1
|
Li X, Bond T, Tan X, Yang H, Chen Y, Jin B, Chen B. Dissolved inorganic nitrogen as an overlooked precursor of nitrogenous disinfection byproducts - A critical review. WATER RESEARCH 2025; 268:122654. [PMID: 39490092 DOI: 10.1016/j.watres.2024.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Aquatic nitrogenous compounds can be classified as dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN), including ammonia, nitrite, nitrate, and inorganic chloramines. The occurrence of nitrogenous disinfection byproducts (N-DBPs) in water, such as haloacetonitriles (HANs), halonitromethanes (HNMs), haloacaetamides (HAcAms), and nitrosamines (NAs), has attracted considerable attention due to their higher toxicity than regulated carbonaceous analogues. While numerous studies have investigated the contributions of DON to N-DBP formation, relatively fewer studies have explored DIN as N-DBP precursors, although DINs are sometimes evaluated as influencing factors. Through a literature review and data mining, this study delves into the existing body of evidence that analyze the contributions of different forms of DIN to N-DBP generation. The results showed that ammonia and nitrite can enhance trichloronitromethane (TCNM) and nitrodimethylamine (NDMA) formation in conventional chlorination and chloramination processes, nitrate can promote HNM formation in ultraviolet-based processes, and monochloramine can increase HAN, HAcAm, HNM, and NDMA formation in most disinfection scenarios. Notably, some experiments demonstrated that the yields of dichloroacetonitrile (DCAN) and TCNM can be higher from reactions involving nitrogen-free organic precursors and DIN than those involving DON and nitrogen-free disinfectant, suggesting that the relative importance of DON and DIN in forming N-DBP in real water remains unresolved. These insights thus underscore DIN as a non-negligible precursor in N-DBP formation and call for more attention to water management strategies for DIN.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tom Bond
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Xiaoyu Tan
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haolin Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yuheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bingbing Jin
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Wang T, Deng L, Tan C, Hu J, Prasad Singh R. Formation of halonitromethanes from different nitrophenol compounds during UV/post-chlorination: Impact factors, DFT calculation, reaction mechanisms, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174718. [PMID: 38997025 DOI: 10.1016/j.scitotenv.2024.174718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
As ubiquitous chemical substances in water bodies, nitrophenol compounds (NCs) can form chlorinated halonitromethanes (Cl-HNMs) in the chlorination process. This work chose six typical NCs to explore Cl-HNMs produced during the UV/post-chlorination process, and Cl-HNMs yields from these NCs followed the increasing order of 4-, 2-, 2-amino-3-, 2-methyl-3-, 3-, and 2-chloro-3-nitrophenol. The Cl-HNMs yields increased continually or increased firstly and declined with post-chlorination time. Increasing chlorine dosage favored Cl-HNMs formation, while excessive chlorine dosage decreased Cl-HNMs produced from 2- and 4-nitrophenol. Besides, appropriate UV radiation, acidic pH, and higher precursor concentrations facilitated Cl-HNMs formation. Then, the reaction mechanisms of Cl-HNMs generated from these different NCs were explored according to density functional theory calculation and identified transformation products (TPs), and the main reactions included chlorine substitution, benzoquinone compound formation, ring opening, and bond cleavage. Moreover, the Cl-HNMs generated from 2-chloro-3-nitrophenol were of the highest toxicity, and the six NCs and their TPs also presented ecotoxicity. Finally, two kinds of real waters were used to explore Cl-HNMs formation and toxicity, and they were significantly distinguishable compared to the phenomena observed in simulated waters. This work will give new insights into Cl-HNMs formation from different NCs in water disinfection processes and help better apply the UV/post-chlorination process to water treatments.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | | |
Collapse
|
3
|
Wang T, Deng L, Tan C, Hu J, Prasad Singh R. Reaction mechanisms of chlorinated disinfection byproducts formed from nitrophenol compounds with different structures during chlor(am)ination and UV/post-chlor(am)ination. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134544. [PMID: 38733788 DOI: 10.1016/j.jhazmat.2024.134544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Nitrophenol compounds (NCs) have high formation potentials of disinfection byproducts (DBPs) in water disinfection processes, however, the reaction mechanisms of DBPs formed from different NCs are not elucidated clearly. Herein, nitrobenzene, phenol, and six representative NCs were used to explore the formation mechanisms of chlorinated DBPs (Cl-DBPs) during chlor(am)ination and UV/post-chlor(am)ination. Consequently, the coexistence of nitro and hydroxy groups in NCs facilitated the electrophilic substitution to produce intermediates of Cl-DBPs, and the different positions of nitro and hydroxy groups also induced different yields and formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Besides, the amino, chlorine, and methyl groups significantly influenced the formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Furthermore, the total Cl-DBPs yields from the six NCs followed a decreasing order of 2-chloro-3-nitrophenol, 3-nitrophenol, 2-methyl-3-nitrophenol, 2-amino-4-nitrophenol, 2-nitrophenol, and 4-nitrophenol during chlorination and UV/post-chlorination. However, the total Cl-DBPs yields from the six NCs during chloramination and UV/post-chloramination followed a quite different order, which might be caused by additional reaction mechanisms, e.g., nucleophilic substitution or addition might occur to NCs in the presence of monochloramine (NH2Cl). This work can offer deep insights into the reaction mechanisms of Cl-DBPs from NCs during the chlor(am)ination and UV/post-chlor(am)ination processes.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
4
|
Liu Z, Cui Z, Guo Z, Li D, He Z, Liu W, Yue X, Zhou A. Insights into the effect of nitrate photolysis on short-chain fatty acids production from waste activated sludge in anaerobic fermentation system: Performance and mechanisms. WATER RESEARCH 2024; 258:121772. [PMID: 38761600 DOI: 10.1016/j.watres.2024.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/20/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Nitrate photolysis has become an efficient, low-cost and promising technology for emerging contaminants removal, while its performance and mechanism for waste activated sludge (WAS) treatment is still unknown. This study innovatively introduced nitrate photolysis for WAS disintegration, and investigated the effect of nitrate addition (150-375 mg N/L) for short-chain fatty acids (SCFAs) production during anaerobic fermentation (AF). The results showed that nitrate photolysis significantly promoted the SCFAs production from WAS, and peaked at 280.7 mg/g VSS with 7-d fermentation with 150 mg N/L addition (150N-UV), which increased by 8.8-35.0 % and 10.7-23.3 % compared with other photolysis groups and sole nitrate groups. Effective release of the soluble organics was observed in the nitrate photolysis groups during AF, especially soluble proteins, reaching 1505.4 mg COD/L at 9 d in 150N-UV group, promoted by 7.0∼15.7 % than nitrate/nitrate photolysis groups. The model compounds simulation experiment further demonstrated the positive effect of nitrate photolysis on organics hydrolysis and SCFAs accumulation. The result of the radical capture and quenching verified the reactive oxygen species contributed more compared with reactive nitrogen species. Functional group analysis confirmed the effective bioconversion of the macromolecular organics during the fermentation. Moreover, the nitrate photolysis enhanced the enrichment of the functional consortia, including anaerobic fermentation bacteria (AFB), e.g., Fnoticella, Romboutsia, Gracilibacter and Sedimentibacter, and nitrate reducing bacteria (NRB), e.g., Acinerobacter and Ahniella. The macrogenetic analysis further revealed that glycolysis, amino acid metabolism, acetate metabolism and nitrogen metabolism were the dominating metabolic pathways during fermentation, and the abundance of the relevant genes were enhanced in 150N-UV group.
Collapse
Affiliation(s)
- Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030024, China
| | - Zhixuan Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zhengtong Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Dengfei Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Zhangwei He
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Shanxi 710055, China
| | - Wenzong Liu
- Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China.
| |
Collapse
|
5
|
Ao X, Zhang X, Sun W, Linden KG, Payne EM, Mao T, Li Z. What is the role of nitrate/nitrite in trace organic contaminants degradation and transformation during UV-based advanced oxidation processes? WATER RESEARCH 2024; 253:121259. [PMID: 38377923 DOI: 10.1016/j.watres.2024.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The effectiveness of UV-based advanced oxidation processes (UV-AOPs) in degrading trace organic contaminants (TrOCs) can be significantly influenced by the ubiquitous presence of nitrate (NO3-) and nitrite (NO2-) in water and wastewater. Indeed, NO3-/NO2- can play multiple roles of NO3-/NO2- in UV-AOPs, leading to complexities and conflicting results observed in existing research. They can inhibit the degradation of TrOCs by scavenging reactive species and/or competitively absorbing UV light. Conversely, they can also enhance the elimination of TrOCs by generating additional •OH and reactive nitrogen species (RNS). Furthermore, the presence of NO3-/NO2- during UV-AOP treatment can affect the transformation pathways of TrOCs, potentially resulting in the nitration/nitrosation of TrOCs. The resulting nitro(so)-products are generally more toxic than the parent TrOCs and may become precursors of nitrogenous disinfection byproducts (N-DBPs) upon chlorination. Particularly, since the impact of NO3-/NO2- in UV-AOPs is largely due to the generation of RNS from NO3-/NO2- including NO•, NO2•, and peroxynitrite (ONOO-/ONOOH), this review covers the generation, properties, and detection methods of these RNS. From kinetic, mechanistic, and toxicologic perspectives, future research needs are proposed to advance the understanding of how NO3-/NO2- can be exploited to improve the performance of UV-AOPs treating TrOCs. This critical review provides a comprehensive framework outlining the multifaceted impact of NO3-/NO2- in UV-AOPs, contributing insights for basic research and practical applications of UV-AOPs containing NO3-/NO2-.
Collapse
Affiliation(s)
- Xiuwei Ao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xi Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States.
| | - Emma M Payne
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; MW Technologies, Inc., Ontario L8N1E, Canada
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
6
|
Xue Q, Deng L, Tang Q, Wang T, Luo W. Formation of halonitromethanes from benzylamine during UV/chlorination: Impact factors, toxicity alteration, and pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16437-16452. [PMID: 38319423 DOI: 10.1007/s11356-024-32132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Halonitromethanes (HNMs), a representative nitrogen-containing disinfection byproduct, have gained significant concerns due to their higher cytotoxicity and genotoxicity. UV/chlorination is considered a promising alternative disinfection technology for chlorination. This study aimed to investigate the HNMs formation from benzylamine (BZA) during UV/chlorination. The experimental results revealed that the yields of HNMs initially raised to a peak then dropped over time. Higher chlorine dosage and BZA concentration promoted the formation of HNMs, whereas alkaline pH inhibited their formation. The presence of bromine ion (Br-) not only converted chlorinated-HNMs (Cl-HNMs) to brominated (chlorinated)-HNMs Br (Cl)-HNMs) and brominated-HNMs (Br-HNMs) but also enhanced the total concentration of HNMs. Besides, the calculated cytotoxicity index (CTI) and genotoxicity index (GTI) of HNMs were elevated by 68.97% and 60.66% as Br- concentration raised from 2 to 6 µM. The possible formation pathways of HNMs from BZA were proposed based on the intermediates identified by a gas chromatography/mass spectrometry (GC/MS). In addition, the formation rules of HNMs in actual water verified the results in deionized water during UV/chlorination. The results of this study provide basic data and a theoretical basis for the formation and control of HNMs, which is conducive to applying UV/chlorination.
Collapse
Affiliation(s)
- Qi Xue
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China.
| | - Qian Tang
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Tao Wang
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Wei Luo
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| |
Collapse
|
7
|
Dong L, Yao Z, Sun S, Wang M, Jia R. Effect of UV/peroxymonosulfate pretreatment on disinfection byproduct (DBP) formation during post-chlorination of humic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:422-432. [PMID: 38015407 DOI: 10.1007/s11356-023-30908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
UV/peroxymonosulfate (UV/PMS) is a promising advanced oxidation technology in water treatment. This study aimed to investigate the impact of UV/PMS on humic acid (HA) and the influence of PMS dosage, pretreatment time, pH pretreatment, nitrate, nitrite, ammonium, and bicarbonate influencing factors on disinfection byproduct (DBP) formation during post-chlorination. With increased PMS dosage or pretreatment time, the UV/PMS treatment significantly reduced ultraviolet absorbance and increased mineralization. It altered the fractional constituent as humic substances were gradually transformed into building blocks and low-molecular-weight acids. However, most DBP formation increased initially and then decreased after subsequent chlorination. Rising nitrate or nitrite concentrations markedly promoted halonitromethane (HNM) formation. The presence of ammonia had a more significant impact on dichloroacetonitrile (DCAN) formation. Bicarbonate in UV/PMS pretreatment increased carbonated disinfection byproduct (C-DBP) formation, whereas it had a negligible impact on nitrogenous disinfection byproduct (N-DBP) formation. The present study revealed the impact of a series of influencing factors on DBP formation in UV/PMS reaction systems, providing comprehensive insights on applying UV/PMS in actual practice.
Collapse
Affiliation(s)
- Lulu Dong
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Zhenxing Yao
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
| | - Shaohua Sun
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
| | - Mingquan Wang
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
| | - Ruibao Jia
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China.
| |
Collapse
|
8
|
Chen X, Wu Y, Zhang W, Bu L, Zhu S, Sheng D, Zhou S, Crittenden JC. Insight into the mechanisms of trichloronitromethane formation by vacuum ultraviolet: QSAR model and FTICR-MS analysis. J Environ Sci (China) 2023; 125:215-222. [PMID: 36375907 DOI: 10.1016/j.jes.2021.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 06/16/2023]
Abstract
Vacuum ultraviolet (VUV) photolysis is recognized as an environmental-friendly treatment process. Nitrate (NO3-) and natural organic matter (NOM) are widely present in water source. We investigated trichloronitromethane (TCNM) formation during chlorination after VUV photolysis, because TCNM is an unregulated highly toxic disinfection byproduct. In this study: (1) we found reactive nitrogen species that is generated under VUV photolysis of NO3- react with organic matter to form nitrogen-containing compounds and subsequently form TCNM during chlorination; (2) we found the mere presence of 0.1 mmol/L NO3- can result in the formation of up to 63.96 µg/L TCNM; (3) we found the changes in pH (6.0-8.0), chloride (1-4 mmol/L), and bicarbonate (1-4 mmol/L) cannot effectively diminish TCNM formation; and, (4) we established the quantitative structure-activity relationship (QSAR) model, which indicated a linear relationship between TCNM formation and the Hammett constant (σ) of model compounds; and, (5) we characterized TCNM precursors in water matrix after VUV photolysis and found 1161 much more nitrogen-containing compounds with higher aromaticity were generated. Overall, this study indicates more attention should be paid to reducing the formation risk of TCNM when applying VUV photolysis process at scale.
Collapse
Affiliation(s)
- Xiaojun Chen
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Weiqiu Zhang
- School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Georgia 30332, USA
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Da Sheng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - John C Crittenden
- School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Georgia 30332, USA
| |
Collapse
|
9
|
Wu Y, Qu D, Bu L, Zhu S, Zhou S. Enhanced trichloronitromethane formation during chlorine-UV treatment of nitrite-containing water by organic amines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158304. [PMID: 36030871 DOI: 10.1016/j.scitotenv.2022.158304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This study explored the risk of trichloronitromethane (TCNM) formation during chlorination of the nitrite-containing water after pre-chlorination and subsequent UV irradiation (i.e., the chlorine-UV process). The competitive reaction between amino acid (AA) and NO2- for chlorine produced organic chloramine and reduced the oxidation from NO2- to NO3-, resulting in a significant enhancement of TCNM in the presence of AA (>5.52 μg L-1) as compared to the absence of AA (0.42 μg L-1). The generation of HO• during UV photolysis of organic chloramines was confirmed. Among the process parameters, pre-chlorination time (from 5 min to 30 min) had no significant effect on TCNM formation; the highest TCNM formation occurred at pH 7 (from pH 6 to pH 8); prolonged UV irradiation time (from 5 min to 30 min) and increased chlorine to AA ratio (Cl2:AA) (from 1 to 3) decreased the TCNM formation. The hydroxylated, chlorinated and nitrosated products were detected. The quantum chemical calculation results indicated the attack of NO2• was more likely to occur at the meta and para positions of benzoic acid (BZA), because of the steric hindrance of the carboxylic group in BZA to the ortho position. Based on the results of the toxicity assessment, pre-chlorination with a higher chlorine dosage could be an effective method of controlling both TCNM formation and acute toxicity. Overall, the results of this study contributed to the understanding of the TCNM formation mechanism as well as optimizing the parameters of the chlorine-UV process to reduce the risk of TCNM formation.
Collapse
Affiliation(s)
- Yangtao Wu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Dongxu Qu
- China Northeast Municipal Engineering Design and Research Institute Co., Ltd, PR China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
10
|
Huang T, Deng L, Wang T, Liao X, Hu J, Tan C, Singh RP. Effects of bromide ion on the formation and toxicity alteration of halonitromethanes from nitrate containing humic acid water during UV/chlor(am)ine disinfection. WATER RESEARCH 2022; 225:119175. [PMID: 36191529 DOI: 10.1016/j.watres.2022.119175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
UV/chlor(am)ine are efficient for achieving multiple-barrier disinfection and maintaining residuals, while bromide (Br-) has notable impacts on the formation and toxicity of halonitromethanes (HNMs) during UV/chlor(am)ine disinfection. This study investigated the effects of Br- on HNMs formation and toxicity alteration during UV/chlor(am)ine disinfection of nitrate containing humic acid (HA) water. Results reveal that the maximum concentration of HNMs during UV/chlorine disinfection was 12.03 μg L-1 with 0.2 mg L-1 Br-, which was 22.5% higher than that without Br-, and the predominant species of HNMs were converted from trichloronitromethane (TCNM) to dibromonitromethane (DBNM) and tribromonitromethane (TBNM). However, the maximum concentration of HNMs during UV/chloramine disinfection was 3.69 μg L-1 with 0.2 mg L-1 Br-, which was increased by 26.0% than that without Br-, and the predominant species of HNMs were converted from dichloronitromethane (DCNM) to bromochloronitromethane (BCNM) and DBNM. Notably, the HNMs species and yields during UV/chloramine disinfection were less than those during UV/chlorine disinfection, primarily due to the higher concentrations of HO· and reactive chlorine/bromine species in UV/chlorine. Also, in the ranges of the Br-:Cl2 molar ratio from 0 to 0.32 and pH from 6.0 to 8.0, the Br-:Cl2 molar ratio of 0.16 and acidic pH contributed to the HNMs formation during UV/chlorine disinfection, and a high Br-:Cl2 molar ratio and neutral pH contributed to the HNMs formation during UV/chloramine disinfection. Note that the incorporation of Br- significantly improved the calculated cytotoxicity (CTI) and genotoxicity (GTI) of HNMs formed, and the calculated CTI and GTI of HNMs formed during UV/chloramine disinfection were 28.19 and 48.90% of those during UV/chlorine disinfection. Based on the diversity of nitrogen sources, the possible formation pathways of HNMs from nitrate containing HA water were proposed during UV/chlor(am)ine disinfection in the presence of Br-. Results of this study indicated that UV/chloramine can reduce the formation and toxicity of HNMs efficiently.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Xueying Liao
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | | |
Collapse
|
11
|
Mao S, Liu C, Wu Y, Xia M, Wang F. Porous P, Fe-doped g-C 3N 4 nanostructure with enhanced photo-Fenton activity for removal of tetracycline hydrochloride: Mechanism insight, DFT calculation and degradation pathways. CHEMOSPHERE 2022; 291:133039. [PMID: 34822866 DOI: 10.1016/j.chemosphere.2021.133039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
This study fabricated an efficient P and Fe co-doping graphitic carbon nitride catalyst (Fe- CN/P) by thermal polymerization of melamine, FeCl3, and 2-hydroxyphosphonoacetic acid (HPAA) mixture. The Fe-CN/P catalyst exhibited much better tetracycline hydrochloride (TCH) degradation performance than that of single doping and neat CN. Various characterizations indicated that the introduction of HPAA significantly increased the specific surface area of CN and improved charge separation as well as transfer efficiency. Based on Fe 2p XPS analysis and indirect determination of hydroxyl radical (·OH) content, the separated photogenerated electrons accelerated the reduction of Fe(III) and activated photo-Fenton reaction, resulting in more ·OH species generation. The effect of pH value, catalyst dosages, H2O2 concentration, the type of cations and anions as well as water matrices on the degradation of TCH by Fe-CN/P was systematically investigated. The main degradation pathways of TCH were proposed according to the LC-MS intermediates detection and DFT calculation. The results indicated that reactive oxide species (ROS) were more likely to attack the atoms with high Fukui index (f0). This work provides new ideas for adjusting the morphology and electronic structure of CN to enhance its photo-Fenton catalytic activity.
Collapse
Affiliation(s)
- Shuai Mao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chun Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yi Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
12
|
Chen X, Feng L, Zheng W, Chen S, Yang Y, Xie S. Shifts in structure and function of bacterial community in river and fish pond sediments after a phenol spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14987-14998. [PMID: 34622407 DOI: 10.1007/s11356-021-16514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Phenol is widely used in industrial processes and has microbial toxicity. However, the effects of a phenol spill on the microbial community are not clear. The present study explored the changes of bacterial communities in river and fish pond sediments after a phenol spill. The bacterial richness and diversity in river sediments were lower on day 30 (36 days after the spill) than on day 0, while they increased in fish pond sediments. The structures and functions of bacterial communities in both river and fish pond sediments were changed, and a more dramatical variation was detected in fish pond sediments. In river sediments, Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Nitrospirae were the major bacterial phyla, and Chloroflexi was enriched. In fish pond sediments, genera Brevibacillus dominated bacterial communities initially, and bacterial composition showed a dramatic change on day 30. Most predicted metabolism functions, as well as genetic information processing functions of translation, replication, and repair, were enhanced in both river and fish pond sediments, while they showed an opposite change trend for xenobiotic degradation function. This work could strengthen our understanding of the effects of phenol spills on sediment bacterial communities in both lotic and lentic ecosystems.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Lishi Feng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Wenli Zheng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China.
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Ye C, Ma X, Deng J, Li X, Li Q, Dietrich AM. Degradation of saccharin by UV/H 2O 2 and UV/PS processes: A comparative study. CHEMOSPHERE 2022; 288:132337. [PMID: 34592214 DOI: 10.1016/j.chemosphere.2021.132337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Artificial sweeteners have raised emerging concern due to their potential threats to human health, which were frequently detected in aquatic environment with median concentrations. Although current researches have widely reported that ultraviolet light-activated persulfate process (UV/PS) was superior to UV/H2O2 process for the degradation of refractory organic contaminants, UV/H2O2 process presented a more satisfactory saccharin (SAC) removal efficiency than UV/PS process, completely degraded 20 mg/L SAC within 45 min. Hence, quenching and probe experiments were employed to investigate the difference between hydroxyl radical (OH)- and sulfate radical (SO4-)-mediated oxidation mechanisms, which revealed the higher reactivity of OH (1.37-1.56 × 109 M-1 s-1) toward SAC than SO4- (3.84-4.13 × 108 M-1 s-1). A combination of density functional theory calculation and transformation products identification disclosed that OH preferred to attack the benzene ring of SAC via hydrogen atom transfer pathway, whereas SO4- oxidation was conducive to the cleavage of -C-NH2 bond. Increasing oxidant concentration significantly accelerated SAC degradation in both processes, while UV/H2O2 process consumed lower electrical energy with respect to UV/PS process. Additionally, UV/H2O2 system presented excellent adaptability and stability under various water matrices parameters (e.g. pH, anions and humic acid). While both UV/H2O2 and UV/PS processes promoted the generation of disinfection by-products (DBPs) during subsequent chlorination, and prolonging pretreatment time posed positive effect on reducing the formation of DBPs. Overall, the results clearly demonstrate the high efficiency, economy and practicality of UV/H2O2 process in the remediation of SAC-contaminated water.
Collapse
Affiliation(s)
- Cheng Ye
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China
| | - Andrea M Dietrich
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
14
|
Liu T, Chen J, Li N, Xiao S, Huang CH, Zhang L, Xu Y, Zhang Y, Zhou X. Unexpected Role of Nitrite in Promoting Transformation of Sulfonamide Antibiotics by Peracetic Acid: Reactive Nitrogen Species Contribution and Harmful Disinfection Byproduct Formation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1300-1309. [PMID: 34965096 DOI: 10.1021/acs.est.1c06026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peracetic acid (PAA) is an emerging oxidant and disinfectant for wastewater (WW) treatment due to limited harmful disinfection byproduct (DBP) formation. Nitrite (NO2-) is a ubiquitous anion in water, but the impact of NO2- on PAA oxidation and disinfection has been largely overlooked. This work found for the first time that NO2- could significantly promote the oxidation of sulfonamide antibiotics (SAs) by PAA. Unexpectedly, the reactive nitrogen species (RNS), for example, peroxynitrite (ONOO-), rather than conventional organic radicals (R-O•) or reactive oxygen species (ROS), played major roles in SAs degradation. A kinetic model based on first-principles was developed to elucidate the reaction mechanism and simulate reaction kinetics of the PAA/NO2- process. Structural activity assessment and quantum chemical calculations showed that RNS tended to react with an aromatic amine group, resulting in more conversion of NO2--N to organic-N. The formation of nitrated and nitrosated byproducts and the enhancement of trichloronitromethane formation potential might be a prevalent problem in the PAA/NO2- process. This study provides new insights into the reaction of PAA with NO2- and sheds light on the potential risks of PAA in WW treatment in the presence of NO2-.
Collapse
Affiliation(s)
- Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
15
|
Sun J, Zhou S, Sheng D, Li N, Wang J, Jiang C. Elimination of β-N-methylamino-l-alanine (BMAA) during UV/chlorine process: Influence factors, transformation pathway and DBP formation. CHEMOSPHERE 2021; 284:131426. [PMID: 34323795 DOI: 10.1016/j.chemosphere.2021.131426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
As a new cyanobacterial neurotoxin generated by cyanobacteria, BMAA was closely related to amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS/PDC). In this study, the degradation of BMAA by UV/chlorine process was investigated under the impacts of chlorine dosage, NOM dosage, pH and alkalinity. Results showed that only 10% of BMAA was removed by UV irradiation and 46.8% by chlorination in 5 min, however, 98.6% of BMAA was removed by UV/chlorine process in 5 min. The reaction rates were increased under alkaline conditions, but all achieved complete degradation in 5 min. Besides, HCO3- had slight inhibition, while NOM had significant inhibition on the degradation of BMAA. Furthermore, based on the detected degradation products of BMAA during UV/chlorine process, the possible degradation pathways were concluded. Overall, outcomes of this study exhibited that the use of the UV/chlorine process for BMAA degradation was appropriate in practical applications.
Collapse
Affiliation(s)
- Julong Sun
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Da Sheng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Nan Li
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Jue Wang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Changbo Jiang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| |
Collapse
|
16
|
Sheng D, Zhu S, Zhang W, Bu L, Wu Y, Wang J, Zhou S. Degradation of carbamazepine and disinfection byproducts formation in water distribution system in the presence of copper corrosion products. CHEMOSPHERE 2021; 282:131066. [PMID: 34470152 DOI: 10.1016/j.chemosphere.2021.131066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/08/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Copper ion (Cu2+), a common corrosion product released from copper pipes, is widely present in water distribution system (WDS). Cu2+ was confirmed to be capable to catalyze the decay of monochloramine (NH2Cl), which is a commonly used disinfectant and need to maintain a minimum concentration in WDS. Cu2+ and NH2Cl form a system in WDS and their interaction with other substances in WDS is unclear. In this study, the performance of Cu2+/NH2Cl system on degradation of trace pollutants, taking carbamazepine (CBZ) as an example, in WDS was investigated, and significant promotion on CBZ degradation was observed. The acceleration was due to the generation of Cl, OH and other oxidants, which were identified by scavenge experiments. CBZ degradation in Cu2+/NH2Cl system was highly pH-dependent, because the catalytic effect of Cu2+ can only work at low pH (Cu2+ precipitating at pH > 6.0). The removal of CBZ increased with the concentration of Cu2+ increasing. Water matrix (NOM, HCO3- and Br-) can inhibit the removal of CBZ in Cu2+/NH2Cl system. Further, five disinfection byproducts (DBPs), namely, trichloromethane (TCM), dichloroacetonitrile (DCAN), dichloroacetone (DCP), trichloronitromethane (TCNM) and trichloroacetone (TCP), were detected in chloramination in the presence/absence of Cu2+. Compared with chloramination without Cu2+, the cytotoxicity and genotoxicity of formed DBPs increased significantly in the presence of Cu2+, indicating that the chemical safety in WDS deserves more attention.
Collapse
Affiliation(s)
- Da Sheng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, China.
| | - Wei Zhang
- Hunan Provincial Village Drinking Water Quality Safety Engineering Technology Research Center, Yiyang, 413000, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Jue Wang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
17
|
Wu Y, Cai T, Chen X, Duan X, Xu G, Bu L, Zhou S, Shi Z. Unveiling the interaction of epigallocatechin-3-gallate with peroxymonosulfate for degradation of bisphenol S: Two-stage kinetics and identification of reactive species. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Zhu S, Tian Z, Wang P, Zhang W, Bu L, Wu Y, Dong B, Zhou S. The role of carbonate radicals on the kinetics, radical chemistry, and energy requirement of UV/chlorine and UV/H 2O 2 processes. CHEMOSPHERE 2021; 278:130499. [PMID: 34126696 DOI: 10.1016/j.chemosphere.2021.130499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/22/2021] [Accepted: 04/03/2021] [Indexed: 05/28/2023]
Abstract
Quantitative insight into the HCO3--dependent degradation kinetics is critical to improve understanding of the UV processes for the most-cost effective application. In this study, we developed a kinetic model to precisely predict the kinetics in UV/H2O2 and UV/chlorine processes. The second-order rate constants of HO, Cl, ClO, Cl2-, and CO3- with carbamazepine (CBZ) were fitted as 1.3 × 109, 1.9 × 109, 1.8 × 106, 1.1 × 105, and 4.5 × 106 M-1 s-1, respectively. Based on the model, we investigated the significant impact of bicarbonate (HCO3-) and subsequently generated carbonate radical (CO3-) on CBZ degradation, radical chemistry, and energy requirement of UV/H2O2 and UV/chlorine processes. The presence of HCO3- inhibited CBZ degradation in UV/H2O2 and UV/chlorine processes to different degree. Contributions of HO, Cl, ClO, Cl2-, and CO3- to CBZ degradation in UV/H2O2 and UV/chlorine processes in the absence/presence of HCO3- were investigated. HO and CO3- make comparable contributions to CBZ degradation in UV/H2O2 process in the presence of HCO3- (2 mM), while ClO is always the main contributor at various HCO3- concentration of 0-2 mM. Furthermore, the presence of HCO3- in both processes increased the corresponding EE/O, when CBZ was degraded by an order of magnitude. Overall, HCO3- and CO3- influence the reactions and mechanism of UV/H2O2 and UV/chlorine processes, and have higher impact on UV/H2O2 process.
Collapse
Affiliation(s)
- Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Hunan University, Changsha, Hunan, 410082, China
| | - Zaochen Tian
- Key Laboratory of Building Safety and Energy Efficiency, Hunan University, Changsha, Hunan, 410082, China
| | - Pin Wang
- Key Laboratory of Building Safety and Energy Efficiency, Hunan University, Changsha, Hunan, 410082, China
| | - Weiqiu Zhang
- Brook Byer Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Hunan University, Changsha, Hunan, 410082, China.
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Hunan University, Changsha, Hunan, 410082, China
| | - Bingzhi Dong
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
19
|
Photolysis of nitrate by solar light in agricultural runoffs: Degradation of emerging contaminant vs. formation of unintended products. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Ahmed N, Vione D, Rivoira L, Carena L, Castiglioni M, Bruzzoniti MC. A Review on the Degradation of Pollutants by Fenton-Like Systems Based on Zero-Valent Iron and Persulfate: Effects of Reduction Potentials, pH, and Anions Occurring in Waste Waters. Molecules 2021; 26:4584. [PMID: 34361737 PMCID: PMC8347750 DOI: 10.3390/molecules26154584] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Among the advanced oxidation processes (AOPs), the Fenton reaction has attracted much attention in recent years for the treatment of water and wastewater. This review provides insight into a particular variant of the process, where soluble Fe(II) salts are replaced by zero-valent iron (ZVI), and hydrogen peroxide (H2O2) is replaced by persulfate (S2O82-). Heterogeneous Fenton with ZVI has the advantage of minimizing a major problem found with homogeneous Fenton. Indeed, the precipitation of Fe(III) at pH > 4 interferes with the recycling of Fe species and inhibits oxidation in homogeneous Fenton; in contrast, suspended ZVI as iron source is less sensitive to the increase of pH. Moreover, persulfate favors the production of sulfate radicals (SO4•-) that are more selective towards pollutant degradation, compared to the hydroxyl radicals (•OH) produced in classic, H2O2-based Fenton. Higher selectivity means that degradation of SO4•--reactive contaminants is less affected by interfering agents typically found in wastewater; however, the ability of SO4•- to oxidize H2O/OH- to •OH makes it difficult to obtain conditions where SO4•- is the only reactive species. Research results have shown that ZVI-Fenton with persulfate works best at acidic pH, but it is often possible to get reasonable degradation at pH values that are not too far from neutrality. Moreover, inorganic ions that are very common in water and wastewater (Cl-, HCO3-, CO32-, NO3-, NO2-) can sometimes inhibit degradation by scavenging SO4•- and/or •OH, but in other cases they even enhance the process. Therefore, ZVI-Fenton with persulfate might perform unexpectedly well in some saline waters, although the possible formation of harmful by-products upon oxidation of the anions cannot be ruled out.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy; (L.R.); (L.C.); (M.C.)
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy; (L.R.); (L.C.); (M.C.)
| | | | | | | | - Maria Concetta Bruzzoniti
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy; (L.R.); (L.C.); (M.C.)
| |
Collapse
|
21
|
Wang P, Bu L, Wu Y, Deng J, Zhou S. Mechanistic insights into paracetamol transformation in UV/NH 2Cl process: Experimental and theoretical study. WATER RESEARCH 2021; 194:116938. [PMID: 33636666 DOI: 10.1016/j.watres.2021.116938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 05/28/2023]
Abstract
The UV/monochloramine (NH2Cl) process is an advanced oxidation process that can effectively remove emerging contaminants (ECs). However, the degradation mechanisms of reactive radicals with ECs are not clear. In this work, we combined theoretical calculations with experimental studies to investigate the kinetics and mechanism of radical-mediated degradation of paracetamol (AAP) in UV/NH2Cl process. The degradation of AAP in UV/NH2Cl process accords with the pseudo first-order kinetics. Impact factors including NH2Cl dose, pH, natural organic matter, HCO3-, and NO3- were evaluated. The reaction mechanisms of AAP with hydroxyl radical (HO·), reactive chlorine species (RCS), and reactive nitrogen species (RNS) were discussed in detail. Specifically, HO· attacked AAP mainly through hydrogen atom transfer (HAT) and radical adduct formation (RAF), while Cl2·- play a certain role through single electron transfer (SET). ·NH2 and Cl· destructed AAP mainly through HAT. Based on the mechanism analysis, the second-order rate constants of AAP reacts with HO·, Cl·, ·NH2, ClO·, Cl2·- and ·NO2 were calculated through transition state theory as 2.66×109 M-1 s-1, 2.61×109 M-1 s-1, 1.02×107 M-1 s-1, 7.74×106 M-1 s-1, 1.32×106 M-1 s-1, 1.48×103 M-1 s-1 respectively. The second-order rate constants were then used to distinguish the contribution of radicals to the degradation of AAP. Thirteen transformation products were identified by high-resolution mass spectrometry. Combined active sites with potential energy surface, the detailed reaction pathways were proposed. Overall, this study provides deep insights into the mechanism of radical-mediated degradation of AAP.
Collapse
Affiliation(s)
- Pin Wang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
22
|
Yang K, Yin J, Zhu T, Liu B, Li G, Huang B, Shi Z, Deng L. Effect of boron-doped diamond anode electrode pretreatment on UF membrane fouling mitigation in a cross-flow filtration process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Wang P, Bu L, Wu Y, Ma W, Zhu S, Zhou S. Mechanistic insight into the degradation of ibuprofen in UV/H 2O 2 process via a combined experimental and DFT study. CHEMOSPHERE 2021; 267:128883. [PMID: 33183784 DOI: 10.1016/j.chemosphere.2020.128883] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
The study investigated the degradation kinetic and transformation mechanism of ibuprofen (IBP) in UV/H2O2 process from both experimental and theoretical aspects. Impacts of H2O2 dosage, solution pH, quenching agent, and concentration of nitrite (NO2-) on IBP degradation in UV/H2O2 process were evaluated. Both experimental results and theoretical calculations indicated that •OH played an important role in the degradation of IBP and its transformation products. The second-order rate constants of •OH and •NO2 with IBP were calculated as 3.93 × 109 M-1 s-1 and 5.59 × 10-3 M-1 s-1, based on the transition state theory, which explained the phenomenon that addition of NO2- inhibited IBP degradation. Further, according to the results of ultra-high-resolution mass and density functional theory calculations, mechanisms of a detailed degradation pathway for IBP were clarified. Namely, the detailed mechanistic formation pathways for hydroxylated and keto-based products were proposed. Then, possible active sites of the keto-based products, as well as the corresponding subsequent products were predicted by Condensed Fukui Function. Our study can broaden the knowledge of the reactions of emerging contaminants with •OH, and provide theoretical foundation for the optimization of UV/H2O2 process.
Collapse
Affiliation(s)
- Pin Wang
- Key Laboratory of Building Safety and Energy Eficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Eficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Eficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Wangchi Ma
- Key Laboratory of Building Safety and Energy Eficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Eficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Eficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
24
|
Wang J, Wu Y, Bu L, Zhu S, Zhang W, Zhou S, Gao N. Simultaneous removal of chlorite and contaminants of emerging concern under UV photolysis: Hydroxyl radicals vs. chlorate formation. WATER RESEARCH 2021; 190:116708. [PMID: 33279746 DOI: 10.1016/j.watres.2020.116708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
It is well known that using chlorine dioxide (ClO2) as a disinfectant inevitably produces a common disinfection byproducts chlorite (ClO2‒). In this study, we found that UV photolysis after ClO2 disinfection can effectively eliminate both ClO2‒ and contaminants of emerging concern (CECs). However, the kinetic mechanisms of UV/ClO2‒ process destructing CECs, as well as transformation of ClO2‒ in UV/ClO2‒ system are not clear yet. Therefore, we systematically investigated the UV/ClO2‒ system to assist us appropriately design this process under optimal operational conditions. In this work, we first investigated the impact of water matrix conditions (i.e., pH, bicarbonate and natural organic matter (NOM)) and ClO2‒ dosage on the UV/ClO2‒ process. We found that bicarbonate and NOM have inhibition effects, while lower pH and higher ClO2‒ dosage have enhancement effects. Besides, hydroxyl radical (HO•) and reactive chlorine species (RCS) are generated from UV/ClO2‒ system, and RCS are main contributors to CBZ degradation. Then we proposed a possible degradation pathway of CBZ based on the determined products from experiments. Additionally, we found that photolysis of ClO2‒ resulted in the generation of chloride (Cl‒) and chlorate (ClO3‒). As the ClO2‒ dosage increases, the yield of ClO3‒ increased while that of Cl‒ decreased. Finally, we elucidated the second order rate constant of the target organic compound with HO• has a strong correlation with the formation of ClO3‒.
Collapse
Affiliation(s)
- Jue Wang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Weiqiu Zhang
- Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China.
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
25
|
Gao YQ, Zhou JQ, Zhang J, Li C, Gao NY, Yin DQ. Factors affecting UV/persulfate treatment of phenacetin and its disinfection byproduct formation potential. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
He Q, Xie Z, Fu Z, Wang H, Chen L, Gao S, Zhang W, Song J, Xu P, Yu J, Ma J. Effects of phenol on extracellular polymeric substances and microbial communities from aerobic granular sludge treating low strength and salinity wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141785. [PMID: 33207518 DOI: 10.1016/j.scitotenv.2020.141785] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The effects of phenol on aerobic granular sludge including extracellular polymeric substances (EPS) and microbial community were investigated for low strength and salinity wastewater treatment. Elevated phenol over 20 mg/L stimulated biological phosphorus removal mainly via co-metabolism with nearly complete phenol degradation, whereas resulted in significant accumulation of nitrate around 4 mg/L. Aerobic granules kept structural stability via enhancing production of extracellular polymeric substances (EPS), especially folds of polysaccharides (PS) and varying functional groups identified through EEM, FTIR and XPS spectral characterizations at increasing phenol loads. Illumina MiSeq sequencing results indicated that elevated phenol decreased the bacterial diversity and richness, and caused remarkable variations in structural and compositions of microbial population. Multiple halophilic bacteria including Stappia, Luteococcus, and Formosa laid the biological basis for stability of aerobic granules and efficient biological nutrients and phenol removal. Redundancy analysis (RDA) suggested the key role of phenol in shaping the relative abundances and predominant genera. This study proved that aerobic granular sludge was feasible for low-saline and phenol-laden low-strength wastewater treatment.
Collapse
Affiliation(s)
- Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Zhiyi Xie
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zhidong Fu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Li Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuxian Gao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zhang
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jianyang Song
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang 473004, China; School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Peng Xu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jian Yu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jingwei Ma
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
27
|
Hua Z, Li D, Wu Z, Wang D, Cui Y, Huang X, Fang J, An T. DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide. WATER RESEARCH 2021; 188:116549. [PMID: 33152588 DOI: 10.1016/j.watres.2020.116549] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 05/03/2023]
Abstract
The UV/chlorine process is efficient for the abatement of micropollutants; yet, the formation of disinfection by-products (DBPs) and the toxicity can be altered during the treatment. This study investigated effluent organic matter characterization, DBP formation and toxicity alteration after the UV/chlorine treatment of wastewater; particularly, typical water matrix components in wastewater, namely, ammonia and bromide, were studied. The raw wastewater contained low levels of ammonia (3 µM) and bromide (0.5 µM). The UV/chlorine treatment efficiently eliminated 90 - 94% of fluorescent components. Compared with chlorination alone, a 20 min UV/chlorine treatment increased the formation of trihalomethanes (THMs), haloacetic acids (HAAs), chloral hydrate (CH), haloacetonitriles (HANs), trichloronitromethane (TCNM) and haloacetamides (HAcAms) by 90 - 508%. In post-chlorination after the UV/chlorine treatment, the formation of CH, HANs, TCNM and HAcAms increased by 77 - 274%, whereas the formation of both THMs and HAAs increased slightly by 11%. Meanwhile, the calculated cytotoxicity and genotoxicity of DBPs increased considerably after the UV/chlorine treatment and in post-chlorination, primarily due to the increased formation of HAAs and nitrogenous DBPs (N-DBPs). However, the acute toxicity of the wastewater to Vibrio fischeri and genotoxicity determined by the umu test decreased by 19% and 76%, respectively, after the 20 min UV/chlorine treatment. An additional 200 µM ammonia decreased the formation of all detected DBPs during the UV/chlorine treatment and 24 h post-chlorination, except that TCNM formation increased by 11% during post-chlorination. The acute toxicity of wastewater spiked with 200 µM ammonia was 32% lower than that of raw wastewater after the UV/chlorine treatment, but the genotoxicity was 58% higher. The addition of 1 mg/L bromide to the UV/chlorine process dramatically increased the formation of brominated DBPs and the overall calculated cytotoxicity and genotoxicity of DBPs. However, the acute toxicity and genotoxicity of the wastewater decreased by 7% and 100%, respectively, when bromide was added to the UV/chlorine treatment. This study illuminated that UV/chlorine treatment can decrease acute and geno- toxicities of wastewater efficiently.
Collapse
Affiliation(s)
- Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dan Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Zihao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ding Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Independent researcher, 25 Tuscany Springs Terr NW, Calgary, AB T3L 2V2, Canada
| | - Yonglin Cui
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiongfei Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
28
|
Chen S, Deng J, Ye C, Xu C, Huai L, Li J, Li X. Simultaneous removal of para-arsanilic acid and the released inorganic arsenic species by CuFe2O4 activated peroxymonosulfate process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140587. [PMID: 32623153 DOI: 10.1016/j.scitotenv.2020.140587] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
para-arsanilic acid (p-ASA), as a major phenylarsonic feed additive, was used annually in many countries. Once it enters the water environment, p-ASA would be transformed into hypertoxic inorganic arsenic species, causing severe arsenic pollution. In this study, magnetic copper ferrite (CuFe2O4) was applied to activate peroxymonosulfate (PMS) for p-ASA removal and synchronous control of the released inorganic arsenic species. Results showed that CuFe2O4/PMS system presented favorable oxidation ability and close to 85% of 10 mg/L p-ASA was eliminated under the condition of simultaneous dosing 0.2 g/L CuFe2O4 and 1 mM PMS. The rapid decomposition of p-ASA resulted from homogeneous PMS oxidation and the attack of reactive oxygen species (i.e., SO4-, HO and O2-), which was involved the heterogeneous PMS activation through the cycles between Fe(II)/Fe(III) and Cu(II)/Cu(I). Meanwhile, the released inorganic arsenic species during p-ASA degradation were found to be controllable via the adsorption on CuFe2O4 surface and metal hydroxyl groups played the crucial role. CuFe2O4/PMS system exhibited the stable and efficient performance within the broad range of pH 3.0-11.0. The existence of common anions (Cl-, NO3-, HCO3-, SO42-) and humic acid presented the slight inhibition for p-ASA degradation. The reduction of initial p-ASA concentration favored the p-ASA removal. Besides, the catalyst retained a favorable reactivity and stability even after four successive cycles and almost no metal leaching was observed. The rational degradation pathway was mainly involved in the cleavage of AsC bond, oxidation of amino group, substitution and oxidation of hydroxyl group. The transformation of arsenic species could be divided into the release of inorganic arsenic species, the oxidation of As(III) into As(V) and the adsorption of As(V) by CuFe2O4.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Cheng Ye
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chengcheng Xu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Lingyi Huai
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
29
|
Shi Z, Li Z, Gao J, Wu Y, Zhou S, Bu L. Enhanced oxidation of bisphenol A by permanganate in the presence of epigallocatechin gallate: Kinetics and mechanism. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Zhou S, Li L, Wu Y, Zhu S, Zhu N, Bu L, Dionysiou DD. UV 365 induced elimination of contaminants of emerging concern in the presence of residual nitrite: Roles of reactive nitrogen species. WATER RESEARCH 2020; 178:115829. [PMID: 32375111 DOI: 10.1016/j.watres.2020.115829] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
The presence of nitrite (NO2-) is inevitable with concentrations of several mg L-1 in some typical water bodies. In this study, UV at wavelength of 365 nm was investigated to degrade contaminants of emerging concern (CECs) in the presence of NO2- at environmentally relevant concentrations (0.1-5.0 mg L-1). Six selected CECs with different structures were efficiently removed because of the generation of reactive nitrogen species (RNS) and hydroxyl radical (HO•) from photolysis of NO2-. Contributions of UV365 photolysis, RNS, and HO• to CEC degradation in UV365/NO2- system were calculated, and RNS were found to be the predominant species that are responsible for CEC degradation. The second major contributor is HO• for the degradation of selected CECs except for the case of sulfadiazine. Impacts of water matrix components (including dissolved oxygen, solution pH, and natural organic matter) on CEC degradation in UV365/NO2- system were evaluated. Furthermore, evolution profiles of CECs and NO2- in UV365/NO2- system were tracked when actual water samples were used as background, and a simultaneous removal of CECs and NO2- was observed. Transformation products of bisphenol A and carbamazepine were proposed according to the results of HPLC/MS and quantum chemistry calculations. Nitration induced by RNS and hydroxylation induced by HO• are main reactions occurred during CEC degradation in UV365/NO2- system. Overall, UV365 is a potential technology to remove CECs and NO2- in aquatic environment when residual NO2- is present. Our present study also provides possibility for the application of sunlight to remediate water co-polluted by CECs and NO2-.
Collapse
Affiliation(s)
- Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Ling Li
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Ningyuan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| |
Collapse
|
31
|
Wang J, Wang C, Guo H, Ye T, Liu Y, Cheng X, Li W, Yang B, Du E. Crucial roles of oxygen and superoxide radical in bisulfite-activated persulfate oxidation of bisphenol AF: Mechanisms, kinetics and DFT studies. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122228. [PMID: 32062541 DOI: 10.1016/j.jhazmat.2020.122228] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Though natural reducing agents have been demonstrated as desirable catalysts for environmental remediation, the mechanism of catalytic activation of persulfate (PS) by bisulfite (S(IV)) remains unclear. In this study, an emerging contaminant bisphenol AF (BPAF) was employed as the target compound to examine the activation and degradation mechanism in PS/S(IV) system. Sulfate radical (SO4•-) was evidenced as the dominant radical accounting for BPAF degradation via quantitative analysis, while hydroxyl radical (•OH) and singlet oxygen (1O2) were minor contributors. Superoxide radical (O2•-) was identified as an intermediate radical in promoting BPAF removal through quenching experiments and electron paramagnetic resonance analysis. Tests in oxygen-rich and oxygen-deficient systems were conducted and the results were contrasted to elucidate the important role of oxygen in BPAF degradation and SO4•--formation. In addition, the effect of Dissolved Oxygen (DO) was simulated using two separate kinetic models. Decomposition mechanism of BPAF was afterwards clarified via the density-functional theory calculations using Fukui index to predict the vulnerable sites and the intermediate products. This study provides a mechanistic understanding of the activation of PS/S(IV) system on the BPAF removal, especially the critical role of DO and O2•- in SO4•- generation.
Collapse
Affiliation(s)
- Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chengjin Wang
- Department of Civil and Mineral Engineering, University of Toronto, GB420, 35 St. George St., Toronto, ON, M5S 1A4, Canada
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Tao Ye
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195, United States
| | - Yang Liu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xin Cheng
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, United States
| | - Wei Li
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bo Yang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
32
|
Ding J, Bu L, Zhao Q, Kabutey FT, Wei L, Dionysiou DD. Electrochemical activation of persulfate on BDD and DSA anodes: Electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121789. [PMID: 31818663 DOI: 10.1016/j.jhazmat.2019.121789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
The combination of electrolysis and persulfate (PS) activation was investigated to enhance the degradation of bisphenol A (BPA) using boron-doped diamond (BDD) and dimensional stable anode (DSA) in perchlorate, sulfate, and chloride media. The acceleration effect of BPA degradation followed the order of Cl->ClO4->SO42- in BDD/PS and BDD system, while the degradation order in DSA/PS and DSA system was Cl->SO42->ClO4-. The contribution of radical species (SO4- and OH), active chlorine and electrolysis were confirmed for the degradation in different media with PS. Active chlorine dominated the degradation process with 85 % and 60 % removal in BDD/PS and DSA/PS system at 10 min, while the contribution of SO4- decreased from 20 % and 18 % in perchlorate to 5 % and 6 % in chloride media, respectively. The aromatic intermediates resulting from hydroxylation and carboxylation pathway and chlorinated products via hydroxylation and chlorine substitution pathway were detected in perchlorate and chloride media in BDD/PS system, respectively. The attempt of BDD/PS system in actual wastewater indicated potential for further application. This study aims to provide a deep insight to comprehensively understand the enhanced performance, contributions of different removal mechanisms, and degradation pathway of pollutants during the activation of PS in BDD and DSA systems in different media.
Collapse
Affiliation(s)
- Jing Ding
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lingjun Bu
- Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Felix Tetteh Kabutey
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
33
|
Bu L, Zhu N, Li C, Huang Y, Kong M, Duan X, Dionysiou DD. Susceptibility of atrazine photo-degradation in the presence of nitrate: Impact of wavelengths and significant role of reactive nitrogen species. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121760. [PMID: 31810806 DOI: 10.1016/j.jhazmat.2019.121760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The role of reactive nitrogen species (RNS) formed from nitrate photolysis has aroused interests in transformation of contaminants of emerging concern. This study investigated the influence of UV wavelengths (255, 285 and 365 nm) on photolysis of nitrate for degradation of atrazine (ATZ). The UV285/nitrate system showed the fastest rate constant for degradation of ATZ with kobs of 0.0022 cm2 mJ-1. UV photolysis, RNS, and hydroxyl radical (HO) were identified as main contributors to ATZ degradation in UV/nitrate system. Among the contributors, RNS made the major contribution to degradation of ATZ in UV285/nitrate system, while HO is the predominant specie in UV255/nitrate system. Variance decomposition analysis showed that degradation of ATZ was slightly impacted by natural organic matter and carbonate/bicarbonate in UV285/nitrate system but was dramatically affected in UV255/nitrate system. Main transformation products of ATZ in UV285/nitrate system were identified and possible pathways were proposed. RNS were confirmed to be favorable for acceleration of ATZ photolysis through further reaction of RNS with hydroxyatrazine (with electron-rich moieties). Our study provides deep insights on the influence of UV wavelength on nitrate photolysis and ATZ degradation, and provides a novel method for remediation of water co-contaminated by nitrate and organic contaminants.
Collapse
Affiliation(s)
- Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China; Department of Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Ningyuan Zhu
- Department of Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA; Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Chunquan Li
- Department of Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Ying Huang
- Department of Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Minghao Kong
- Department of Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Xiaodi Duan
- Department of Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA.
| | - Dionysios D Dionysiou
- Department of Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| |
Collapse
|
34
|
Zhou S, Wu Y, Zhu S, Sun J, Bu L, Dionysiou DD. Nitrogen conversion from ammonia to trichloronitromethane: Potential risk during UV/chlorine process. WATER RESEARCH 2020; 172:115508. [PMID: 31981900 DOI: 10.1016/j.watres.2020.115508] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
In this study, the potential formation of trichloronitromethane (TCNM) from model organic compounds in ammonia-containing water treated by UV/chlorine process was evaluated. Monochloramine generated from the reaction of chlorine and ammonia can be photolyzed to produce NO2- and reactive nitrogen species (RNS), which play important roles in the formation of TCNM during the subsequent chlorination. The results showed that increase of nitrogen to chlorine molar ratio (from 0 to 1.0) and pH (from 6.5 to 8.0) enhanced the formation of TCNM, mainly due to the increased yield of NO2- and RNS from the photolyzed monochloramine. The formation of TCNM was interestingly found to be linearly correlated with Hammett constants of the model precursors, which is theoretically related to the rate constants of RNS with model compounds. Enhanced formation of TCNM was also observed during the treatment of natural organic matter by UV/chlorine process in ammonia-containing water. The toxicity assessment showed that TCNM significantly increased the genotoxicity of formed DBPs. Furthermore, the electrophilic substitution reaction of •NO2 was proved to more likely occur on the ortho and para position of phenol according to the calculation of Gaussian program, and a possible reaction pathway of phenol and •NO2 was proposed based on the calculated results.
Collapse
Affiliation(s)
- Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Julong Sun
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| |
Collapse
|