biotechnology applications. Over the past decades, understanding and utilization of microbial energy metabolism and interaction relationships have revolutionized the biological system. In this review, we discuss how microbiome regulation strategies are being used to generate actionable performance for low-carbon pollutant removal and resource recovery in WWTPs. The engineering application cases also highlight the real feasibility and promising prospects of the microbiome regulation approaches. In conclusion, we recommend identifying environmental risks associated with chemical and biological contaminants transformation as a prerequisite. We propose the integration of gene editing and enzyme design to precisely regulate microbiomes for the synergistic control of both chemical and biological risks. Additionally, the development of integrated technologies and engineering equipment is crucial in addressing the ongoing water crisis. This review advocates for the innovation of conventional wastewater treatment biotechnology to ensure sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jia-Min Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Han-Lin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
10
|
Chen SH, Li ZT, Lai CY, Zhao HP. Enhancing reductive dechlorination of trichloroethylene in bioelectrochemical systems with conductive materials. ENVIRONMENTAL RESEARCH 2024; 261:119773. [PMID: 39128662 DOI: 10.1016/j.envres.2024.119773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
The incorporation of conductive materials to enhance electron transfer in bioelectrochemical systems (BES) is considered a promising approach. However, the specific effects and mechanisms of these materials on trichloroethylene (TCE) reductive dechlorination in BES remains are not fully understood. This study investigated the use of magnetite nanoparticles (MNP) and biochars (BC) as coatings on biocathodes for TCE reduction. Results demonstrated that the average dechlorination rates of MNP-Biocathode (122.89 μM Cl·d-1) and BC-Biocathode (102.88 μM Cl·d-1) were greatly higher than that of Biocathode (78.17 μM Cl·d-1). Based on MATLAB calculation, the dechlorination rate exhibited a more significantly increase in TCE-to-DCE step than the other dechlorination steps. Microbial community analyses revealed an increase in the relative abundance of electroactive and dechlorinating populations (e.g., Pseudomonas, Geobacter, and Desulfovibrio) in MNP-Biocathode and BC-Biocathode. Functional gene analysis via RT-qPCR showed the expression of dehalogenase (RDase) and direct electron transfer (DET) related genes was upregulated with the addition of MNP and BC. These findings suggest that conductive materials might accelerate reductive dechlorination by enhancing DET. The difference of physicochemical characteristics (e.g. particle size and specific surface area), electron transfer enhancement mechanism between MNP and BC as well as the reduction of Fe(III) by hydrogen may explain the superior dechlorination rate observed with MNP-Biocathode.
Collapse
Affiliation(s)
- Su-Hao Chen
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Li D, Guo W, Chen B, Zhai Y, Lang Y, Guo T, Cao X, Zhao L. Niche construction in a bioelectrochemical system with 3D-electrodes for efficient and thorough biodechlorination. WATER RESEARCH 2024; 265:122260. [PMID: 39167969 DOI: 10.1016/j.watres.2024.122260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The design of bioelectrochemical system based on the principle of niche construction, offers a prospective pathway for achieving efficient and thorough biodechlorination in groundwater. This study designed a single-chamber microbial electrolysis cell, with porous three-dimensional (3D) electrodes introduced, to accelerate the niche construction process of functional communities. This approach allowed the growth of various bacteria capable of simultaneously degrading 2,4-dichlorophenol (DCP) and its refractory intermediates, 4-chlorophenol (4CP). The 3D-electrodes provided abundant attachment sites for diverse microbes with a high initial Shannon index (3.4), and along the degradation progress, functional bacteria (Hydrogenoanaerobacterium and Rhodococcus erythropolis for DCP-degrading, Sphingobacterium hotanense for 4CP-degrading and Delftia tsuruhatensis for phenol-degrading) constructed their niches. Applying an external voltage (0.6 V) further increased the selective pressure and niche construction pace, as well as provided 'micro-oxidation' site on the electrode surface, thereby achieving the degradation of 4CP and mineralization of phenol. The porous electrodes could also adsorb contaminants and narrow their interaction distance with microbes, which benefited the degradation efficiency. Thus a 10-fold increase in the overall mineralization of DCP was achieved. This study constructed a novel bioelectrochemical system for achieving efficient and thorough biodechlorination, which was suitable for in situ bioremediation of groundwater.
Collapse
Affiliation(s)
- Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Lang
- The Fourth Engineering Co., LTD. of China Railway No 4 Group, Hefei Anhui 230000, China
| | - Tianbao Guo
- Zhou Enlai School of Government Management, Nankai University, Tianjin 300071, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Pan Y, Yang L, Wang G, Li H, Wang S, Zhang L, Wei W, Lu J. Self-Assembly of Nanovesicles for Enhanced Adsorption and Efficient Photodegradation of 2,4,6-Trichlorophenol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48836-48845. [PMID: 39250561 DOI: 10.1021/acsami.4c10154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The compound 2,4,6-trichlorophenol poses significant risks to both the aquatic environment and human health. Its inherent persistence and stability present challenges in achieving complete purification, thus warranting its inclusion as a priority pollutant. The present study reports the development of an amphiphilic small-molecule compound that self-assembles into nanovesicles exhibiting remarkable adsorption and photodegradation capabilities. Through the synergistic effects of hydrogen bonding, van der Waals forces, π-π interactions, and electrostatic interactions, these vesicles efficiently adsorb 2,4,6-trichlorophenol from aqueous solutions within 1 min while demonstrating exceptional environmental stability and broad applicability. Upon self-assembly into vesicles, not only are more adsorption sites exposed, but charge separation and migration within the vesicles are also facilitated. Through the synergistic effects of adsorption and photodegradation, complete removal of 2,4,6-trichlorophenol in aqueous solution can be achieved within 8 h while exhibiting excellent recycling capability. This approach offers a viable strategy for designing and synthesizing pure organic photodegradable materials.
Collapse
Affiliation(s)
- Yicheng Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Liujun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, People's Republic of China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Shaoshuo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Long Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wanyu Wei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
13
|
Wang Q, Zhang D, Li X, Wang Y, Wang H, Zhang Z, Song W, Guo P. Effects of humic electron mediators on reductive dechlorination of polychlorinated biphenyl by consortia enriched from terrestrial and marine environments. Front Microbiol 2024; 15:1452787. [PMID: 39149206 PMCID: PMC11324565 DOI: 10.3389/fmicb.2024.1452787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Humic electron mediators can facilitate the reductive dehalogenation of organohalogenated compounds by accelerating electron transfer. To investigate the effect of humic electron mediators on the microbial anaerobic reductive dechlorination of Polychlorinated biphenyls (PCBs), three types of humic electron mediators, humin (HM), humic acid (HA), and anthraquinone-2,6-disulfonic acid (AQDS, HA analogs), were added to PCB dechlorination cultures enriched from different sources in terrestrial and marine environments (T and M cultures). The results showed that meta- and para-site dechlorination occurred in the M culture, while only meta-site dechlorination occurred in the T culture. The dechlorination process N and the dechlorination process H or H' are presented in both cultures. HM enhanced PCB dechlorination metabolic activity in both cultures mainly by promoting meta-site dechlorination. HA showed a weak promoting effect on the M culture by promoting para-chlorine removal but inhibited the dechlorination metabolism of the terrestrial-origin culture, inhibiting meta-chlorine removal. AQDS showed inhibitory effects on both cultures by inhibiting the microbial removal of meta-chlorine. High-throughput sequencing and qPCR results suggest that HM is not a carbon source for the potential dechlorinating metabolism of Dehalococcoides but may promote reductive dechlorination by changing the community structure, and AQDS may inhibit anaerobic reductive dechlorination of PCBs by inhibiting the growth of Dehalococcoides. This study provides insights into the mechanism of enhancing PCB microbial dechlorination mediated by humic substances and plays a significant role in extending the application prospects of PCBs bioremediation technology.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
- School of International Studies, Ningbo University, Ningbo, China
| | - Dongdong Zhang
- Donghai Laboratory, Zhoushan, China
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
| | - Xinkai Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
| | - Zhichao Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
| | - Wei Song
- School of International Studies, Ningbo University, Ningbo, China
| | - Peng Guo
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
14
|
Khan MI, Yoo K, Schwab L, Kümmel S, Nijenhuis I. Characterization of anaerobic biotransformation of hexachlorocyclohexanes by novel microbial consortia enriched from channel and river sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135198. [PMID: 39013321 DOI: 10.1016/j.jhazmat.2024.135198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
The microbial biotransformation of hexachlorocyclohexane (HCH) by novel anaerobic microbial consortia enriched from sediments of an industrial effluent channel and the river Ravi in Pakistan was examined. The anaerobic consortia were capable of biotransforming α-, β-, γ-, and δ-HCH through reductive dichloroelimination, resulting in the formation of benzene and monochlorobenzene. Concerning γ-HCH biotransformation by the channel and river cultures, isotopic fractionations for carbon (εC) were - 5.3 ± 0.4 (‰) and - 10.6 ± 1.2 (‰), while isotopic fractionations for chlorine (εCl) were - 4.4 ± 0.4 (‰) and - 7.8 ± 0.9 (‰), respectively. Furthermore, lambda values (Λ), representing the correlation of δ13C and δ37Cl fractionation, were determined to be 1.1 ± 0.1 and 1.3 ± 0.1 for γ-HCH biotransformation, suggesting a reductive dichloroelimination as the initial step of HCH biotransformation in both cultures. Amplicon sequencing targeting the 16S rRNA genes revealed that Desulfomicrobium populations were considerably increased in both cultures, indicating their possible involvement in the degradation process. These findings suggest that Desulfomicrobium-like populations may have an important role in biotransformation of HCH and novel anaerobic HCH-degrading microbial consortia could be useful bioaugmentation agents for the bioremediation of HCH-contaminated sites in Pakistan.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Laura Schwab
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Ivonne Nijenhuis
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| |
Collapse
|
15
|
Shi K, Liang B, Cheng HY, Wang HC, Liu WZ, Li ZL, Han JL, Gao SH, Wang AJ. Regulating microbial redox reactions towards enhanced removal of refractory organic nitrogen from wastewater. WATER RESEARCH 2024; 258:121778. [PMID: 38795549 DOI: 10.1016/j.watres.2024.121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024]
Abstract
Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
16
|
Wu J, Gao D, Wang L, Du X, Zhang Z, Liang H. Bioremediation of 2,4,6-trichlorophenol by extracellular enzymes of white rot fungi immobilized with sodium alginate/hydroxyapatite/chitosan microspheres. ENVIRONMENTAL RESEARCH 2024; 252:118937. [PMID: 38621627 DOI: 10.1016/j.envres.2024.118937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Hydroxyapatite, a calcium phosphate biomass material known for its excellent biocompatibility, holds promising applications in water, soil, and air treatment. Sodium alginate/hydroxyapatite/chitosan (SA-HA-CS) microspheres were synthesized by cross-linking sodium alginate with calcium chloride. These microspheres were carriers for immobilizing extracellular crude enzymes from white rot fungi through adsorption, facilitating the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) in water and soil. At 50 °C, the immobilized enzyme retained 87.2% of its maximum activity, while the free enzyme activity dropped to 68.86%. Furthermore, the immobilized enzyme maintained 68.09% of its maximum activity at pH 7, surpassing the 51.16% observed for the free enzyme. Under optimal conditions (pH 5, 24 h), the immobilized enzymes demonstrated a remarkable 94.7% removal rate for 160 mg/L 2,4,6-TCP, outperforming the 62.1% achieved by free crude enzymes. The degradation of 2,4,6-TCP by immobilized and free enzymes adhered to quasi-first-order degradation kinetics. Based on LC-MS, the plausible biodegradation mechanism and reaction pathway of 2,4,6-TCP were proposed, with the primary degradation product identified as 1,2,4-trihydroxybenzene. The immobilized enzyme effectively removed 72.9% of 2,4,6-TCP from the soil within 24 h. The degradation efficiency of the immobilized enzyme varied among different soil types, exhibiting a negative correlation with soil organic matter content. These findings offer valuable insights for advancing the application of immobilized extracellular crude enzymes in 2,4,6-TCP remediation.
Collapse
Affiliation(s)
- Jing Wu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xuran Du
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zhou Zhang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
17
|
Kim KC, Lin X, Liu X, Li C. High-performance anode electrocatalyst of MnCo 2S 4-Co 4S 3/bamboo charcoal for stimulating power generation in microbial fuel cell. ENVIRONMENTAL TECHNOLOGY 2024; 45:3328-3338. [PMID: 37194302 DOI: 10.1080/09593330.2023.2215453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Microbial fuel cell (MFC) is a promising technology for recovering energy in wastewater through bacterial metabolism. However, it always suffers from low power density and electron transfer efficiency, restricting the application. This study fabricated the MnCo2S4-Co4S3/bamboo charcoal (MCS-CS/BC) through an easy one-step hydrothermal method, and the material was applied to carbon felt (CF) to form high-performance MFC anode. MCS-CS/BC-CF anode exhibited lower Rct (10.1 Ω) than BC-CF (17.24 Ω) and CF anode (116.1 Ω), exhibiting higher electrochemical activity. MCS-CS/BC-CF anode promoted the electron transfer rate and resulted in enhanced power density, which was 9.27 times higher (980 mW m-2) than the bare CF (105.7 mW m-2). MCS-CS/BC-CF anode showed the best biocompatibility which attracted distinctly larger biomass (146.27 mg/μL) than CF (20 mg/μL) and BC-CF anode (20.1 mg/μL). The typical exoelectrogens (Geobacter and etc.) took dramatically higher proportion on MCS-CS/BC-CF anode (59.78%) than CF (2.99%) and BC-CF anode (26.67%). In addition, MCS-CS/BC stimulated the synergistic effect between exoelectrogens and fermentative bacteria, greatly favouring the extracellular electron transfer rate between bacteria and the anode and the power output. This study presented an efficient way of high-performance anode electrocatalyst fabrication for stimulating MFC power generation, giving suggestions for high-efficient energy recovery from wastewater.
Collapse
Affiliation(s)
- Kuk Chol Kim
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
- Metallurgical Faculty, Kim Chaek University of Science and Technology, Pyongyang, Democratic People's Republic of Korea
| | - Xiaoqiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
| |
Collapse
|
18
|
Kamel AH, Abd-Rabboh HSM. Electrochemical sensors based on molecularly imprinted polymers for the detection of chlorophenols as emergent distributing chemicals (EDCs): a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4024-4040. [PMID: 38860820 DOI: 10.1039/d4ay00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Environmental pollutants like chlorophenol chemicals and their derivatives are commonplace. These compounds serve as building blocks in the production of medicines, biocides, dyes, and agricultural chemicals. Chlorophenols enter the environment through several different pathways, including the breakdown of complex chlorinated hydrocarbons, industrial waste, herbicides, and insecticides. Chlorophenols are destroyed thermally and chemically, creating dangerous chemicals that pose a threat to public health. Water in particular is affected, and thorough monitoring is required to find this source of pollution because it can pose a major hazard to both human and environmental health. For the detection of chlorophenols, molecularly imprinted polymers (MIPs) have been incorporated into a variety of electrochemical sensing systems and assay formats. Due to their long-term chemical and physical stability as well as their simple and affordable synthesis process, MIPs have become intriguing synthetic alternatives over the past few decades. In this review, we concentrate on the commercial potential of the MIP technology. Additionally, we want to outline the most recent advancements in their incorporation into electrochemical sensors with a high commercial potential for detecting chlorophenols.
Collapse
Affiliation(s)
- Ayman H Kamel
- Department, College of Science, University of Bahrain, Sokheer 32038, Kingdom of Bahrain.
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Hisham S M Abd-Rabboh
- Chemistry Department, College of Science, King Khalid University, PO Box 9004, Abha, 62223, Saudi Arabia
| |
Collapse
|
19
|
Kamel AH, Abd-Rabboh HSM, Hefnawy A. Molecularly imprinted polymer-based electrochemical sensors for monitoring the persistent organic pollutants chlorophenols. RSC Adv 2024; 14:20163-20181. [PMID: 38915326 PMCID: PMC11194710 DOI: 10.1039/d4ra03095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024] Open
Abstract
Because of the serious risks they pose to the environment and public health, chlorophenols (CPs), a typical class of the most persistent organic pollutants, have drawn increasing attention. Monitoring CPs effectively has become a pressing and difficult problem. The rapidly increasing need for onsite and real-time CP detection has led to the consideration of electrochemical sensing as a workable solution. Molecularly imprinted polymer (MIP)-based electrochemical sensing has emerged as a promising area for environmental monitoring in response to this analytical problem. MIPs, in conjunction with miniature electrochemical transducers, provide the opportunity to detect target analytes in situ. These devices have the advantages of great chemical and physical stability, cheap production costs, good selectivity, and quick response times. Most studies suggest that these sensors use nanoparticles to improve their analytical properties, especially sensitivity. Furthermore, these sensors have successfully used real water samples without the need for time-consuming pretreatment procedures. This article provides an overview of electrochemical MIP-based sensors reported to detect CPs in water samples. To obtain the highest sensitivity, special consideration is given to the fabrication of the sensors, which includes the use of various functional monomers, sensing platforms, and materials. Several other parameters are also discussed, including the linear concentration range, limit of detection, and the types of water samples that were examined.
Collapse
Affiliation(s)
- Ayman H Kamel
- Department, College of Science, University of Bahrain Sakhir 32038 Kingdom of Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Hisham S M Abd-Rabboh
- Chemistry Department, College of Science, King Khalid University PO Box 9004 Abha 62223 Saudi Arabia
| | - A Hefnawy
- Department, College of Science, University of Bahrain Sakhir 32038 Kingdom of Bahrain
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University El-Shatby Alexandria 21526 Egypt
| |
Collapse
|
20
|
Zubair M, Hussain A, Shahzad S, Arshad M, Ullah A. Emerging trends and challenges in polysaccharide derived materials for wound care applications: A review. Int J Biol Macromol 2024; 270:132048. [PMID: 38704062 DOI: 10.1016/j.ijbiomac.2024.132048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Polysaccharides are favourable and promising biopolymers for wound care applications due to their abundant natural availability, low cost and excellent biocompatibility. They possess different functional groups, such as carboxylic, hydroxyl and amino, and can easily be modified to obtain the desirable properties and various forms. This review systematically analyses the recent progress in polysaccharides derived materials for wound care applications, emphasizing the most commonly used cellulose, chitosan, alginate, starch, dextran and hyaluronic acid derived materials. The distinctive attributes of each polysaccharide derived wound care material are discussed in detail, along with their different forms, i.e., films, membranes, sponges, nanoemulsions, nanofibers, scaffolds, nanocomposites and hydrogels. The processing methods to develop polysaccharides derived wound care materials are also summarized. In the end, challenges related to polysaccharides derived materials in wound care management are listed, and suggestions are given to expand their utilization in the future to compete with conventional wound healing materials.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Muhammad Arshad
- Clean Technologies and Applied Research, Northern Alberta Institute of Technology, Edmonton, Alberta T5G 2R1, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
21
|
Wang Q, Zhao Y, Song J, Niu J, Liu Y, Chao C. How halogenated aromatic compounds affect the electron supply and consumption in glucose supported denitrification? WATER RESEARCH 2024; 256:121569. [PMID: 38615604 DOI: 10.1016/j.watres.2024.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Halogenated aromatic compounds possess bidirectional effects on denitrifying bio-electron behavior, providing electrons and potentially interfering with electron consumption. This study selected the typical 4-chlorophenol (4-CP, 0-100 mg/L) to explore its impact mechanism on glucose-supported denitrification. When COD(glucose)/COD(4-CP)=28.70-3.59, glucose metabolism remained the dominant electron supply process, although its removal efficiency decreased to 73.84-49.66 %. When COD(glucose)/COD(4-CP)=2.39-1.43, 4-CP changed microbial carbon metabolism priority by inhibiting the abundance of glucose metabolizing enzymes, gradually replacing glucose as the dominant electron donor. Moreover, 5-100 mg/L 4-CP reduced adenosine triphosphate (ATP) by 15.52-24.67 % and increased reactive oxygen species (ROS) by 31.13-63.47 %, causing severe lipid peroxidation, thus inhibiting the utilization efficiency of glucose. Activated by glucose, 4-CP dechlorination had stronger electron consumption ability than NO2--N reduction (NO3--N > 4-CP > NO2--N), combined with the decreased nirS and nirK genes abundance, resulting in NO2--N accumulation. Compared with the blank group (0 mg/L 4-CP), 5-40 mg/L and 60-100 mg/L 4-CP reduced the secretion of cytochrome c and flavin adenine dinucleotides (FAD), respectively, further decreasing the electron transfer activity of denitrification system. Micropruina, a genus that participated in denitrification based on glucose, was gradually replaced by Candidatus_Microthrix, a genus that possessed 4-CP degradation and denitrification functions after introducing 60-100 mg/L 4-CP.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chunfang Chao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
22
|
Qiang H, Liu Z, Yin X, Guo Z, Duan Y, Liu W, Yue X, Zhou A. Efficient phosphate and hydrogen recovery from sludge fermentation liquid by sacrificial iron anode in electro-fermentation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121110. [PMID: 38733846 DOI: 10.1016/j.jenvman.2024.121110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Electro-fermentation (EF) has been extensively studied for recovering hydrogen and phosphorus from waste activated sludge (WAS), while was limited for the further application due to the low hydrogen yield and phosphorus recovery efficiency. This study proposed an efficient strategy for hydrogen and vivianite recovery from the simulated sludge fermentation liquid by sacrificial iron anode in EF. The optimum hydrogen productivity and the utilization efficiency of short chain fatty acids (SCFAs) reached 45.2 mmol/g COD and 77.6% at 5 d in pH 8. Phosphate removal efficiency achieved at 90.8% at 2 d and the high crystallinity and weight percentage of vivianite (84.8%) was obtained. The functional microbes, i.e., anaerobic fermentative bacteria, electrochemical active bacteria, homo-acetogens and iron-reducing bacteria were highly enriched and the inherent interaction between the microbial consortia and environmental variables was thoroughly explored. This work may provide a theoretical basis for energy/resource recovery from WAS in the further implementation.
Collapse
Affiliation(s)
- Haifeng Qiang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030006, China.
| | - Xiaoyun Yin
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhengtong Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanqing Duan
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, 030800, China
| | - Wenzong Liu
- Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China.
| |
Collapse
|
23
|
Geng A, Zhang C, Wang J, Zhang X, Qiu W, Wang L, Xi J, Yang B. Current advances of chlorinated organics degradation by bioelectrochemical systems: a review. World J Microbiol Biotechnol 2024; 40:208. [PMID: 38767676 DOI: 10.1007/s11274-024-04013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Chlorinated organic compounds (COCs) are typical refractory organic compounds, having high biological toxicity. These compounds are a type of pervasive pollutants that can be present in polluted soil, air, and various types of waterways, such as groundwater, rivers, and lakes, posing a significant threat to the ecological environment and human health. Bioelectrochemical systems (BESs) are an effective strategy for the degradation of bio-refractory compounds. BESs improve the waste treatment efficiency through the application of weak electrical stimulation. This review discusses the processes of BESs configurations and degradation performances in different environmental media including wastewater, soil, waste gas and groundwater. In addition, the degradation mechanisms and performance-enhancing additives are summarized. The future challenges and perspectives on the development of BES for COCs removal are briefly discussed.
Collapse
Affiliation(s)
- Anqi Geng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Caiyun Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jiajie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xinyan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wei Qiu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
24
|
Yang S, Wang K, Yu X, Xu Y, Ye H, Bai M, Zhao L, Sun Y, Li X, Li Y. Fulvic acid more facilitated the soil electron transfer than humic acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134080. [PMID: 38522204 DOI: 10.1016/j.jhazmat.2024.134080] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Humus substances (HSs) participate in extracellular electron transfer (EET), which is unclear in heterogeneous soil. Here, a microbial electrochemical system (MES) was constructed to determine the effect of HSs, including humic acid, humin and fulvic acid, on soil electron transfer. The results showed that fulvic acid led to the optimal electron transfer efficiency in soil, as evidenced by the highest accumulated charges and removal of total petroleum hydrocarbons after 140 days, with increases of 161% and 30%, respectively, compared with those of the control. However, the performance of MES with the addition of humic acid and humin was comparable to that of the control. Fulvic acid amendment enhanced the carboxyl content and oxidative state of dissolved organic matter, endowing a better electron transfer capacity. Additionally, the presence of fulvic acid induced an increase in the abundance of electroactive bacteria and organic degraders, extracellular polymeric substances and functional enzymes such as cytochrome c and NADH synthesis, and the expression of m tr C gene, which is responsible for EET enhancement in soil. Overall, this study reveals the mechanism by which HSs stimulate soil electron transfer at the physicochemical and biological levels and provides basic support for the application of bioelectrochemical technology in soil.
Collapse
Affiliation(s)
- Side Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xin Yu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
25
|
Botti A, Musmeci E, Matturro B, Vanzetto G, Bosticco C, Negroni A, Rossetti S, Fava F, Biagi E, Zanaroli G. Chemical-physical parameters and microbial community changes induced by electrodes polarization inhibit PCB dechlorination in a marine sediment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133878. [PMID: 38447365 DOI: 10.1016/j.jhazmat.2024.133878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Microbial reductive dechlorination of organohalogenated pollutants is often limited by the scarcity of electron donors, that can be overcome with microbial electrochemical technologies (METs). In this study, polarized electrodes buried in marine sediment microcosms were investigated to stimulate PCB reductive dechlorination under potentiostatic (-0.7 V vs Ag/AgCl) and galvanostatic conditions (0.025 mA·cm-2-0.05 mA·cm-2), using graphite rod as cathode and iron plate as sacrificial anode. A single circuit and a novel two antiparallel circuits configuration (2AP) were investigated. Single circuit polarization impacted the sediment pH and redox potential (ORP) proportionally to the intensity of the electrical input and inhibited PCB reductive dechlorination. The effects on the sediment's pH and ORP, along with the inhibition of PCB reductive dechlorination, were mitigated in the 2AP system. Electrodes polarization stimulated sulfate-reduction and promoted the enrichment of bacterial clades potentially involved in sulfate-reduction as well as in sulfur oxidation. This suggested the electrons provided were consumed by competitors of organohalide respiring bacteria and specifically sequestered by sulfur cycling, which may represent the main factor limiting the applicability of METs for stimulating PCB reductive dechlorination in marine sediments.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy; National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giampietro Vanzetto
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Caterina Bosticco
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
26
|
Xu Y, Li Q, Tang Y, Huang H, Ren H. Electrocatalytic denitrification biofilter for advanced purification of chlorophenols via ceramsite-based Ti/SnO 2-Sb particle electrode: Performance, microbial community structure and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123594. [PMID: 38378077 DOI: 10.1016/j.envpol.2024.123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
In response to the demand for advanced purification of industrial secondary effluent, a new method has been developed for treating chlorophenol wastewater using the novel ceramsite-based Ti/SnO2-Sb particle electrodes (Ti/SnO2-Sb/CB) enhanced electrocatalytic denitrification biofilter (EDNBF-P) to achieve removal of chlorophenols (CPs), denitrification, and reduction of effluent toxicity. The results showed that significantly improved CPs and TN removal efficiency at low COD/N compared to conventional denitrification biofilter, with CPs removal rates increasing by 0.33%-59.27% and TN removal rates increasing by 12.53%-38.92%. Under the conditions of HRT = 2h, 3V voltage, charging times = 12h, and 25 °C, the concentrations of the CPs in the effluent of EDNBF-P were all below 1 mg/L, the TN concentration was below 15 mg/L, while the effluent toxicity reached the low toxicity level. Additionally, the Ti/SnO2-Sb/CB particle electrodes effectively alleviated the accumulation of NO2--N caused by applied voltage. The Silanimonas, Pseudomonas and Rhodobacter was identified as the core microorganism for denitrification and toxicity reduction. This study validated that EDNBF-P could achieve synergistic treatment of CPs and TN through electrocatalysis and microbial degradation, providing a methodological support for achieving advanced purification of chlorophenol wastewater with low COD/N in industrial applications.
Collapse
Affiliation(s)
- Yujin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Qianqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yingying Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
27
|
Liu J, Huang X, Jiang X, Qing C, Li Y, Xia P. Loss of submerged macrophytes in shallow lakes alters bacterial and archaeal community structures, and reduces their co-occurrence networks connectivity and complexity. Front Microbiol 2024; 15:1380805. [PMID: 38601927 PMCID: PMC11004660 DOI: 10.3389/fmicb.2024.1380805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Bacteria and archaea are important components in shallow lake ecosystems and are crucial for biogeochemical cycling. While the submerged macrophyte loss is widespread in shallow lakes, the effect on the bacteria and archaea in the sediment and water is not yet widely understood. Methods In this study, 16S rRNA gene sequencing was used to explore the bacteria and archaea in samples taken from the sediment and water in the submerged macrophyte abundant (MA) and submerged macrophyte loss (ML) areas of Caohai Lake, Guizhou, China. Results The results showed that the dominant bacterial phyla were Proteobacteria and Chloroflexi in the sediment; the dominant phyla were Proteobacteria, Actinobacteriota, and Bacteroidota in the water. The dominant archaea in sediment and water were the same, in the order of Crenarchaeota, Thermoplasmatota, and Halobacterota. Non-metric multidimensional scaling (NMDS) analyses showed that bacterial and archaeal community structures in the water were significantly affected by the loss of submerged macrophytes, but not by significant changes in the sediment. This suggests that the loss of submerged macrophytes has a stronger effect on the bacterial and archaeal community structures in water than in sediment. Furthermore, plant biomass (PB) was the key factor significantly influencing the bacterial community structure in water, while total nitrogen (TN) was the main factor significantly influencing the archaeal community structure in water. The loss of submerged macrophytes did not significantly affect the alpha diversity of the bacterial and archaeal communities in either the sediment or water. Based on network analyses, we found that the loss of submerged macrophytes reduced the connectivity and complexity of bacterial patterns in sediment and water. For archaea, network associations were stronger for MA network than for ML network in sediment, but network complexity for archaea in water was not significantly different between the two areas. Discussion This study assesses the impacts of submerged macrophyte loss on bacteria and archaea in lakes from microbial perspective, which can help to provide further theoretical basis for microbiological research and submerged macrophytes restoration in shallow lakes.
Collapse
Affiliation(s)
- Jiahui Liu
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Xianfei Huang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Xin Jiang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Chun Qing
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Yue Li
- Guizhou Caohai National Nature Reserve Management Committee, Bijie, Guizhou, China
| | - Pinhua Xia
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| |
Collapse
|
28
|
Xu L, Song S, Graham NJD, Yu W. Simultaneous removal of NOM and sulfate in a bioelectrochemical integrated biofilter treating reclaimed water. WATER RESEARCH 2024; 252:121193. [PMID: 38290239 DOI: 10.1016/j.watres.2024.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Biofiltration is an environmentally 'green' technology that is compatible with the recently proposed sustainable development goals, and which has an increasingly important future in the field of water treatment. Here, we explored the impacts of bioelectrochemical integration on a bench-scale slow rate biofiltration system regarding its performance in reclaimed water treatment. Results showed that the short-term (<3 months) integration improved the removal of natural organic matter (NOM) (approximately 8.8%). After long-term (5 months and thereafter) integration, the cathodic charge transfer resistance was found to have a significant reduction from 2662 to 1350 Ω. Meanwhile, bioelectrochemical autotrophic sulfate (SO42-) reduction (over 27.6% reduction) through the syntrophic metabolism between hydrogen oxidation strains (genus Hydrogenophaga) and sulfate-reducing microbes (genera Dethiobacter, Desulfovibrio, and Desulfomicrobium) at the cathodic region was observed. More significantly, the microbial-derived chromophoric humic substances were found to act as electron shuttles at the cathodic region, which might facilitate the process of bioelectrochemical SO42- reduction. Overall, this study provided valuable insights into the potential application of bioelectrochemical-integrated biofilter for simultaneous reduction of NOM and SO42- treating reclaimed water.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shian Song
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
29
|
Bai J, Liu G, Zhang Y, Luo H. Autotrophic degradation of sulfamethoxazole using sulfate-reducing biocathode in microbial photo-electrolysis system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170332. [PMID: 38266726 DOI: 10.1016/j.scitotenv.2024.170332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Sulfamethoxazole is a representative of sulfonamide antibiotic pollutants. This study aims to investigate the degradation pathways of sulfamethoxazole and the response of microbial communities using the autotrophic biocathode in microbial photo-electrolysis systems (MPESs). Sulfamethoxazole with an initial concentration of 2 mg L-1 was degraded into small molecule propanol within 6 h with the biocathode. Elemental sulfur (S0) was detected in the cathode chamber, accounting for 57 % of the removed sulfate. The conversion from sulfate to S0 indicated that autotrophic microorganisms might adopt a novel pathway for sulfamethoxazole removal in the MPES. In the abiotic cathode, sulfamethoxazole degradation rate was 0.09 mg L-1 h-1 with the electrochemistry process. However, sulfamethoxazole was converted to products that still contain benzene rings, including p-aminothiophenol, 3-amino-5-methylisoxazole, and sulfonamide. The microbial community analysis indicated that the synergistic interaction of Desulfovibrio and Acetobacterium promoted the autotrophic degradation of sulfamethoxazole. The results suggested that autotrophic microorganisms may play an important role in the environmental transformation of sulfamethoxazole.
Collapse
Affiliation(s)
- Jiamin Bai
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yifeng Zhang
- Department of Environmental & Resource Engineering, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Liu Y, Zhao N, Dai S, He R, Zhang Y. Metagenomic insights into phenanthrene biodegradation in electrical field-governed biofilms for groundwater bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133477. [PMID: 38218033 DOI: 10.1016/j.jhazmat.2024.133477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Electrical fields (EFs)-assisted in-situ bioremediation of petroleum-contaminated groundwater, such as polycyclic aromatic hydrocarbons, has drawn increasing attention. However, the long-term stability, the EFs influence, and metabolic pathways are still poorly understood, hindering the further development of robust technology design. Herein, a series of EFs was applied to the phenanthrene-contaminated groundwater, and the corresponding system performance was investigated. The highest removal capacity of phenanthrene (phe) (7.63 g/(m3·d)) was achieved with EF_0.8 V biofilm at a hydrolytic retention time of 0.5 d. All the biofilms with four EFs exhibited a high removal efficiency of phe over 80% during a 100-d continuous-flow operation. Intermediates analysis revealed the main pathways of phe degradation: phthalate and salicylate via hydroxylation, methylation, carboxylation, and ring cleavage steps. Synergistic effects between phe-degraders (Dechloromonas), fermentative bacteria (Delftia), and electroactive microorganisms (Geobacter) were the main contributors to the complete phe mineralization. Genes encoding various proteins of methyl-accepting (mcp), response regulator (cheABDRY), and type IV pilus (pilABCMQV) were dominant, revealing the importance of cell motility and extracellular electron transfer. Metagenomics analysis unveiled phe-degrading genes, including ring reduction enzymes (bamBCDE), carboxylase of aromatics (ubiD), and methyltransferase protein (ubiE, pcm). These findings offered a molecular understanding of refractory organics' decompositions in EFs-governed biotechnology.
Collapse
Affiliation(s)
- Yue Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Shuo Dai
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
31
|
Pan M, Li C, Wei X, Liu G, Ang EH, Pan B. Pioneering Piezoelectric-Driven Atomic Hydrogen for Efficient Dehalogenation of Halogenated Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4008-4018. [PMID: 38347702 DOI: 10.1021/acs.est.3c09579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The electrocatalytic hydrodehalogenation (EHDH) process mediated by atomic hydrogen (H*) is recognized as an efficient method for degrading halogenated organic pollutants (HOPs). However, a significant challenge is the excessive energy consumption resulting from the recombination of H* to H2 production in the EHDH process. In this study, a promising strategy was proposed to generate piezo-induced atomic H*, without external energy input or chemical consumption, for the degradation and dehalogenation of HOPs. Specifically, sub-5 nm Ni nanoparticles were subtly dotted on an N-doped carbon layer coating on BaTiO3 cube, and the resulted hybrid nanocomposite (Ni-NC@BTO) can effectively break C-X (X = Cl and F) bonds under ultrasonic vibration or mechanical stirring, demonstrating high piezoelectric driven dehalogenation efficiencies toward various HOPs. Mechanistic studies revealed that the dotted Ni nanoparticles can efficiently capture H* to form Ni-H* (Habs) and drive the dehalogenation process to lower the toxicity of intermediates. COMSOL simulations confirmed a "chimney effect" on the interface of Ni nanoparticle, which facilitated the accumulation of H+ and enhanced electron transfer for H* formation by improving the surface charge of the piezocatalyst and strengthening the interfacial electric field. Our work introduces an environmentally friendly dehalogenation method for HOPs using the piezoelectric process independent of the external energy input and chemical consumption.
Collapse
Affiliation(s)
- Meilan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Cong Li
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiuzhen Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guanyu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
32
|
Wei Y, Zhang L, Liang B, Cui H, Shi K, Liu Z, Zhou A, Yue X. Synergistic Control of Trimethoprim and the Antimicrobial Resistome in Electrogenic Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2847-2858. [PMID: 38299532 DOI: 10.1021/acs.est.3c05870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Synergistic control of the risks posed by emerging antimicrobials and antibiotic resistance genes (ARGs) is crucial for ensuring ecological safety. Although electrogenic respiration can enhance the biodegradation of several antimicrobials and reduce ARGs accumulation, the association mechanisms of antimicrobial biodegradation (trimethoprim, TMP) with the fate of the antimicrobial resistome remain unclear. Here, the biotransformation pathway of TMP, microbial associations, and functional gene profiles (e.g., degradation, antimicrobial resistance, and electron transfer) were analyzed. The results showed that the microbial electrogenic respiration significantly enhanced the biodegradation of TMP, especially with a cosubstrate sodium acetate supply. Electroactive bacteria enriched in the electrode biofilm positively correlated with potential TMP degraders dominated in the planktonic communities. These cross-niche microbial associations may contribute to the accelerated catabolism of TMP and extracellular electron transfer. Importantly, the evolution and dissemination of overall ARGs and mobile genetic elements (MGEs) were significantly weakened due to the enhanced cometabolic biodegradation of TMP. This study provides a promising strategy for the synergistic control of the water ecological risks of antimicrobials and their resistome, while also highlighting new insights into the association of antimicrobial biodegradation with the evolution of the resistome in an electrically integrated biological process.
Collapse
Affiliation(s)
- Yaoli Wei
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
33
|
Lin M, Pan C, Qian C, Tang F, Zhao S, Guo J, Zhang Y, Song J, Rittmann BE. Core taxa, co-occurrence pattern, diversity, and metabolic pathways contributing to robust anaerobic biodegradation of chlorophenol. ENVIRONMENTAL RESEARCH 2024; 241:117591. [PMID: 37926226 DOI: 10.1016/j.envres.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
It is hard to achieve robustness in anaerobic biodegradation of trichlorophenol (TCP). We hypothesized that specific combinations of environmental factors determine phylogenetic diversity and play important roles in the decomposition and stability of TCP-biodegrading bacteria. The anaerobic bioreactor was operated at 35 °C (H condition) or 30 °C (L condition) and mainly fed with TCP (from 28 μM to 180 μM) and organic material. Metagenome sequencing was combined with 16S rRNA gene amplicon sequencing for the microbial community analysis. The results exhibited that the property of robustness occurred in specific conditions. The corresponding co-occurrence and diversity patterns suggest high collectivization, degree and evenness for robust communities. Two types of core functional taxa were recognized: dechlorinators (unclassified Anaerolineae, Thermanaerothrix and Desulfovibrio) and ring-opening members (unclassified Proteobacteria, Methanosarcina, Methanoperedens, and Rubrobacter). The deterministic process of the expansion of niche of syntrophic bacteria at higher temperatures was confirmed. The reductive and hydrolytic dechlorination mechanisms jointly lead to C-Cl bond cleavage. H ultimately adapted to the stress of high TCP loading, with more abundant ring-opening enzyme (EC 3.1.1.45, ∼55%) and hydrolytic dechlorinase (EC 3.8.1.5, 26.5%) genes than L (∼47%, 10.5%). The functional structure (based on KEGG) in H was highly stable despite the high loading of TCP (up to 60 μM), but not in L. Furthermore, an unknown taxon with multiple functions (dechlorinating and ring-opening) was found based on genetic sequencing; its functional contribution of EC 3.8.1.5 in H (26.5%) was higher than that in L (10.5%), and it possessed a new metabolic pathway for biodegradation of halogenated aromatic compounds. This new finding is supplementary to the robust mechanisms underlying organic chlorine biodegradation, which can be used to support the engineering, regulation, and design of synthetic microbiomes.
Collapse
Affiliation(s)
- Ming Lin
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenhui Pan
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenyi Qian
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Fei Tang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Siwen Zhao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jun Guo
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200238, PR China
| | - Yongming Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jiaxiu Song
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
34
|
Chen J, Zhang B, Wang C, Wang P, Cui G, Gao H, Feng B, Zhang J. Insight into the enhancement effect of humic acid on microbial degradation of triclosan in anaerobic sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132549. [PMID: 37717441 DOI: 10.1016/j.jhazmat.2023.132549] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Humic acid (HA) as one class of macromolecular substances plays important roles in mediating environmental behaviors of pollutants in sediments, but its effect on microbial degradation of triclosan (TCS), a common antibacterial drug, remains unclear. In this study, the effects of HA addition with different dosages (0-5%) on TCS degradation in anaerobic sediment slurries and the underlying microbial mechanisms were investigated. The results showed that HA addition significantly accelerated the TCS removal and the maximum removal percentage (30.2%) was observed in the sediment slurry with 5% HA addition. The iron reduction rate, relative abundances of the genera Comamonas, Pseudomonas and Geobacter, and bacterial network complexity in sediment slurry were significantly enhanced due to HA addition. Based on the partial least squares path modeling analysis, the enhancement effect of HA on TCS degradation was mainly explained by Fe(II):Fe(III) ratio with the highest influence on TCS removal (total effect: 0.723), followed by dominant genera abundances (total effect: 0.391), module relative abundance (total effect: 0.272), and network topological features (total effect: 0.263). This finding enhanced our understanding of the role of HA in TCS biodegradation in contaminated sediments for bioremediation purposes.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Ge Cui
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
35
|
Lin R, Xie L, Zheng X, Patience DOD, Duan X. Advances and challenges in biocathode microbial electrolysis cells for chlorinated organic compounds degradation from electroactive perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167141. [PMID: 37739072 DOI: 10.1016/j.scitotenv.2023.167141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Microbial electrolysis cell (MEC) is a promising in-situ strategy for chlorinated organic compound (COC) pollution remediation due to its high efficiency, low energy input, and long-term potential. Reductive dechlorination as the most critical step in COC degradation which takes place primarily in the cathode chamber of MECs is a complex biochemical process driven by the behavior of electrons. However, no information is currently available on the internal mechanism of MEC in dechlorination from the perspective of the whole electron transfer procedure and its dependent electrode materials. This review addresses the underlying mechanism of MEC on the fundamental of the generation (electron donor), transmission (transfer pathway), utilization (functional microbiota) and reception (electron acceptor) of electrons in dechlorination. In addition, the vital role of varied cathode materials involved in the entire electron transfer procedure during COC dechlorination is emphasized. Subsequently, suggestions for future research, including model construction, cathode material modification, and expanding the applicability of MECs to removal gaseous COCs have been proposed. This paper enriches the mechanism of COC degradation by MEC, and thus provides the theoretical support for the scale-up bioreactors for efficient COC removal.
Collapse
Affiliation(s)
- Rujing Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dzedzemo-On Dufela Patience
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Duan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
36
|
Wu Q, Chen Y, He Y, Cheng Q, Wu Q, Liu Z, Li Y, Yang Z, Tan Y, Yuan Y. Enhanced nitrogen and phosphorus removal by a novel ecological floating bed integrated with three-dimensional biofilm electrode system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119346. [PMID: 37866187 DOI: 10.1016/j.jenvman.2023.119346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The ecological floating bed (EFB) has been used extensively for the purification of eutrophication water. However, the traditional EFB (T-EFB) often exhibits a decline in nitrogen and phosphorus removal because of the limited adsorption capacity of fillers and inadequate electron donors. In the present study, a series of electrolysis-ecological floating beds (EC-EFBs) were constructed to investigate the decontamination performance of conventional pollutants. EC-EFB outperformed T-EFB in terms of nitrogen and phosphorus removal. Its removal efficiency of total nitrogen and total phosphorus was 20.51-32.95% and 45.06-96.20%, which were higher than that in T-EFB.. Moreover, the plants in EC-EFB demonstrated higher metabolic activity than those in T-EFB. Under the electrolysis condition of 0.51 mA/cm2 for 24 h, the malondialdehyde content and superoxide dismutase activity in EC-EFB were 6.08 nmol/g and 22.61 U/g, which were significantly lower compared to T-EFB (38.65 nmol/g and 26.13 U/g). And the soluble protein content of plant leaves increased from 3.31 mg/g to 5.72 mg/g in EC-EFB. Microbial analysis revealed that electrolysis could significantly change the microbial community and facilitate the proliferation of nitrogen-functional microbes, such as Thermomonas, Hydrogenophaga, Deinococcus, and Zoogloea. It is important to highlight that the hydrogen evolution reaction at the cathode area facilitated phosphorus removal in EC-EFB, thereby inhibiting phosphorus leaching. This study provides a promising and innovative technology for the purification of eutrophic water.
Collapse
Affiliation(s)
- Qingyu Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Yang He
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qiming Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qiong Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhenmei Yang
- Jiangjin Ecological Environment Monitoring Station, Chongqing, 402260, China
| | - Yuqing Tan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
37
|
Cao D, Chen X, Nan J, Wang A, Li Z. Biomolecular insights into the inhibition of heavy metals on reductive dechlorination of 2,4,6-trichlorophenol in Pseudomonas sp. CP-1. WATER RESEARCH 2023; 247:120836. [PMID: 37950953 DOI: 10.1016/j.watres.2023.120836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Influences of heavy metal exposure to the organohalide respiration process and the related molecular mechanism remain poorly understood. In this study, a non-obligate organohalide respiring bacterium, Pseudomonas sp. strain CP-1, was isolated and its molecular response to the five types of commonly existed heavy metal ions were thoroughly investigated. All types of heavy metal ions posed inhibitory effects on 2,4,6-trichlorophenol dechlorination activity and cell growth with the varied degree. Exposure to Cu (II) showed the most serious inhibitive effects on dechlorination even at the lowest concentration of 0.05 mg/L, while the inhibition by As (V) was the least with the removal kinetic constant k decreased to 0.05 under 50 mg/L. Further, multi-omics analysis found compared with Cu (II), As (V) exposure led to the insignificant downregulation of a variety of biosynthesis processes, which would be one possible account for the less inhibited activity. More importantly, the inhibited mechanisms on the organohalide respiration catabolism of strain CP-1 were firstly revealed. Cu (II) stress severely downregulated NADH generation during TCA cycle and electron donation of organohalide respiration process, which might decrease the reducing power required for organohalide respiration. While both Cu (II) and As (Ⅴ) inhibited substrate level phosphorylation during TCA cycle, as well as electron transfer and ATP generation during organohalide respiration. Meanwhile, CprA-2 was confirmed as the responsible reductive dehalogenase in charge of 2,4,6-TCP dechlorination, and transcriptional and proteomic studies confirmed the directly inhibited gene transcription and expression of CprA-2. The in-depth reveal of inhibitory effects and mechanism gave theoretical supports for alleviating heavy metal inhibition on organohalide respiration activity in groundwater co-contaminated with organohalides and heavy metals.
Collapse
Affiliation(s)
- Di Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
38
|
Leon‐Fernandez LF, Dominguez‐Benetton X, Villaseñor Camacho J, Fernandez‐Morales FJ. Coupling the electrocatalytic dechlorination of 2,4-D with electroactive microbial anodes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:512-529. [PMID: 37482917 PMCID: PMC10667633 DOI: 10.1111/1758-2229.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023]
Abstract
This work proves the feasibility of dechlorinating 2,4-D, a customary commercial herbicide, using cathodic electrocatalysis driven by the anodic microbial electrooxidation of sodium acetate. A set of microbial electrochemical systems (MES) were run under two different operating modes, namely microbial fuel cell (MFC) mode, with an external resistance of 120 Ω, or microbial electrolysis cell (MEC) mode, by supplying external voltage (0.6 V) for promoting the (bio)electrochemical reactions taking place. When operating the MES as an MFC, 32% dechlorination was obtained after 72 h of treatment, which was further enhanced by working under MEC mode and achieving a 79% dechlorination. In addition, the biodegradability (expressed as the ratio BOD/COD) of the synthetic polluted wastewater was tested prior and after the MES treatment, which was improved from negative values (corresponding to toxic effluents) up to 0.135 in the MFC and 0.453 in the MEC. Our MES approach proves to be a favourable option from the point of view of energy consumption. Running the system under MFC mode allowed to co-generate energy along the dechlorination process (-0.0120 kWh mol-1 ), even though low removal rates were attained. The energy input under MEC operation was 1.03 kWh mol-1 -a competitive value compared to previous works reported in the literature for (non-biological) electrochemical reactors for 2,4-D electrodechlorination.
Collapse
Affiliation(s)
- Luis F. Leon‐Fernandez
- Chemical Engineering Department, ITQUIMAUniversity of Castilla‐La ManchaCiudad RealSpain
- Separation and Conversion TechnologiesFlemish Institute for Technological Research (VITO)MolBelgium
| | | | | | | |
Collapse
|
39
|
Li D, Guo W, Zhai Y, Xu X, Cao X, Zhao L. The aggregated biofilm dominated by Delftia tsuruhatensis enhances the removal efficiency of 2,4-dichlorophenol in a bioelectrochemical system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122576. [PMID: 37722473 DOI: 10.1016/j.envpol.2023.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/03/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
Bioelectrochemical system is a prospective strategy in organic-contaminated groundwater treatment, while few studies clearly distinguish the mechanisms of adsorption or biodegradation in this process, especially when dense biofilm is formed. This study employed a single chamber microbial electrolysis cell (MEC) with two three-dimensional electrodes for removing a typical organic contaminant, 2,4-dichlorophenol (DCP) from groundwater, which inoculated with anaerobic bacteria derived from sewage treatment plant. Compared with the single biodegradation system without electrodes, the three-dimensional electrodes with a high surface enabled an increase of alpha diversity of the microbial community (increased by 52.6% in Shannon index), and provided adaptive ecological niche for more bacteria. The application of weak voltage (0.6 V) furtherly optimized the microbial community structure, and promoted the aggregation of microorganisms with the formation of dense biofilm. Desorption experiment proved that the contaminants were removed from the groundwater mainly via adsorption by the biofilm rather than biodegradation, and compared with the reactor without electricity, the bioelectrochemical system increased the adsorption capacity from 50.0% to 74.5%. The aggregated bacteria on the surface of electrodes were mainly dominated by Delftia tsuruhatensis (85.0%), which could secrete extracellular polymers and has a high adsorption capacity (0.30 mg/g electrode material) for the contaminants. We found that a bioelectrochemical system with a three-dimensional electrode could stimulate the formation of dense biofilm and remove the organic contaminants as well as their possible more toxic degradation intermediates via adsorption. This study provides important guidance for applying bioelectrochemical system in groundwater or wastewater treatment.
Collapse
Affiliation(s)
- Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Zhai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China.
| |
Collapse
|
40
|
Chen SH, Li ZT, Zhao HP. Bioelectrochemical system accelerates reductive dechlorination through extracellular electron transfer networks. ENVIRONMENTAL RESEARCH 2023; 235:116645. [PMID: 37442263 DOI: 10.1016/j.envres.2023.116645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Bioelectrochemical system is considered as a promising approach for enhanced bio-dechlorination. However, the mechanism of extracellular electron transfer in the dechlorinating consortium is still a controversial issue. In this study, bioelectrochemical systems were established with cathode potential settings at -0.30 V (vs. SHE) for trichloroethylene reduction. The average dechlorination rate (102.0 μM Cl·d-1) of biocathode was 1.36 times higher than that of open circuit (74.7 μM Cl·d-1). Electrochemical characterization via cyclic voltammetry illustrated that electrostimulation promoted electrochemical activity for redox reactions. Moreover, bacterial community structure analyses indicated electrical stimulation facilitated the enrichment of electroactive and dechlorinating populations on cathode. Metagenomic and quantitative polymerase chain reaction (qPCR) analyses revealed that direct electron transfer (via electrically conductive pili, multi-heme c-type cytochromes) between Axonexus and Desulfovibrio/cathode and indirect electron transfer (via riboflavin) for Dehalococcoides enhanced dechlorination process in BES. Overall, this study verifies the effectiveness of electrostimulated bio-dechlorination and provides novel insights into the mechanisms of dechlorination process enhancement in bioelectrochemical systems through electron transfer networks.
Collapse
Affiliation(s)
- Su-Hao Chen
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Ri C, Li F, Mun H, Liu L, Tang J. Impact of different zero valent iron-based particles on anaerobic microbial dechlorination of 2,4-dichlorophenol: Comparison of dechlorination performance and the underlying mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131881. [PMID: 37379603 DOI: 10.1016/j.jhazmat.2023.131881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/14/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
The integration of iron-based materials and anaerobic microbial consortia has been extensively studied owing to its potential to enhance pollutant degradation. However, few studies have compared how different iron materials enhance the dechlorination of chlorophenols in coupled microbial systems. This study systematically compared the combined performances of microbial community (MC) and iron materials (Fe0/FeS2 +MC, S-nZVI+MC, n-ZVI+MC, and nFe/Ni+MC) for the dechlorination of 2,4-dichlorophenol (DCP) as one representative of chlorophenols. DCP dechlorination rate was significantly higher in Fe0/FeS2 +MC and S-nZVI+MC (1.92 and 1.67 times, with no significant difference between two groups) than in nZVI+MC and nFe/Ni+MC (1.29 and 1.25 times, with no significant difference between two groups). Fe0/FeS2 had better performance for the reductive dechlorination process as compared with other three iron-based materials via the consumption of any trace amount of oxygen in anoxic condition and accelerated electron transfer. On the other hand, nFe/Ni could induce different dechlorinating bacteria as compared to other iron materials. The enhanced microbial dechlorination was mainly due to some putative dechlorinating bacteria (Pseudomonas, Azotobacter, Propionibacterium), and due to improved electron transfer of sulfidated iron particles. Therefore, Fe0/FeS2 as a biocompatible as well as low-cost sulfidated material can be a good alternative for possible engineering applications in groundwater remediation.
Collapse
Affiliation(s)
- Cholnam Ri
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Microbiology, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Fengxiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hyokchol Mun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of national energy, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
42
|
Min Y, Mei SC, Pan XQ, Chen JJ, Yu HQ, Xiong Y. Mimicking reductive dehalogenases for efficient electrocatalytic water dechlorination. Nat Commun 2023; 14:5134. [PMID: 37612275 PMCID: PMC10447495 DOI: 10.1038/s41467-023-40906-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Electrochemical technology is a robust approach to removing toxic and persistent chlorinated organic pollutants from water; however, it remains a challenge to design electrocatalysts with high activity and selectivity as elaborately as natural reductive dehalogenases. Here we report the design of high-performance electrocatalysts toward water dechlorination by mimicking the binding pocket configuration and catalytic center of reductive dehalogenases. Specifically, our designed electrocatalyst is an assembled heterostructure by sandwiching a molecular catalyst into the interlayers of two-dimensional graphene oxide. The electrocatalyst exhibits excellent dechlorination performance, which enhances reduction of intermediate dichloroacetic acid by 7.8 folds against that without sandwich configuration and can selectively generate monochloro-groups from trichloro-groups. Molecular simulations suggest that the sandwiched inner space plays an essential role in tuning solvation shell, altering protonation state and facilitating carbon-chlorine bond cleavage. This work demonstrates the concept of mimicking natural reductive dehalogenases toward the sustainable treatment of organohalogen-contaminated water and wastewater.
Collapse
Affiliation(s)
- Yuan Min
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shu-Chuan Mei
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Qiang Pan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie-Jie Chen
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
43
|
Xia J, Li Y, Jiang X, Chen D, Shen J. Enhanced 4-bromophenol anaerobic biodegradation in electricity-stimulated anaerobic system: The key role of humic acid in reshaping microbial eco-interrelations and functions. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131426. [PMID: 37084513 DOI: 10.1016/j.jhazmat.2023.131426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Electricity-stimulated anaerobic system (ESAS) has shown great potential for halogenated organic pollutants removal. Exogenous redox mediators can improve electron transfer efficiency to enhance pollutants removal in ESAS. In this study, humic acid (HA), a low-cost electron mediator, was added into ESAS to enhance the simultaneous reductive debromination and mineralization of 4-bromophenol (4-BP). Results showed that the highest 4-BP removal efficiency at 48 h was 95.43 % with HA dosage of 30 mg/L at - 700 mV, which was 34.67 % higher than that without HA. The addition of HA decreased the requirement for electron donors and enriched Petrimonas and Rhodococcus for humus respiratory. HA addition regulated microbial interactions, and enhanced species cooperation between Petrimonas and dehalogenation species (Thauera and Desulfovibrio), phenol degradation-related species (Rhodococcus) as well as fermentative species (Desulfobulbus). Functional genes related to 4-BP degradation (dhaA/hemE/xylC/chnB/dmpN) and electron transfer (etfB/nuoA/qor/ccoN/coxA) were increased in abundance by HA addition. The enhanced microbial functions, as well as species cooperation and facilitation, all contributed to the improved 4-BP biodegradation in HA-added ESAS. This study provided a deep insight into microbial mechanism driven by HA and offered a promising strategy for improving halogenated organic pollutants removal from wastewater.
Collapse
Affiliation(s)
- Jiaohui Xia
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
44
|
Fan J, Liu C, Zheng J, Song Y. Dithionite promoted microbial dechlorination of hexachlorobenzene while goethite further accelerated abiotic degradation by sulfidation in paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115047. [PMID: 37220705 DOI: 10.1016/j.ecoenv.2023.115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023]
Abstract
It is of great scientific and practical importance to explore the mechanisms of accelerated degradation of Hexachlorobenzene (HCB) in soil. Both iron oxide and dithionite may promote the reductive dechlorination of HCB, but their effects on the microbial community and the biotic and abiotic mechanisms behind it remain unclear. This study investigated the effects of goethite, dithionite, and their interaction on microbial community composition and structure, and their potential contribution to HCB dechlorination in a paddy soil to reveal the underlying mechanism. The results showed that goethite addition alone did not significantly affect HCB dechlorination because the studied soil lacked iron-reducing bacteria. In contrast, dithionite addition significantly decreased the HCB contents by 44.0-54.9%, while the coexistence of dithionite and goethite further decreased the HCB content by 57.9-69.3%. Random Forest analysis suggested that indicator taxa (Paenibacillus, Acidothermus, Haliagium, G12-WMSP1, and Frankia), Pseudomonas, richness and Shannon's index of microbial community, and immobilized Fe content were dominant driving factors for HCB dechlorination. The dithionite addition, either with or without goethite, accelerated HCB anaerobic dechlorination by increasing microbial diversity and richness as well as the relative abundance of the above specific bacterial genera. When goethite and dithionite coexist, sulfidation of goethite with dithionite could remarkably increase FeS formation and then further promote HCB dechlorination rates. Overall, our results suggested that the combined application of goethite and dithionite could be a practicable strategy for the remediation of HCB contaminated soil.
Collapse
Affiliation(s)
- Jianling Fan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Cuiying Liu
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China.
| | - Jinjin Zheng
- School of Changwang, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
45
|
Chen AH, Yang YJ, Wang S, Yang LM, Gao XY, Cui D. Fabrication of modified electrode by reduced graphene oxide (rGO) and polyaniline (PANI) for enhancing azo dye decolorization in bio-electrochemical systems (BESs). ENVIRONMENTAL RESEARCH 2023; 231:116042. [PMID: 37142084 DOI: 10.1016/j.envres.2023.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Bio-electrochemical systems (BESs) have attracted wide attention in the field of wastewater treatment owing to their fast electron transfer rate and high performance. Unfortunately, the low electro-chemical activity of carbonaceous materials commonly used in BESs remains a bottleneck for their practical applications. Especially, for refractory pollutants remediation, the efficiency is largely limited by the cathode property in term of (bio)-electrochemical reduction of highly oxidized functional groups. Herein, a reduced graphene oxide (rGO) and polyaniline (PANI) modified electrode was fabricated via two-step electro-deposition using carbon brush as raw material. Benefiting from the modified graphene sheets and PANI nanoparticles, the rGO/PANI electrode shows highly conductive network with the electro-active surface area increased by 12 times (0.013 mF cm-2) and the charge transfer resistance decreased by 92% (0.23Ω) comparing with the unmodified one. Most importantly, the rGO/PANI electrode used as abiotic cathode achieves highly efficient azo dye removal from wastewater. The highest decolorization efficiency reaches 96 ± 0.03% within 24 h and the maximum decolorization rate is as high as 20.9 ± 1.45 g h-1·m-3. The features of improved electro-chemical activity and enhanced pollutant removal efficiency provide a new insight toward development of high performance BESs via electrode modification for practical application.
Collapse
Affiliation(s)
- Ai-Hong Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Yue-Jia Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Shuai Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Li-Ming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xue-Yun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
46
|
Ren T, Liu Y, Shi C, Li C. Bimetal-organic framework-derived porous CoFe 2O 4 nanoparticles as biocompatible anode electrocatalysts for improving the power generation of microbial fuel cells. J Colloid Interface Sci 2023; 643:428-436. [PMID: 37086532 DOI: 10.1016/j.jcis.2023.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
HYPOTHESIS The relatively lower power density of Microbial fuel cells (MFCs), primarily resulting from weak biofilm habitation and sluggish extracellular electron transfer (EET) at the anode interface, limits their practical implementation on a large scale. To address this challenge, porous CoFe2O4 nanoparticles could be used as anode electrocatalysts based on the following considerations: (i) the introduction of CoFe2O4 nanoparticles endows the anode with a rough surface that facilitates biofilm formation; (ii) the positively charged Co and Fe ions improve the interfacial affinity of anodes, enabling rapid immobilization and colonization of negatively bacteria; (iii) the multi-valent metal states of Co and Fe can function as electron shuttles, mediating EET process between biofilm and anode. EXPERIMENTS CoFe2O4 nanoparticles prepared with a bimetal-organic framework (B-MOF) as precursor, were modified to the surface of carbon cloth as the anode of MFCs. FINDINGS MFCs equipped with CoFe2O4 anode achieved a maximum power density of 1026.68 mW m-2, which was approximately 3.4 times higher than that of the pristine carbon cloth. Additionally, the biofilm density and viability on the anode were enhanced after CoFe2O4 modification. Considering the facile fabrication process and superior electrocatalytic performance, the CoFe2O4 nanoparticles are promising electrocatalysts for high performance and cost-effective MFCs.
Collapse
Affiliation(s)
- Tingli Ren
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Yuanfeng Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Chunhong Shi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| |
Collapse
|
47
|
Shi K, Cheng H, Cornell CR, Wu H, Gao S, Jiang J, Liu T, Wang A, Zhou J, Liang B. Micro-aeration assisted with electrogenic respiration enhanced the microbial catabolism and ammonification of aromatic amines in industrial wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130943. [PMID: 36860074 DOI: 10.1016/j.jhazmat.2023.130943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Improvement of refractory nitrogen-containing organics biodegradation is crucial to meet discharged nitrogen standards and guarantee aquatic ecology safety. Although electrostimulation accelerates organic nitrogen pollutants amination, it remains uncertain how to strengthen ammonification of the amination products. This study demonstrated that ammonification was remarkably facilitated under micro-aerobic conditions through the degradation of aniline, an amination product of nitrobenzene, using an electrogenic respiration system. The microbial catabolism and ammonification were significantly enhanced by exposing the bioanode to air. Based on 16S rRNA gene sequencing and GeoChip analysis, our results indicated that aerobic aniline degraders and electroactive bacteria were enriched in suspension and inner electrode biofilm, respectively. The suspension community had a significantly higher relative abundance of catechol dioxygenase genes contributing to aerobic aniline biodegradation and reactive oxygen species (ROS) scavenger genes to protect from oxygen toxicity. The inner biofilm community contained obviously higher cytochrome c genes responsible for extracellular electron transfer. Additionally, network analysis indicated the aniline degraders were positively associated with electroactive bacteria and could be the potential hosts for genes encoding for dioxygenase and cytochrome, respectively. This study provides a feasible strategy to enhance nitrogen-containing organics ammonification and offers new insights into the microbial interaction mechanisms of micro-aeration assisted with electrogenic respiration.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Haoyi Cheng
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Carolyn R Cornell
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Haiwei Wu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Tiejun Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, USA; School of Computer Science, University of Oklahoma, Norman, OK 73019, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
48
|
Shi K, Liang B, Feng K, Ning D, Cornell CR, Zhang Y, Xu W, Zhou M, Deng Y, Jiang J, Liu T, Wang A, Zhou J. Electrostimulation triggers an increase in cross-niche microbial associations toward enhancing organic nitrogen wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117301. [PMID: 36681035 DOI: 10.1016/j.jenvman.2023.117301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
As an efficient wastewater pretreatment biotechnology, electrostimulated hydrolysis acidification (eHA) has been used to accelerate the removal of refractory pollutants, which is closely related to the effects of electrostimulation on microbial interspecies associations. However, the ecological processes underpinning such linkages remain unresolved, especially for the microbial communities derived from different niches, such as the electrode surface and plankton. Herein, the principles of cross-niche microbial associations and community assembly were investigated using molecular ecological network and phylogenetic bin-based null model analysis (iCAMP) based on 16S rRNA gene sequences. The electrostimulated planktonic sludge and electrode biofilm displayed significantly (P < 0.05) 1.67 and 1.53 times higher organic nitrogen pollutant (azo dye Alizarin Yellow R) degradation efficiency than non-electrostimulation group, and the corresponding microbial community composition and structure were significantly (P < 0.05) changed. Electroactive bacteria and functional degraders were enriched in the electrode biofilm and planktonic sludge, respectively. Notably, electrostimulation strengthened the synergistic microbial associations (1.8 times more links) between sludge and biofilm members. Additionally, both electrostimulation and cross-niche microbial associations induced greater importance of deterministic assembly. Overall, this study highlights the specificity of cross-electrode surface microbial associations and ecological processes with electrostimulation and advances our understanding of the manipulation of sludge microbiomes in engineered wastewater treatment systems.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Carolyn R Cornell
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenbin Xu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Min Zhou
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Tiejun Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA; School of Computer Science, University of Oklahoma, Norman, OK, 73019, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
49
|
Cheng J, Liu M, Su X, Rittmann BE, Lu Z, Xu J, He Y. Conductive Materials on Biocathodes Altered the Electron-Transfer Paths and Modulated γ-HCH Dechlorination and CH 4 Production in Microbial Electrochemical Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2739-2748. [PMID: 36724064 DOI: 10.1021/acs.est.2c06097] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Adding conductive materials to the cathode of a microbial electrochemical system (MES) can alter the route of interspecies electron transfer and the kinetics of reduction reactions. We tested reductive dechlorination of γ-hexachlorocyclohexane (γ-HCH), along with CH4 production, in MES systems whose cathodes were coated with conductive magnetite nanoparticles (NaFe), biochar (BC), magnetic biochar (FeBC), or anti-conductive silica biochar (SiBC). Coating with NaFe enriched electroactive microorganisms, boosted electro-bioreduction, and accelerated γ-HCH dechlorination and CH4 production. In contrast, BC only accelerated dechlorination, while FeBC only accelerated methanogenesis, because of their assemblies of functional taxa that selectively transferred electrons to those electron sinks. SiBC, which decreased electro-bioreduction, yielded the highest CH4 production and increased methanogens and the mcrA gene. This study provides a strategy to selectively control the distribution of electrons between reductive dechlorination and methanogenesis by adding conductive or anti-conductive materials to the MES's cathode. If the goal is to maximize dechlorination and minimize methane generation, then BC is the optimal conductive material. If the goal is to accelerate electro-bioreduction, then the best addition is NaFe. If the goal is to increase the rate of methanogenesis, adding anti-conductive SiBC is the best.
Collapse
Affiliation(s)
- Jie Cheng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Meng Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Xin Su
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, Michigan48201, United States
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou310058, China
| |
Collapse
|
50
|
Cao D, Li ZL, Shi K, Liang B, Zhu Z, Liu W, Nan J, Sun K, Wang AJ. Cathode potential regulates the microbiome assembly and function in electrostimulated bio- dechlorination system. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130113. [PMID: 36252407 DOI: 10.1016/j.jhazmat.2022.130113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Mechanism of microbiome assembly and function driven by cathode potential in electro-stimulated microbial reductive dechlorination system remain poorly understood. Here, core microbiome structure, interaction, function and assembly regulating by cathode potential were investigated in a 2,4,6-trichlorophenol bio-dechlorination system. The highest dechlorination rate (24.30 μM/d) was observed under - 0.36 V with phenol as a major end metabolite, while, lower (-0.56 V) or higher (0.04 V or -0.16 V) potentials resulted in 1.3-3.8 times decreased of dechlorination kinetic constant. The lower the cathode potential, the higher the generated CH4, revealing cathode participated in hydrogenotrophic methanogenesis. Taxonomic and functional structure of core microbiome significantly shifted within groups of - 0.36 V and - 0.56 V, with dechlorinators (Desulfitobacterium, Dehalobacter), fermenters (norank_f_Propionibacteriaceae, Dysgonomonas) and methanogen (Methanosarcina) highly enriched, and the more positive interactions between functional genera were found. The lowest number of nodes and links and the highest positive correlations were observed among constructed sub-networks classified by function, revealing simplified and strengthened cooperation of functional genera driven by group of - 0.36 V. Cathode potential plays one important driver controlling core microbiome assembly, and the low potentials drove the assembly of major dechlorinating, methanogenic and electro-active genera to be more deterministic, while, the major fermenting genera were mostly governed by stochastic processes.
Collapse
Affiliation(s)
- Di Cao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ke Shi
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongli Zhu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- Key Lab of Structures Dynamic Behavior and Control of China Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|