1
|
Wang A, Li X, Luo X, He G, Huang D, Huang Q, Zhang XX, Chen W. Dissolved organic matter characteristics linked to bacterial community succession and nitrogen removal performance in woodchip bioreactors. J Environ Sci (China) 2025; 148:625-636. [PMID: 39095195 DOI: 10.1016/j.jes.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 08/04/2024]
Abstract
Woodchip bioreactors are an eco-friendly technology for removing nitrogen (N) pollution. However, there needs to be more clarity regarding the dissolved organic matter (DOM) characteristics and bacterial community succession mechanisms and their association with the N removal performance of bioreactors. The laboratory woodchip bioreactors were continuously operated for 360 days under three influent N level treatments, and the results showed that the average removal rate of TN was 45.80 g N/(m3·day) when the influent N level was 100 mg N/L, which was better than 10 mg N/L and 50 mg N/L. Dynamic succession of bacterial communities in response to influent N levels and DOM characteristics was an important driver of TN removal rates. Medium to high N levels enriched a copiotroph bacterial module (Module 1) detected by network analysis, including Phenylobacterium, Xanthobacteraceae, Burkholderiaceae, Pseudomonas, and Magnetospirillaceae, carrying N-cycle related genes for denitrification and ammonia assimilation by the rapid consumption of DOM. Such a process can increase carbon limitation to stimulate local organic carbon decomposition to enrich oligotrophs with fewer N-cycle potentials (Module 2). Together, this study reveals that the compositional change of DOM and bacterial community succession are closely related to N removal performance, providing an ecological basis for developing techniques for N-rich effluent treatment.
Collapse
Affiliation(s)
- Achen Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuesong Luo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangwen He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daqing Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University at Albany, Auckland 0745, New Zealand
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Klopper KB, Bester E, van Schalkwyk M, Wolfaardt GM. Mixed species biofilms act as planktonic cell factories despite isothiazolinone exposure under continuous-flow conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70010. [PMID: 39351641 PMCID: PMC11443163 DOI: 10.1111/1758-2229.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
The primary approach to managing biofouling in industrial water systems involves the large-scale use of biocides. It is well-established that biofilms are 'cell factories' that release planktonic cells even when challenged with antimicrobials. The effect of isothiazolinone on the metabolic activity and biomass of mixed Pseudomonas biofilms was monitored in real-time using the CEMS-BioSpec system. The exposure of biofilms to the minimum inhibitory concentration (1.25 mg L-1) of biocide did not impact planktonic cell production (log 7.5 CFU mL-1), while whole-biofilm metabolic activity and biomass accumulation increased. Only the maximum biocide concentration (80 mg L-1) resulted in a change in planktonic cell yields and temporal inhibition of biofilm activity and biomass, a factor that needs due consideration in view of dilution in industrial settings. Interfacing the real-time measurement of metabolic activity and biomass with dosing systems is especially relevant to optimizing the use of biocides in industrial water systems.
Collapse
Affiliation(s)
- Kyle B. Klopper
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | - Elanna Bester
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | | | - Gideon M. Wolfaardt
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| |
Collapse
|
3
|
Alves Ruislan AL, França Dias M, Daniela Lopes Júlio A, Mourão Silva UDC, Pagnin S, Veiga AA, Godinho Zanetti D, Santos VLD. Effects of antimicrobials over sessile and planktonic microbiota associated with an industrial cooling water system. BIOFOULING 2024; 40:499-513. [PMID: 39108059 DOI: 10.1080/08927014.2024.2384436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
The bacterial community from a cooling water system was investigated through culture-dependent and independent strategies, and the responses of planktonic and sessile bacteria (grown in glass slides and stainless-steel coupons) to antimicrobials of industrial and clinical use were assessed. The morphotypes with higher biofilm-forming potential were Pseudoxanthomonas sp., Rheinheimera sp., Aeromonas sp. and Staphylococcus sp., and the first also exhibited lower susceptibility to all antibiotics and biocides tested. 16S rRNA high throughput sequencing indicated that Pseudomonadota (77.1% on average, sd 11.1%), Bacteroidota (8.4, sd 5.7%), and Planctomycetota (3.0, sd 1.3%) were the most abundant phyla. KEGG orthologs associated with antibiotics and biocide resistance were abundant in all samples. Although the minimum inhibitory and bactericidal concentrations were generally higher for biofilms, morphotypes in planktonic form also showed high levels of resistance, which could be associated with biofilm cells passing into the planktonic phase. Overall, monochloramine was the most effective biocide.
Collapse
Affiliation(s)
| | - Marcela França Dias
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Sergio Pagnin
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Andrea Azevedo Veiga
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Débora Godinho Zanetti
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vera Lúcia Dos Santos
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Shomar B, Rovira J. Human health risk assessment associated with the reuse of treated wastewater in arid areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123478. [PMID: 38311158 DOI: 10.1016/j.envpol.2024.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Qatar produces more than 850,000 m3/day of highly treated wastewater. The present study aims at characterizing the effluents coming out of three central wastewater treatment plants (WWTPs) of chemical pollutants including metals, metalloids and antibiotics commonly used in the country. Additionally, the study is assessing human health risks associated with the exposure to the treated wastewater (TWW) via dermal and ingestion routes. Although the origin of domestic wastewater is desalinated water (the only source of fresh water), the results show that the targeted parameters in TWW were within the international standards. Concentrations of Cl, F, Br, NO3, NO2, SO4 and PO4, were 389, <0.1, 1.2, 25, <0.1, 346, and 2.8 mg/L, respectively. On the other hand, among all cations, metals and metalloids, only boron (B) was 2.1 mg/L which is higher than the Qatari guidelines for TWW reuse in irrigation of 1.5 mg/L. Additionally, strontium (Sr) and thallium (Tl) were detected with relatively high concentrations of 30 mg/L and 12.5 μg/L, respectively, due to their natural and anthropogenic sources. The study found that the low concentrations of all tested metals and metalloids do not pose any risk to human health. However, Tl presents exposure levels above the 10 % of oral reference dose (HQ = 0.4) for accidental oral ingestion of TWW. The results for antibiotics show that exposure for adults and children to TWW are far below the admissible daily intakes set using minimum therapeutic dose and considering uncertainty factors. Treated wastewater of Qatar can be used safely for irrigation. However, further investigations are still needed to assess microbiological quality.
Collapse
Affiliation(s)
- Basem Shomar
- Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Paisos Catalans Avenue 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut d'Investigació Sanitaria Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain.
| |
Collapse
|
5
|
Klopper KB, Bester E, van Schalkwyk M, Wolfaardt GM. Highlighting the limitations of static microplate biofilm assays for industrial biocide effectiveness compared to dynamic flow conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13214. [PMID: 38015101 PMCID: PMC10866068 DOI: 10.1111/1758-2229.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
The minimal inhibitory concentration of an antimicrobial required to inhibit the growth of planktonic populations (minimum inhibitory concentration [MIC]) remains the 'gold standard' even though biofilms are acknowledged to be recalcitrant to concentrations that greatly exceed the MIC. As a result, most studies focus on biofilm tolerance to high antimicrobial concentrations, whereas the effect of environmentally relevant sub-MIC on biofilms is neglected. The effect of the MIC and sub-MIC of an isothiazolinone biocide on a microbial community isolated from an industrial cooling system was assessed under static and flow conditions. The differential response of planktonic and sessile populations to these biocide concentrations was discerned by modifying the broth microdilution assay. However, the end-point analysis of biofilms cultivated in static microplates obscured the effect of sub-MIC and MIC on biofilms. A transition from batch to the continuous flow system revealed a more nuanced response of biofilms to these biocide concentrations, where biofilm-derived planktonic cell production was maintained despite an increase in the frequency and extent of biofilm sloughing. A holistic, 'best of both worlds' approach that combines the use of static and continuous flow systems is useful to investigate the potential for the development of persistent biofilms under conditions where exposure to sub-MIC and MIC may occur.
Collapse
Affiliation(s)
- Kyle B. Klopper
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | - Elanna Bester
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | | | - Gideon M. Wolfaardt
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| |
Collapse
|
6
|
Lin TY, Liu WT. Validation of 16S rRNA gene sequencing and metagenomics for evaluating microbial immigration in a methanogenic bioreactor. WATER RESEARCH 2023; 243:120358. [PMID: 37481999 DOI: 10.1016/j.watres.2023.120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
To quantitatively evaluate the impact of microbial immigration from an upstream community on the microbial assembly of a downstream community, an ecological genomics (ecogenomics)-based mass balance (EGMB) model coupled with 16S rRNA gene sequencing was previously developed. In this study, a mock community was used to further validate the EGMB models and demonstrate the feasibility of using metagenome-based EGMB model to reveal both microbial activity and function. The mock community consisting of Aeromonas, Escherichia, and Pseudomonas was fed into a lab-scale methanogenic bioreactor together with dissolved organic substrate. Using qPCR, 16S rRNA gene, 16S rRNA gene copy number normalization (GCN), and metagenome, results showed highly comparable community profiles in the feed. In the bioreactor, Aeromonas and Pseudomonas exhibited negative growth rates throughout the experiment by all approaches. Escherichia's growth rate was negative by most biomarkers but was slightly positive by 16S rRNA gene. Still, all approaches showed a decreasing trend toward negative in the growth rate of Escherichia as reactor operation time increased. Uncultivated populations of phyla Desulfobacterota, Chloroflexi, Actinobacteriota, and Spirochaetota were observed to increase in abundance, suggesting their contribution in degrading the feed biomass. Based on metabolic reconstruction of metagenomes, these populations possessed functions of hydrolysis, fermentation, fatty acid degradation, or acetate oxidation. Overall results supported the application of both 16S rRNA gene- and metagenome-based EGMB models to measure the growth rate of microbes in the bioreactor, and the latter had advantage in providing insights into the microbial functions of uncultivated populations.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
7
|
Valentukeviciene M, Andriulaityte I, Chadysas V. Assessment of Residual Chlorine Interaction with Different Microelements in Stormwater Sediments. Molecules 2023; 28:5358. [PMID: 37513231 PMCID: PMC10386466 DOI: 10.3390/molecules28145358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
One consequence of intensive outdoor disinfection using chlorinated compounds is environmental pollution. It has been found that disinfectants are the most effective tool to avoid the spread of infections and viruses. Studies have shown that the use of chlorine-based disinfectants (sodium hypochlorite) leaves residual chlorine and other disinfection byproducts in the environment. They also have harmful effects on, inter alia, water quality, ecosystems, as well as exacerbating the corrosion of surfaces. To meet regulatory standards, monitoring of the presence of residual chlorine in the environment is vitally important. The aim of this study is to analyse the occurrence of residual chlorine in stormwater after outdoor disinfection using sodium hypochlorite and to investigate its interaction with different microelements as well their possible impacts. Stormwater samples collected at permanently disinfected locations were analysed via X-ray absorption spectroscopy. The concentrations of Cl and the following elements Na, Si, K, Ca, Cr, Fe, Ni, Cu, Zn were detected and their relationship with chlorine was determined using the Python programming language. The research presents Cl concentration values (%) that vary from 0.02 to 0.04. The results of the modelling revealed strong correlations between Cl and Fe (value 0.65) and Ca (value -0.61) and the occurrence of CaCl2 and FeCl3. The strong relationship between Cl and Fe explains the significant increase in surface corrosion after disinfection with chlorine-based substances.
Collapse
Affiliation(s)
- Marina Valentukeviciene
- Department of Environmental Protection and Water Engineering, Faculty of Environment Engineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Ieva Andriulaityte
- Department of Environmental Protection and Water Engineering, Faculty of Environment Engineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Viktoras Chadysas
- Department of Mathematical Statistics, Faculty of Fundamentals Science, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
8
|
Jia S, Tian Y, Song Y, Zhang H, Kang M, Guo H, Chen H. Effect of NaClO and ClO 2 on the bacterial properties in a reclaimed water distribution system: efficiency and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27456-6. [PMID: 37178295 DOI: 10.1007/s11356-023-27456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Extensive application of reclaimed water alleviated water scarcity obviously. Bacterial proliferation in reclaimed water distribution systems (RWDSs) poses a threat to water safety. Disinfection is the most common method to control microbial growth. The present study investigated the efficiency and mechanisms of two widely used disinfectants: sodium hypochlorite (NaClO) and chlorine dioxide (ClO2) on the bacterial community and cell integrity in effluents of RWDSs through high-throughput sequencing (Hiseq) and flow cytometry, respectively. Results showed that a low disinfectant dose (1 mg/L) did not change the bacterial community basically, while an intermediate disinfectant dose (2 mg/L) reduced the biodiversity significantly. However, some tolerant species survived and multiplied in high disinfectant environments (4 mg/L). Additionally, the effect of disinfection on bacterial properties varied between effluents and biofilm, with changes in the abundance, bacterial community, and biodiversity. Results of flow cytometry showed that NaClO disturbed live bacterial cells rapidly, while ClO2 caused greater damage, stripping the bacterial membrane and exposing the cytoplasm. This research will provide valuable information for assessing the disinfection efficiency, biological stability control, and microbial risk management of reclaimed water supply systems.
Collapse
Affiliation(s)
- Shichao Jia
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
| | - Yimei Tian
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
| | - Yarong Song
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
| | - Haiya Zhang
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China.
- Institute of Water Ecology and Environment|, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
| | - Mengxin Kang
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
| | - Hao Guo
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
- The Institute of Seawater Desalination and Multipurpose Utilization, MNR (Tianjin), Tianjin, 300192, China
| | - Haolin Chen
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
| |
Collapse
|
9
|
Comparing the Efficacy of MALDI-TOF MS and Sequencing-Based Identification Techniques (Sanger and NGS) to Monitor the Microbial Community of Irrigation Water. Microorganisms 2023; 11:microorganisms11020287. [PMID: 36838251 PMCID: PMC9960253 DOI: 10.3390/microorganisms11020287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
In order to intensify and guarantee the agricultural productivity and thereby to be able to feed the world's rapidly growing population, irrigation has become very important. In parallel, the limited water resources lead to an increase in usage of poorly characterized sources of water, which is directly linked to a higher prevalence of foodborne diseases. Therefore, analyzing the microorganisms or even the complete microbiome of irrigation water used for food production can prevent the growing numbers of such cases. In this study, we compared the efficacy of MALDI-TOF Mass spectrometry (MALDI TOF MS) identification to 16S rRNA gene Sanger sequencing of waterborne microorganisms. Furthermore, we analyzed the whole microbial community of irrigation water using high-throughput 16S rRNA gene amplicon sequencing. The identification results of MALDI-TOF MS and 16S rRNA gene Sanger sequencing were almost identical at species level (66.7%; 64.3%). Based on the applied cultivation techniques, Acinetobacter spp., Enterobacter spp., Pseudomonas spp., and Brevundimonas spp. were the most abundant cultivable genera. In addition, the uncultivable part of the microbiome was dominated by Proteobacteria followed by Actinobacteria, Bacteroidota, Patescibacteria, and Verrucomicrobiota. Our findings indicate that MALDI-TOF MS offers a fast, reliable identification method and can act as an alternative to 16S rRNA gene Sanger sequencing of isolates. Moreover, the results suggest that MALDI-TOF MS paired with 16S rRNA gene amplicon sequencing have the potential to support the routine monitoring of the microbiological quality of irrigation water.
Collapse
|
10
|
Cao R, Wan Q, Xu X, Tian S, Wu G, Wang J, Huang T, Wen G. Differentiation of DNA or membrane damage of the cells in disinfection by flow cytometry. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128924. [PMID: 35483263 DOI: 10.1016/j.jhazmat.2022.128924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Recently, the viabilities changes of fungal spores in the water supply system during different disinfection processes have been revealed. SYBR Green I (SG), a nucleic acid stain, its fluorescence intensity is correlated with the amount of double-stranded DNA. This study established a new method through successive SG-SG-PI staining (PI: Propidium Iodide) with flow cytometry (FCM). It could successfully distinguish DNA damage and membrane damage of fungal spores, clearly elucidating the intrinsic disinfection mechanism during the chemical disinfection. This method was briefly described as follows: firstly, (1) the fungal spores were stained with SG and washed by centrifugation; and then, (2) the washed spores were treated with disinfectants and terminated; after that, (3) the disinfected spores were re-stained with SG and analyzed by FCM; finally, (4) the SG re-stained spores were stained with PI and analyzed by FCM. The percentages of spores with DNA damage and membrane damage were determined by the fluorescence intensity obtained from steps (3) and (4), respectively. The repeatability and applicability of this developed method were confirmed. It was further applied to explore the inactivation mechanism during chlorine-based disinfection, and results demonstrated that chloramine attacked the DNA more seriously than the membrane, while chlorine and chlorine dioxide worked in a reverse way.
Collapse
Affiliation(s)
- Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shiqi Tian
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
11
|
Mei R, Liu WT. Meta-Omics-Supervised Characterization of Respiration Activities Associated with Microbial Immigrants in Anaerobic Sludge Digesters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6689-6698. [PMID: 35510767 DOI: 10.1021/acs.est.2c01029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immigration has been recently recognized as an important ecological process that affects the microbial community structure in diverse ecosystems. However, the fate of microbial immigrants in the new environment and their involvement in the local biochemical network remain unclear. In this study, we performed meta-omics-supervised characterization of immigrants' activities in anaerobic sludge digesters. Metagenomic analyses revealed that immigrants from the feed sludge accounted for the majority of populations capable of anaerobic respiration in a digester. Electron acceptors that were predicted to be respired, including nitrate, nitrite, sulfate, and elemental sulfur, were added to digester sludge in batch tests. Consumption of up to 91% of the added electron acceptors was observed within the experiment period. 16S rRNA sequencing detected populations that were stimulated by the electron acceptors, largely overlapping with respiration-capable immigrants identified by metagenomic analysis. Metatranscriptomic analysis of the batch tests provided additional evidence for upregulated expression of respiration genes and concomitant suppressed expression of methanogenesis. Anaerobic respiration activity was further evaluated in full-scale digesters in nine wastewater treatment plants. Although nitrate and sulfate respiration were ubiquitous, the expression level of respiration genes was generally 2-3 orders of magnitude lower than the expression of methanogenesis in most digesters, suggesting marginal ecological roles by immigrants in full-scale digester ecosystems.
Collapse
Affiliation(s)
- Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Zhang Z, Zhang Q, Lu T, Zhang J, Sun L, Hu B, Hu J, Peñuelas J, Zhu L, Qian H. Residual chlorine disrupts the microbial communities and spreads antibiotic resistance in freshwater. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127152. [PMID: 34537643 PMCID: PMC9758890 DOI: 10.1016/j.jhazmat.2021.127152] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 05/04/2023]
Abstract
Chlorine disinfection is a key global public health strategy for the prevention and control of diseases, such as COVID-19. However, little is known about effects of low levels of residual chlorine on freshwater microbial communities and antibiotic resistomes. Here, we treated freshwater microcosms with continuous low concentrations of chlorine and quantified the effects on aquatic and zebrafish intestinal microbial communities and antibiotic resistomes, using shotgun metagenome and 16S rRNA gene sequencing. Although chlorine rapidly degraded, it altered the aquatic microbial community composition over time and disrupted interactions among microbes, leading to decreases in community complexity and stability. However, community diversity was unaffected. The majority of ecological functions, particularly metabolic capacities, recovered after treatment with chlorine for 14 d, due to microbial community redundancy. There were also increased levels of antibiotic-resistance gene dissemination by horizontal and vertical gene transfer under chlorine treatment. Although the zebrafish intestinal microbial community recovered from temporary dysbiosis, growth and behavior of zebrafish adults were negatively affected by chlorine. Overall, our findings demonstrate the negative effects of residual chlorine on freshwater ecosystems and highlight a possible long-term risk to public health.
Collapse
Affiliation(s)
- Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Jieyu Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Baolan Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jun Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
13
|
Pinel ISM, Hankinson PM, Moed DH, Wyseure LJ, Vrouwenvelder JS, van Loosdrecht MCM. Efficient cooling tower operation at alkaline pH for the control of Legionella pneumophila and other pathogenic genera. WATER RESEARCH 2021; 197:117047. [PMID: 33799081 DOI: 10.1016/j.watres.2021.117047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Efficient control of pathogenic bacteria, specifically Legionella pneumophila, is one of the main concerns when operating industrial cooling towers. Common practices to limit proliferation involves use of disinfectants, leading to formation of disinfection by-product and increase in water corrosiveness. A disinfectant-free Legionella control method would make the industry more environmentally friendly. A pilot-scale cooling tower (1 m3/h) operated with demineralized water was used to investigate the potential of high-pH conditioning as a disinfectant-free alternative for control of L. pneumophila and other pathogens. One control experiment was performed under standard full-scale operation involving sodium hypochlorite dosage. Thereafter 3 alkaline pHs of the cooling water were tested: 9.0, 9.4 and 9.6. The tests lasted between 25 and 35 days. The cooling water from the basins were analysed for total cell count by flow cytometry, L. pneumophila concentration by plate count and occasional qPCR analyses targeting the mip-gene, bacterial and eukaryotic community analyses with 16S and 18S rRNA gene amplicon sequencing, relative abundance of eukaryotic to prokaryotic DNA by qPCR of the 16S and 18S rRNA gene. The L. pneumophila analyses showed considerable growth at pH 9.0 and pH 9.4 but was maintained below detection limit (< 100 CFU/L) at pH 9.6 without disinfection. Interestingly, the results correlated with the overall abundance of protozoa in the water samples but not directly with the relative abundance of specific reported protozoan hosts of Legionella. The pathogenicity based on 16S rRNA gene amplicon sequencing of the cooling water DNA decreased with increasing pH with a strong decline between pH 9.0 and pH 9.4, from 7.1% to 1.6% of relative abundance of pathogenic genera respectively. A strong shift in microbiome was observed between each tested pH and reproducibility of the experiment at pH 9.6 was confirmed with a duplicate test lasting 80 days. High-pH conditioning ≥ 9.6 is therefore considered as an efficient disinfectant-free cooling tower operation for control of pathogenicity, including L. pneumophila.
Collapse
Affiliation(s)
- I S M Pinel
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| | - P M Hankinson
- Evides Industriewater, Schaardijk 150, 3063 NH Rotterdam, the Netherlands
| | - D H Moed
- Evides Industriewater, Schaardijk 150, 3063 NH Rotterdam, the Netherlands
| | - L J Wyseure
- Evides Industriewater, Schaardijk 150, 3063 NH Rotterdam, the Netherlands
| | - J S Vrouwenvelder
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - M C M van Loosdrecht
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
14
|
Calderón-Franco D, van Loosdrecht MCM, Abeel T, Weissbrodt DG. Free-floating extracellular DNA: Systematic profiling of mobile genetic elements and antibiotic resistance from wastewater. WATER RESEARCH 2021; 189:116592. [PMID: 33171295 DOI: 10.1016/j.watres.2020.116592] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/08/2020] [Accepted: 11/01/2020] [Indexed: 05/11/2023]
Abstract
The free-floating extracellular DNA (exDNA) fraction of microbial ecosystems harbors antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). Natural transformation of these xenogenetic elements can generate microbial cells resistant to one or more antibiotics. Isolating and obtaining a high yield of exDNA is challenging due to its low concentration in wastewater environments. Profiling exDNA is crucial to unravel the ecology of free-floating ARGs and MGEs and their contribution to horizontal genetransfer. We developed a method using chromatography to isolate and enrich exDNA without causing cell lysis from complex wastewater matrices like influent (9 µg exDNA out of 1 L), activated sludge (5.6 µg out of 1 L), and treated effluent (4.3 µg out of 1 L). ARGs and MGEs were metagenomically profiled for both the exDNA and intracellular DNA (iDNA) of activated sludge, and quantified by qPCR in effluent water. qPCR revealed that ARGs and MGEs are more abundant in the iDNA fraction while still significant on exDNA (100-1000 gene copies mL-1) in effluent water. The metagenome highlighted that exDNA is mainly composed of MGEs (65%). According to their relatively low abundance in the resistome of exDNA, ARGs uptake by natural transformation is likely not the main transfer mechanism. Although ARGs are not highly abundant in exDNA, the prevalence of MGEs in the exDNA fraction can indirectly promote antibiotic resistance development. The combination of this method with functional metagenomics can help to elucidate the transfer and development of resistances in microbial communities. A systematic profiling of the different DNA fractions will foster microbial risk assessments across water systems, supporting water authorities to delineate measures to safeguard environmental and public health.
Collapse
Affiliation(s)
| | | | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, USA
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
15
|
Reis MDP, de Paula RS, Reis ALM, Souza CCE, Júnior RBDO, Ferreira JA, Mota HR, de Carvalho MD, Jorge EC, Cardoso AV, Nascimento AMA. Microbial composition of a hydropower cooling water system reveals thermophilic bacteria with a possible role in primary biofilm formation. BIOFOULING 2021; 37:246-256. [PMID: 33730946 DOI: 10.1080/08927014.2021.1897790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Microfouling, ie biofilm formation on surfaces, can have an economic impact and requires costly maintenance in water-powered energy generation systems. In this study, the microbiota of a cooling system (filter and heat exchanger) in the Irapé hydroelectric power plant in Brazil was examined. The goal was to identify bacteria that could be targeted to more efficiently reduce biofilm formation. Two sampling campaigns were made corresponding to two well-defined seasons of the Brazilian Cerrado biome: the dry (campaign 1) and the wet (campaign 2). Microfouling communities varied considerably over time in samples obtained at different times after the last clearance of the heat exchanger. The thermophilic bacteria Meiothermus, Thermomonas and Symbiobacterium were exclusive and abundant in the microfouling of the heat exchanger in campaign 2, while methanotrophs and iron-reducing bacteria were abundant only in filter sediments. These findings could help to guide strategies for ecofriendly measures to reduce biofilm fouling in hydroelectric power plants, minimizing environmental and economic losses.
Collapse
Affiliation(s)
- Mariana de Paula Reis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rayan Silva de Paula
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Clara Carvalho E Souza
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato Brito de Oliveira Júnior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Alves Ferreira
- Departamento de Estatística, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Helen Regina Mota
- Companhia Energética de Minas Gerais S.A., Belo Horizonte, MG, Brazil
| | | | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Andréa Maria Amaral Nascimento
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
16
|
Luo LW, Wu YH, Yu T, Wang YH, Chen GQ, Tong X, Bai Y, Xu C, Wang HB, Ikuno N, Hu HY. Evaluating method and potential risks of chlorine-resistant bacteria (CRB): A review. WATER RESEARCH 2021; 188:116474. [PMID: 33039832 DOI: 10.1016/j.watres.2020.116474] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 05/21/2023]
Abstract
Chlorine-resistant bacteria (CRB) are commonly defined as bacteria with high resistance to chlorine disinfection or bacteria which can survive or even regrow in the residual chlorine. Chlorine disinfection cannot completely control the risks of CRB, such as risks of pathogenicity, antibiotic resistance and microbial growth. Currently, researchers pay more attention to CRB with pathogenicity or antibiotic resistance. The microbial growth risks of non-pathogenic CRB in water treatment and reclamation systems have been neglected to some extent. In this review, these three kinds of risks are all analyzed, and the last one is also highlighted. In order to study CRB, various methods are used to evaluate chlorine resistance. This review summarizes the evaluating methods for chlorine resistance reported in the literatures, and collects the important information about the typical isolated CRB strains including their genera, sources and levels of chlorine resistance. To our knowledge, few review papers have provided such systematic information about CRB. Among 44 typical CRB strains from 17 genera isolated by researchers, Mycobacterium, Bacillus, Legionella, Pseudomonas and Sphingomonas were the five genera with the highest frequency of occurrence in literatures. They are all pathogenic or opportunistic pathogenic bacteria. In addition, although there are many studies on CRB, information about chlorine resistance level is still limited to specie level or strain level. The difference in chlorine resistance level among different bacterial genera is less well understood. An inconvenient truth is that there is still no widely-accepted method to evaluate chlorine resistance and to identify CRB. Due to the lack of a unified method, it is difficult to compare the results about chlorine resistance level of bacterial strains in different literatures. A recommended evaluating method using logarithmic removal rate as an index and E. coli as a reference strain is proposed in this review based on the summary of the current evaluating methods. This method can provide common range of chlorine resistance of each genus and it is conducive to analyzing the distribution and abundance of CRB in the environment.
Collapse
Affiliation(s)
- Li-Wei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Tong Yu
- Qingdao University of Technology, Qingdao 266000, China
| | - Yun-Hong Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Gen-Qiang Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Xin Tong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuan Bai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Chuang Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| |
Collapse
|
17
|
Brigmon RL, Turick CE, Knox AS, Burckhalter CE. The Impact of Storms on Legionella pneumophila in Cooling Tower Water, Implications for Human Health. Front Microbiol 2020; 11:543589. [PMID: 33362725 PMCID: PMC7758282 DOI: 10.3389/fmicb.2020.543589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/03/2022] Open
Abstract
At the U.S. Department of Energy’s Savannah River Site (SRS) in Aiken, SC, cooling tower water is routinely monitored for Legionella pneumophila concentrations using a direct fluorescent antibody (DFA) technique. Historically, 25–30 operating SRS cooling towers have varying concentrations of Legionella in all seasons of the year, with patterns that are unpredictable. Legionellosis, or Legionnaires’ disease (LD), is a pneumonia caused by Legionella bacteria that thrive both in man-made water distribution systems and natural surface waters including lakes, streams, and wet soil. Legionnaires’ disease is typically contracted by inhaling L. pneumophila, most often in aerosolized mists that contain the bacteria. At the SRS, L. pneumophila is typically found in cooling towers ranging from non-detectable up to 108 cells/L in cooling tower water systems. Extreme weather conditions contributed to elevations in L. pneumophila to 107–108 cells/L in SRS cooling tower water systems in July–August 2017. L. pneumophila concentrations in Cooling Tower 785-A/2A located in SRS A-Area, stayed in the 108 cells/L range despite biocide addition. During this time, other SRS cooling towers did not demonstrate this L. pneumophila increase. No significant difference was observed in the mean L. pneumophila mean concentrations for the towers (p < 0.05). There was a significant variance observed in the 285-2A/A Tower L. pneumophila results (p < 0.05). Looking to see if we could find “effects” led to model development by analyzing 13 months of water chemistry and microbial data for the main factors influencing the L. pneumophila concentrations in five cooling towers for this year. It indicated chlorine and dissolved oxygen had a significant impact (p < 0.0002) on cooling tower 785A/2A. Thus, while the variation in the log count data for the A-area tower is statistically greater than that of the other four towers, the average of the log count data for the A-Area tower was in line with that of the other towers. It was also observed that the location of 785A/2A and basin resulted in more debris entering the system during storm events. Our results suggest that future analyses should evaluate the impact of environmental conditions and cooling tower design on L. pneumophila water concentrations and human health.
Collapse
Affiliation(s)
- Robin L Brigmon
- Savannah River National Laboratory, Environmental Science and Biotechnology Group, Aiken, SC, United States
| | - Charles E Turick
- Savannah River National Laboratory, Environmental Science and Biotechnology Group, Aiken, SC, United States
| | - Anna S Knox
- Savannah River National Laboratory, Environmental Science and Biotechnology Group, Aiken, SC, United States
| | - Courtney E Burckhalter
- Savannah River National Laboratory, Environmental Science and Biotechnology Group, Aiken, SC, United States
| |
Collapse
|
18
|
Kim J, Mei R, Wilson FP, Yuan H, Bocher BTW, Liu WT. Ecogenomics-Based Mass Balance Model Reveals the Effects of Fermentation Conditions on Microbial Activity. Front Microbiol 2020; 11:595036. [PMID: 33343535 PMCID: PMC7738435 DOI: 10.3389/fmicb.2020.595036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023] Open
Abstract
Fermentation of waste activated sludge (WAS) is an alternative approach to reduce solid wastes while providing valuable soluble products, such as volatile fatty acids and alcohols. This study systematically identified optimal fermentation conditions and key microbial populations by conducting two sets of experiments under different combinations of biochemical and physical parameters. Based on fermentation product concentrations, methane production, and solid removal, fermentation performance was enhanced under the combined treatments of inoculum heat shock (>60°C), pH 5, 55°C, and short solid retention time (<10 days). An ecogenomics-based mass balance (EGMB) approach was used to determine the net growth rates of individual microbial populations, and classified them into four microbial groups: known syntrophs, known methanogens, fermenters, and WAS-associated populations. Their growth rates were observed to be affected by the treatment conditions. The growth rates of syntrophs and fermenters, such as Syntrophomonas and Parabacteroides increased with a decrease in SRT. In contrast, treatment conditions, such as inoculum heat shock and high incubation temperature inhibited the growth of WAS-associated populations, such as Terrimonas and Bryobacter. There were also populations insensitive to the treatment conditions, such as those related to Microbacter and Rikenellaceae. Overall, the EGMB approach clearly revealed the ecological roles of important microbial guilds in the WAS fermentation system, and guided the selection of optimal conditions for WAS fermentation in future pilot-scale operation.
Collapse
Affiliation(s)
- Jinha Kim
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Fernanda P Wilson
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Benjamin T W Bocher
- British Petroleum America, Petrochemicals Technology, Naperville, IL, United States
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
19
|
Bacterial Respiration Used as a Proxy to Evaluate the Bacterial Load in Cooling Towers. SENSORS 2020; 20:s20216398. [PMID: 33182471 PMCID: PMC7665125 DOI: 10.3390/s20216398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022]
Abstract
Evaporative cooling towers to dissipate excess process heat are essential installations in a variety of industries. The constantly moist environment enables substantial microbial growth, causing both operative challenges (e.g., biocorrosion) as well as health risks due to the potential aerosolization of pathogens. Currently, bacterial levels are monitored using rather slow and infrequent sampling and cultivation approaches. In this study, we describe the use of metabolic activity, namely oxygen respiration, as an alternative measure of bacterial load within cooling tower waters. This method is based on optical oxygen sensors that enable an accurate measurement of oxygen consumption within a closed volume. We show that oxygen consumption correlates with currently used cultivation-based methods (R2 = 0.9648). The limit of detection (LOD) for respiration-based bacterial quantification was found to be equal to 1.16 × 104 colony forming units (CFU)/mL. Contrary to the cultivation method, this approach enables faster assessment of the bacterial load with a measurement time of just 30 min compared to 48 h needed for cultivation-based measurements. Furthermore, this approach has the potential to be integrated and automated. Therefore, this method could contribute to more robust and reliable monitoring of bacterial contamination within cooling towers and subsequently increase operational stability and reduce health risks.
Collapse
|
20
|
Pereira AC, Ramos B, Reis AC, Cunha MV. Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms 2020; 8:microorganisms8091380. [PMID: 32916931 PMCID: PMC7563442 DOI: 10.3390/microorganisms8091380] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are paradigmatic colonizers of the total environment, circulating at the interfaces of the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. Their striking adaptive ecology on the interconnection of multiple spheres results from the combination of several biological features related to their exclusive hydrophobic and lipid-rich impermeable cell wall, transcriptional regulation signatures, biofilm phenotype, and symbiosis with protozoa. This unique blend of traits is reviewed in this work, with highlights to the prodigious plasticity and persistence hallmarks of NTM in a wide diversity of environments, from extreme natural milieus to microniches in the human body. Knowledge on the taxonomy, evolution, and functional diversity of NTM is updated, as well as the molecular and physiological bases for environmental adaptation, tolerance to xenobiotics, and infection biology in the human and non-human host. The complex interplay between individual, species-specific and ecological niche traits contributing to NTM resilience across ecosystems are also explored. This work hinges current understandings of NTM, approaching their biology and heterogeneity from several angles and reinforcing the complexity of these microorganisms often associated with a multiplicity of diseases, including pulmonary, soft-tissue, or milliary. In addition to emphasizing the cornerstones of knowledge involving these bacteria, we identify research gaps that need to be addressed, stressing out the need for decision-makers to recognize NTM infection as a public health issue that has to be tackled, especially when considering an increasingly susceptible elderly and immunocompromised population in developed countries, as well as in low- or middle-income countries, where NTM infections are still highly misdiagnosed and neglected.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana C. Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-500-000 (ext. 22461)
| |
Collapse
|
21
|
Computational flow cytometry of planktonic populations for the evaluation of microbiological-control programs in district cooling plants. Sci Rep 2020; 10:13299. [PMID: 32764596 PMCID: PMC7411017 DOI: 10.1038/s41598-020-70198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/23/2020] [Indexed: 11/08/2022] Open
Abstract
Biofouling poses a serious concern for the district cooling (DC) industry. Current industry practises for monitoring biofouling continue to rely on culture-based methods for microbial enumeration, which are ultimately flawed. Computational flow cytometric (cFCM) analyses, which offer enhanced reproducibility and streamlined analytics versus conventional flow cytometry were applied to samples taken from 3 sites in each of 3 plants over a 5-week sampling program. We asked whether the application of cFCM to monitoring planktonic community dynamics in DC plants could be able to provide sufficient information to enhance microbiological-control strategies at site and inform about plant performance impacts. The use of cFCM enabled the evaluation of biocide dosing, deep cleaning treatment efficiencies and routes of microbial ingress into the studied systems. Additionally, inherent risks arising from the reintroduction of microbiological communities into recently cleaned WCT basins from contaminated cooling waters were identified. However, short-term dynamics did not relate with plant performance metrics. In summary, the insights offered by this approach can inform on plant status, enable evaluations of microbial loads during biofouling mitigation programs and, ultimately, enhance industry management of the biofouling process.
Collapse
|
22
|
Pinel ISM, Kim LH, Proença Borges VR, Farhat NM, Witkamp GJ, van Loosdrecht MCM, Vrouwenvelder JS. Effect of phosphate availability on biofilm formation in cooling towers. BIOFOULING 2020; 36:800-815. [PMID: 32883093 DOI: 10.1080/08927014.2020.1815011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Phosphate limitation has been suggested as a preventive method against biofilms. P-limited feed water was studied as a preventive strategy against biofouling in cooling towers (CTs). Three pilot-scale open recirculating CTs were operated in parallel for five weeks. RO permeate was fed to the CTs (1) without supplementation (reference), (2) with supplementation by biodegradable carbon (P-limited) and (3) with supplementation of all nutrients (non-P-limited). The P-limited water contained ≤10 µg PO4 l-1. Investigating the CT-basins and coupons showed that P-limited water (1) did not prevent biofilm formation and (2) resulted in a higher volume of organic matter per unit of active biomass compared with the other CTs. Exposure to external conditions and cycle of concentration were likely factors that allowed a P concentration sufficient to cause extensive biofouling despite being the limiting compound. In conclusion, phosphate limitation in cooling water is not a suitable strategy for CT biofouling control.
Collapse
Affiliation(s)
- Ingrid S M Pinel
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Lan Hee Kim
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vitor R Proença Borges
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nadia M Farhat
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Geert-Jan Witkamp
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Johannes S Vrouwenvelder
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|