1
|
Liu Y, Li M, Wan QL, Wang X, Mortimer M, Fang WD, Guo LH. Recent advances in bioassays for assessing the toxicity of environmental contaminants in effect-directed analysis. J Environ Sci (China) 2025; 155:343-358. [PMID: 40246470 DOI: 10.1016/j.jes.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 04/19/2025]
Abstract
Chemical cocktails in the environment can cause adverse impacts on ecosystems and human health even at low concentrations. Effect-directed analysis (EDA) has proven to be very valuable in identifying key toxic substances in environmental mixtures. For this, it is important to carefully select accurate bioassays from a wide range of tests for EDA when applying it to actual environmental samples. This article reviews studies published from 2014 to 2023 that have applied EDA and summarizes the bioassays and their corresponding biological effects. A total of 127 studies were selected from 591 publications evaluating the toxic effects of environmental samples, including wastewater, surface water, and sediments. Here, bioassays used in EDA are summarized, including the assays that measure specific receptor-mediated modes of action (MOA), induction of xenobiotic metabolism pathways, and induction of adaptive stress response pathways using either in vitro or in vivo bioassays. Also, the identified substances using EDA are discussed based on their MOA. The importance of EDA in establishing a comprehensive approach for the detection of environmental contaminants using bioanalytical methods is emphasized. The current limitations and benefits of using EDA in practical applications are outlined and strategies for moving forward are proposed.
Collapse
Affiliation(s)
- Yao Liu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Qi-Lin Wan
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xun Wang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Wen-Di Fang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Liu L, Zhang J, Zhao Y, Ning X. Detection of nonylphenol isomers in sewage and sludge of waste water treatment plant by GC-FID-MS combined with deans switch. J Chromatogr A 2025; 1744:465717. [PMID: 39899954 DOI: 10.1016/j.chroma.2025.465717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
Nonylphenols (NPs) are persistent endocrine-disrupting organic pollutant. Most studies focus on total NP content, with limited research on individual isomers. This study developed a method to separation and detection of 10 NP isomers using GC-FID-MS combined with Deans switch. It can effectively transfer NPs from the first gas chromatography column (DB-5MS) to the second column (CP-ChiraSil-DEXCB), achieving efficient separation of the 10 isomers. Sewage and sludge samples from wastewater treatment plants were prepared using solid-phase extraction (SPE) and solid-liquid extraction. NP isomers in sewage samples were enriched with a phenol-specific SPE column, rinsed with 10 mL methanol-water (v/v 2:8), and eluted with 3 mL methanol and 5 mL dichloromethane. NP isomers in sludge samples underwent three ultrasonic extractions with 30 mL ethyl acetate-dichloromethane (v/v 1:1). Concentrate the extract to 1 mL and then purified using an LCNH2 column, rinsed with 9 mL of ethyl acetate-n-hexane (v/v 1:9), and eluted with 10 mL of ethyl acetate-dichloromethane (v/v 1:1) .The results showed that the recovery rates for NP isomers ranged from 70.82 % to 110.12 % in sewage (LOQ: 0.09-0.31 μg/L; RSD: 1.82 %-10.12 %) and from 72.82 % to 114.12 % in sludge (LOQ: 0.15-0.47 μg/kg; RSD: 0.23 %-11.28 %), complying with the USEPA standards (70 %-130 %). Application of the method to real samples detected all 10 NP isomers, with concentrations of 0.50-5.01 μg/L in sewage and 0.13-24.91 μg/g in sludge.This method provides a reliable approach for the detection of NP isomers in complex environmental matrices.
Collapse
Affiliation(s)
- Lang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, China
| | - Jianyi Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, China
| | - Yanqin Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, China
| | - Xunan Ning
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, China
| |
Collapse
|
3
|
He R, Yang J, Yuan S, Chen L, Ren H, Wu B. A genetically encoded fluorescent whole-cell biosensor for real-time detecting estrogenic activities in water samples. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136903. [PMID: 39694001 DOI: 10.1016/j.jhazmat.2024.136903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Real-time monitoring of estrogenic activity in the aquatic environment is a challenging task. Current biosensors face difficulties due to their limited response speed and environmental tolerance, especially for detecting wastewater, the major source of estrogenic compounds in aquatic environments. To address these difficulties, this study developed a single fluorescent protein (FP) -based whole-cell bacterial biosensor named ER-Light, which was achieved by inserting the sensing domain of the estrogen receptor (ER) into the FP Citrine and expressing it in the periplasm of Escherichia coli. As designed, ER-Light enables the detection of net estrogenic activity in mixtures, represented by estradiol equivalent concentration (EEQ). ER-Light detects EEQ in 40 s with a detection limit of 4.55 × 10-7 μM and a maximum working range of 1.1 × 10-4 μM, demonstrating sufficient response speed, sensitivity, and working range. In addition, the ER-Light can survive and tolerate wastewater effluent. Satisfactory recoveries (91.0 % to 102.1 %) eliminated concerns about the matrix effect of wastewater. EEQs (Not detected-2.9 ×10-5 µM) measured by ER-Light from the effluent of 9 wastewater treatment plants validate its practicality in detecting wastewater. This is the first attempt to integrate ER into FP-based biosensors for environment monitoring. Our findings provide valuable design rules for real-time detection of bioactivity effects in the environment, contributing to the safeguarding of ecological and human health.
Collapse
Affiliation(s)
- Ruonan He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Junyi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Shengjie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Gambino I, Terzaghi E, Baldini E, Bergna G, Palmisano G, Di Guardo A. Microcontaminants and microplastics in water from the textile sector: a review and a database of physicochemical properties, use in the textile process, and ecotoxicity data for detected chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:297-319. [PMID: 39820688 DOI: 10.1039/d4em00639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Microcontaminants (MCs) and microplastics (MPs) originating from the textile sector are today receiving a great deal of attention due to potential environmental concerns. Environmental pressures and impacts related to the textile system include not only the use of resources (e.g., water) but also the release of a wide variety of pollutants. This review's main objective is to highlight the presence of textile MCs and MPs in water, in their full path from textile factories (from raw materials to the final product) to wastewater treatment plants (WWTPs), and finally to the receiving surface waters. Their environmental fate and ecotoxicity were also addressed. Overall, more than 500 compounds were found, many of which are so called "contaminants of environmental concern" such as per- and polyfluoroalkyl substances (PFAS) and alkylphenol compounds. A database of physicochemical properties, ecotoxicity, and place of detection (specific textile process, WWTP, surface water or sediment) (classification by several international agencies) was compiled for the chemical detected. Preliminary risk assessment was conducted for those MCs for which the reported environmental concentrations exceeded the Predicted No Effect Concentration (PNEC). These chemicals were some nonylphenols, nonylphenol ethoxylates and organophosphate esters. Among MPs, polyester and nylon fibres were the most abundant. The highest concentration of MPs was reported in sludge (about 1.4 × 106 MPs per kg) compared to wastewater and surface water which showed MP concentrations at least two orders of magnitude lower. The role of transboundary contamination due to the release of chemicals from imported textile products was also assessed.
Collapse
Affiliation(s)
- Isabella Gambino
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | - Elisa Terzaghi
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | | | | | - Giovanni Palmisano
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | - Antonio Di Guardo
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| |
Collapse
|
5
|
Fu Y, Wang S, Liu H, Zhang K, Zhang L, Song Y, Ling Z. Large-Area Clay Composite Membranes with Enhanced Permeability for Efficient Dye/Salt Separation. MEMBRANES 2025; 15:25. [PMID: 39852266 PMCID: PMC11767988 DOI: 10.3390/membranes15010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer transport channels of 2D-material-based membranes limit the processing capacity and the permeability of small salt ions for efficient dye/salt separation. In this work, a novel sepiolite/vermiculite membrane was fabricated using Meyer rod-coating and naturally occurring clay. The intercalation of sepiolite Nanofibers between vermiculite Nanosheets provides additional transport nanochannels and forms looser permeable networks, producing composite membranes with remarkably enhanced flux. As a result, the optimized membranes with 80% sepiolite exhibit remarkable flux as high as 78.12 LMH bar-1, outstanding dye rejection (Congo Red~98.26%), and excellent selectivity of dye/salt of 10.41. In addition, this novel all-clay composite membrane demonstrates stable separation performance under acidity, alkalinity and prolonged operation conditions. The large-scale sepiolite/vermiculite membranes made by the simple proposed method using low-cost materials provide new strategies for efficient and environmentally-friendly dye/salt separation.
Collapse
Affiliation(s)
- Yixuan Fu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; (Y.F.); (S.W.); (H.L.); (K.Z.); (L.Z.); (Y.S.)
| | - Shuai Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; (Y.F.); (S.W.); (H.L.); (K.Z.); (L.Z.); (Y.S.)
| | - Huiquan Liu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; (Y.F.); (S.W.); (H.L.); (K.Z.); (L.Z.); (Y.S.)
| | - Ke Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; (Y.F.); (S.W.); (H.L.); (K.Z.); (L.Z.); (Y.S.)
| | - Lunxiang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; (Y.F.); (S.W.); (H.L.); (K.Z.); (L.Z.); (Y.S.)
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; (Y.F.); (S.W.); (H.L.); (K.Z.); (L.Z.); (Y.S.)
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Zheng Ling
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; (Y.F.); (S.W.); (H.L.); (K.Z.); (L.Z.); (Y.S.)
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| |
Collapse
|
6
|
Shi K, Xu JM, Cui HL, Cheng HY, Liang B, Wang AJ. Microbiome regulation for sustainable wastewater treatment. Biotechnol Adv 2024; 77:108458. [PMID: 39343082 DOI: 10.1016/j.biotechadv.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sustainable wastewater treatment is essential for attaining clean water and sanitation, aligning with UN Sustainable Development Goals. Wastewater treatment plants (WWTPs) have utilized environmental microbiomes in biological treatment processes in this effort for over a century. However, the inherent complexity and redundancy of microbial communities, and emerging chemical and biological contaminants, challenge the biotechnology applications. Over the past decades, understanding and utilization of microbial energy metabolism and interaction relationships have revolutionized the biological system. In this review, we discuss how microbiome regulation strategies are being used to generate actionable performance for low-carbon pollutant removal and resource recovery in WWTPs. The engineering application cases also highlight the real feasibility and promising prospects of the microbiome regulation approaches. In conclusion, we recommend identifying environmental risks associated with chemical and biological contaminants transformation as a prerequisite. We propose the integration of gene editing and enzyme design to precisely regulate microbiomes for the synergistic control of both chemical and biological risks. Additionally, the development of integrated technologies and engineering equipment is crucial in addressing the ongoing water crisis. This review advocates for the innovation of conventional wastewater treatment biotechnology to ensure sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jia-Min Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Han-Lin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
7
|
Li D, Wang Z, Ding Q, Sun H, Fang S, Zhang K, Hu W, Bian J. Interactions between dissolved organic matter with different molecular weights and nonylphenol in surface water bodies. CHEMOSPHERE 2024; 367:143592. [PMID: 39442576 DOI: 10.1016/j.chemosphere.2024.143592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Dissolved organic matter (DOM) has a complex composition, which can interact with various pollutants and affect the removal of pollutants. Therefore, a thorough understanding of the interaction between the encccvironmental hormone nonylphenol (NP) and DOM is crucial for environmental impact and development. In this study, the interaction was investigated by means of excitation emission matrix (EEM) fluorescence spectroscopy, UV-Vis spectroscopy, FT-IR spectroscopy, nuclear magnetic resonance (NMR) and complex model analysis. The interaction between different MW DOM and NP was verified by the spectral characterization data. According to the characterization analysis, the main components of DOM in water samples were proteinoid (C1, C2, C4) with MW < 1 k Da, and their binding capacity (log Ka value) and binding site number (n) showed the maximum values (3.37, 3.24, 3.26; 0.81, 1.22, 0.52). For the humus like substance (C3) with larger molecular weight, the log Ka value and the number of binding points n increased with increasing molecular weight, and the maximum values were 3.13 and 0.31, respectively. It can be seen that low molecular weight proteins have strong binding ability and binding sites with NP, and high molecular weight humus also have strong binding ability. Overall, the interaction between DOM and NP has molecular weight dependence and heterogeneity. The purpose of this study is to deeply understand the interaction characteristics of different MW DOM with NP, and to provide theoretical support and reference for the study of the removal effects of NP pollutants.
Collapse
Affiliation(s)
- Demin Li
- College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhaoyang Wang
- College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China.
| | - Qianqian Ding
- College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong Sun
- College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuai Fang
- College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China
| | - Kangyi Zhang
- College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenyi Hu
- College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin Bian
- College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
8
|
Zhou J, He X, Zhang Z, Wu G, Liu P, Wang D, Shi P, Zhang XX. Chemical-toxicological insights and process comparison for estrogenic activity mitigation in municipal wastewater treatment plants. WATER RESEARCH 2024; 253:121304. [PMID: 38364463 DOI: 10.1016/j.watres.2024.121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Efforts in water ecosystem conservation require an understanding of causative factors and removal efficacies associated with mixture toxicity during wastewater treatment. This study conducts a comprehensive investigation into the interplay between wastewater estrogenic activity and 30 estrogen-like endocrine disrupting chemicals (EEDCs) across 12 municipal wastewater treatment plants (WWTPs) spanning four seasons in China. Results reveal substantial estrogenic activity in all WWTPs and potential endocrine-disrupting risks in over 37.5 % of final effluent samples, with heightened effects during colder seasons. While phthalates are the predominant EEDCs (concentrations ranging from 86.39 %) for both estrogenic activity and major EEDCs (phthalates and estrogens), with the secondary and tertiary treatment segments contributing 88.59 ± 8.12 % and 11.41 ± 8.12 %, respectively. Among various secondary treatment processes, the anaerobic/anoxic/oxic-membrane bioreactor (A/A/O-MBR) excels in removing both estrogenic activity and EEDCs. In tertiary treatment, removal efficiencies increase with the inclusion of components involving physical, chemical, and biological removal principles. Furthermore, correlation and multiple liner regression analysis establish a significant (p < 0.05) positive association between solid retention time (SRT) and removal efficiencies of estrogenic activity and EEDCs within WWTPs. This study provides valuable insights from the perspective of prioritizing key pollutants, the necessity of integrating more efficient secondary and tertiary treatment processes, along with adjustments to operational parameters like SRT, to mitigate estrogenic activity in municipal WWTPs. This contribution aids in managing endocrine-disrupting risks in wastewater as part of ecological conservation efforts.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Zepeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Zhao Y, Ji J, Wu Y, Chen S, Xu M, Cao X, Liu H, Wang Z, Bi H, Guan G, Tang R, Tao H, Zhang H. Nonylphenol and its derivatives: Environmental distribution, treatment strategy, management and future perspectives. CHEMOSPHERE 2024; 352:141377. [PMID: 38346514 DOI: 10.1016/j.chemosphere.2024.141377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
In recent years, emerging pollutants, including nonylphenol (NP) and nonylphenol ethoxylate (NPE), have become a prominent topic. These substances are also classified as persistent organic pollutants. NP significantly affects the hormone secretion of organisms and exhibits neurotoxicity, which can affect the human hippocampus. Therefore, various countries are paying increased attention to NP regulation. NPEs are precursors of NPs and are widely used in the manufacture of various detergents and lubricants. NPEs can easily decompose into NPs, which possess strong biological and environmental toxicity. This review primarily addresses the distribution, toxicity mechanisms and performance, degradation technologies, management policies, and green alternative reagents of NPs and NPEs. Traditional treatment measures have been unable to completely remove NP from wastewater. With the progressively tightening management and regulatory policies, identifying proficient and convenient treatment methods and a sustainable substitute reagent with comparable product effectiveness is crucial.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Jie Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yao Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shiqi Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Mengyao Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xiang Cao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hanlin Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zheng Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hengyao Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Guian Guan
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Ruixi Tang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - He Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
10
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
11
|
Zhang J, Liu L, Ning X, Lin M, Lai X. Isomer-specific analysis of nonylphenol and their transformation products in environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165982. [PMID: 37536583 DOI: 10.1016/j.scitotenv.2023.165982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Nonylphenols (NPs) are crucial fine chemicals widely employed in producing industrial and consumer surfactants that ultimately enter the environment through various pathways, leading to environmental pollution. NPs are suspected endocrine-disrupting chemicals that may accumulate in the body over time, resulting in unusual reproductive function. Due to limitations in analytical methods, NPs have typically been quantified as a whole in some studies. However, NPs are a mixture of multibranched structures, and different NP isomers exhibit distinct environmental behaviors and toxic effects. Therefore, it is critical to analyze environmental and human biological samples at the isomer-specific level to elucidate the contamination characteristics, human exposure load, and toxic effects of NPs. Accurately analyzing NP samples with various isomers, metabolites, and transformation products presents a significant challenge. This review summarizes recent advances in analytical research on NPs in technical products, environmental, and human biological samples, particularly emphasizing the synthesis and separation of standards and the transformation of NP homolog isomers in samples. Finally, the review highlights the research gaps and future research directions in this domain.
Collapse
Affiliation(s)
- Jianyi Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Lang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Xunan Ning
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China.
| | - Meiqing Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Xiaojun Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| |
Collapse
|
12
|
Zhang L, Zhang Y, Zhu M, Chen L, Wu B. A critical review on quantitative evaluation of aqueous toxicity in water quality assessment. CHEMOSPHERE 2023; 342:140159. [PMID: 37716564 DOI: 10.1016/j.chemosphere.2023.140159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Conventional chemical techniques have inherent limitations in detecting unknown chemical substances in water. As a result, effect-based methods have emerged as a viable alternative to overcome these limitations. These methods provide more accurate and intuitive evaluations of the toxic effects of water. While numerous studies have been conducted, only a few have been applied to national water quality monitoring. Therefore, it is crucial to develop toxicity evaluation methods and establish thresholds based on quantifying toxicity. This article provides an overview of the development and application of bioanalytical tools, including in vitro and in vivo bioassays. The available methods for quantifying toxicity are then summarized. These methods include aquatic life criteria for assessing the toxicity of a single compound, comprehensive wastewater toxicity testing for all contaminants in a water sample (toxicity units, whole effluent toxicity, the potential ecotoxic effects probe, the potential toxicology method, and the lowest ineffective dilution), methods based on mechanisms and relative toxicity ratios for substances with the same mode of action (the toxicity equivalency factors, toxic equivalents, bioanalytical equivalents), and effect-based trigger values for micropollutants. The article also highlights the advantages and disadvantages of each method. Finally, it proposes potential areas for applying toxicity quantification methods and offers insights into future research directions. This review emphasizes the significance of enhancing the evaluation methods for assessing aqueous toxicity in water quality assessment.
Collapse
Affiliation(s)
- Linyu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Yasmeen M, Nawaz MS, Manzoor K, Khan SJ, Ghaffour N. Evaluating dye recovery and reusability potential from dyebath effluent using forward osmosis membranes for minimum liquid discharge. CHEMOSPHERE 2023; 338:139433. [PMID: 37419149 DOI: 10.1016/j.chemosphere.2023.139433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
This study focuses on the evaluation of dye recovery and reuse potential from denim and polyester effluents using forward osmosis (FO). A cationic surfactant, tetraethylammonium bromide (TEAB), was used as the draw solution (DS). After optimizing the DS and feed solution (FS) concentrations and temperatures in batch experiments, a DS concentration of 0.75 M was selected at a 60 °C temperature for the semi-continuous mode. It generated a high flux of 18 L/m2/h and a low reverse solute flux (RSF) of 0.4 g/m2/h with 100% dye rejection. Dye reconcentration of 82-98% was achieved in the dyebath effluents. The unique property of surfactants to combine hundreds of monomers into micelle resulted in negligible RSF. Reversible fouling was observed on the membrane active layer, and NaOH and citric acid cleaning achieved about 95% of flux recovery. The functional groups on the membrane's active layer remained undisturbed due to foulant interactions showing its chemical stability against reactive dyes. Recovered dye characterization using 1D proton nuclear magnetic resonance (1HNMR) analysis depicted a 100% structural resemblance to the original dye. Hence, it can be reused for dyeing the next batch. Diluted TEAB solution can be used as fabric detergent and softener within the same textile industry in the finishing process. A minimum liquid and persistent pollutant (dyes) discharge is achieved by adopting the methodology proposed in this work with a strong potential of translating it to an industrial scale.
Collapse
Affiliation(s)
- Maria Yasmeen
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Muhammad Saqib Nawaz
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kamran Manzoor
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Sher Jamal Khan
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Noreddine Ghaffour
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
He X, Yan B, Jiang J, Ouyang Y, Wang D, Liu P, Zhang XX. Identification of key degraders for controlling toxicity risks of disguised toxic pollutants with division of labor mechanisms in activated sludge microbiomes: Using nonylphenol ethoxylate as an example. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131740. [PMID: 37269567 DOI: 10.1016/j.jhazmat.2023.131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Efficient management of disguised toxic pollutants (DTPs), which can undergo microbial degradation and convert into more toxic substances, necessitates the collaboration of diverse microbial populations in wastewater treatment plants. However, the identification of key bacterial degraders capable of controlling the toxicity risks of DTPs through division of labor mechanisms in activated sludge microbiomes has received limited attention. In this study, we investigated the key degraders capable of controlling the risk of estrogenicity associated with nonylphenol ethoxylate (NPEO), a representative DTP, in textile activated sludge microbiomes. The results of our batch experiments revealed that the transformation of NPEO into NP and subsequent NP degradation were the rate-limiting processes for controlling the risk of estrogenicity, resulting in an inverted V-shaped curve of estrogenicity in water samples during the biodegradation of NPEO by textile activated sludge. By utilizing enrichment sludge microbiomes treated with NPEO or NP as the sole carbon and energy source, a total of 15 bacterial degraders, including Sphingbium, Pseudomonas, Dokdonella, Comamonas, and Hyphomicrobium, were identified as capable of participating in these processes, Among them, Sphingobium and Pseudomonas were the two key degraders that could cooperatively interact in the degradation of NPEO with division of labor mechanisms. Co-culturing Sphingobium and Pseudomonas isolates exhibited a synergistic effect in degrading NPEO and reducing estrogenicity. Our study underscores the potential of the identified functional bacteria for controlling estrogenicity associated with NPEO and provides a methodological framework for identifying key cooperators engaged in labor division, contributing to the management of risks associated with DTPs by leveraging intrinsic microbial metabolic interactions.
Collapse
Affiliation(s)
- Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Bingwei Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jinhong Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yixin Ouyang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Horn S, Mölsä KM, Sorvari J, Tuovila H, Heikkilä P. Environmental sustainability assessment of a polyester T-shirt - Comparison of circularity strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163821. [PMID: 37137359 DOI: 10.1016/j.scitotenv.2023.163821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
The considerable environmental burden of textiles is currently globally recognized. This burden can be mitigated by applying circular economy (CE) strategies to the commonly linear, short garment life cycles that end with incineration or landfill disposal. Even though all CE strategies strive to promote environmental sustainability, they might not be equally beneficial. Environmental data on different textile products is insufficiently available, which leads to complications when assessing and deciding on different CE strategies to be implemented. This paper studies the environmental impacts of a polyester T-shirt's linear life cycle through life cycle assessment (LCA) and evaluates the benefits attainable by adopting different CE strategies, and their order of priority, while noting uncertainty arising from poor data quality or unavailability. The LCA is complemented by assessing health and environmental risks related to the different options. Most of the linear life cycle's LCA-based impacts arise from use-phase washing. Hence, it is possible to reduce the environmental impact notably (37 %) by reducing the washing frequency. Adopting a CE strategy in which the shirt is reused by a second consumer, to double the number of uses, enables an 18 % impact reduction. Repurposing recycled materials to produce the T-shirt and recycling the T-shirt material itself emerged as the least impactful CE strategies. From the risk perspective, reusing the garment is the most efficient way to reduce environmental and health risks while washing frequency has a very limited effect. Combining different CE strategies offers the greatest potential for reducing both environmental impacts as well as risks. Data gaps and assumptions related to the use phase cause the highest uncertainty in the LCA results. To gain the maximum environmental benefits of utilizing CE strategies on polyester garments, consumer actions, design solutions, and transparent data sharing are needed.
Collapse
Affiliation(s)
- Susanna Horn
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.
| | - Kiia M Mölsä
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Jaana Sorvari
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Hannamaija Tuovila
- VTT Technical Research Centre of Finland Ltd, Visiokatu 4, 33103 Tampere, Finland
| | - Pirjo Heikkilä
- VTT Technical Research Centre of Finland Ltd, Visiokatu 4, 33103 Tampere, Finland
| |
Collapse
|
16
|
Ventura J, Camargo FP, Sakamoto IK, Silva EL, Varesche MBA. Potential methanogenic and degradation of nonylphenol ethoxylate from domestic sewage: unravelling the essential roles of nutritional conditions and microbial community. ENVIRONMENTAL TECHNOLOGY 2023; 44:1996-2010. [PMID: 34907848 DOI: 10.1080/09593330.2021.2018504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/07/2021] [Indexed: 05/25/2023]
Abstract
Nonylphenol ethoxylathe (NPEO) is a non-ionic surfactant of increasing concern, used in the formulation of laundry detergents and is frequently found in aquatic environments. The purpose of this study was to evaluate the effects of yeast extract (YE) and sodium fumarate (SF) in NPEO removal from domestic sewage under anaerobic conditions via central composite rotatable design (CCRD) and response surface methodology (RSM). Experiments were designed by varying concentrations of NPEO (1.6-5.8 mg L-1), YE (131.8-468.2 mg L-1) and SF (97.7-602.3 mg L-1) in batch reactors. SF and YE addition significantly influenced NPEO removal and CH4 production. Optimal values of YE (400 mg L-1) and SF (200 mg L-1) result in removal efficiency of 97% for 5 mg L-1 of NPEO, being mostly removed by biodegradation (86%). Meanwhile COD removal was 95% and methane yield was 134 ± 4 NmLCH4 g-¹CODremoved. The most abundant Bacteria genus identified were Macellibacteroides, Longilinea, Petrimonas and Proteiniphilum, while for Archaea, Methanosaeta and Methanoregula were the genera identified in higher relative abundances in optimized conditions.
Collapse
Affiliation(s)
- Jeny Ventura
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone 1100, Jardim Santa Angelina, São Carlos 13563120, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone 1100, Jardim Santa Angelina, São Carlos 13563120, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone 1100, Jardim Santa Angelina, São Carlos 13563120, Brazil
| | - Edson Luiz Silva
- Federal University of São Carlos, Chemical Engineering, São Carlos, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone 1100, Jardim Santa Angelina, São Carlos 13563120, Brazil
| |
Collapse
|
17
|
Gossen M, Govindarajan D, John AA, Hussain S, Padligur M, Linnartz C, Mohseni M, Stüwe L, Urban V, Crawford S, Schiwy S, Wessling M, Nambi IM, Hollert H. EfectroH 2O: Development and evaluation of a novel treatment technology for high-brine industrial wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163479. [PMID: 37068671 DOI: 10.1016/j.scitotenv.2023.163479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/12/2023] [Accepted: 04/09/2023] [Indexed: 05/05/2023]
Abstract
Textile production is one of the main sources of freshwater consumption by industries worldwide. In addition, according to the world bank, 20 % of the wastewater generated globally is caused by textile wet-processing. Textile wet-processing includes the processes in textile production where garments are dyed or given the final functions like water-repellency. Several thousand chemicals were used in this process, some of which are highly toxic. Discharging untreated or insufficiently treated wastewater in water bodies results in high pollution levels, severely impacting the environment and human health. Especially in textile-producing countries like India, environmental pollution and water consumption from textile wet-processing have severe impacts. Next to the high volume of chemicals used in textile production, the high salt concentration in textile wastewater also poses a challenge and is critical for freshwater systems. Moreover, textile wastewater is one of the most difficult to treat wastewater. Currently, used treatment technologies do not meet the requirements to treat textile wastewater. Therefore, the further development of efficient treatment technologies for textile wastewater is critically important. Hence, in the interdisciplinary project, effect-based monitoring demonstrates the efficiency of electrically-driven water treatment processes to remove salts and micropollutants from process water (EfectroH2O), a low-energy Zero Liquid Discharge (ZLD) textile wastewater treatment technology is being developed consisting of a combination of capacitive deionization (CDI) and advanced oxidation processes (AOP). In addition to treatment technology development, methods for evaluating the efficiency of treatment technologies also need to be improved. Currently, mainly physicochemical parameters such as pH, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) are tested worldwide to check water quality. However, these methods are insufficient to make a statement about the toxic potential of such complex mixtures as textile wastewater. Therefore, also next to chemical analyses, effect-based methods (EBM) are used to verify the treated wastewater.
Collapse
Affiliation(s)
- Mira Gossen
- Goethe University Frankfurt, Department for Evolutionary Ecology & Environmental Toxicology, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | | | - Anju Anna John
- Indian Institute of Technology Madras (IITM), Chennai 600036, Tamil Nadu, India
| | - Sajid Hussain
- Tamilnadu Water Investment (TWIC), Mount Road, Guindy, Chennai 600 032, India
| | - Maria Padligur
- RWTH Aachen University (RWTH), Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Christian Linnartz
- RWTH Aachen University (RWTH), Forckenbeckstraße 51, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Mojtaba Mohseni
- RWTH Aachen University (RWTH), Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Lucas Stüwe
- RWTH Aachen University (RWTH), Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Viktoria Urban
- ibacon GmbH, Arheiliger Weg 17, 64380 Rossdorf, Germany; Vali Consulting GmbH, Im Technologiepark 5, 69469 Weinheim, Germany
| | - Sarah Crawford
- Goethe University Frankfurt, Department for Evolutionary Ecology & Environmental Toxicology, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Sabrina Schiwy
- Goethe University Frankfurt, Department for Evolutionary Ecology & Environmental Toxicology, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Matthias Wessling
- RWTH Aachen University (RWTH), Forckenbeckstraße 51, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Indumathi M Nambi
- Indian Institute of Technology Madras (IITM), Chennai 600036, Tamil Nadu, India
| | - Henner Hollert
- Goethe University Frankfurt, Department for Evolutionary Ecology & Environmental Toxicology, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; Fraunhofer-Institute für Molecular Biology and Applied Ecology IME, Department Environmental Media-related Ecotoxicology, Frankfurt, Germany.
| |
Collapse
|
18
|
Yasmeen M, Nawaz MS, Khan SJ, Ghaffour N, Khan MZ. Recovering and reuse of textile dyes from dyebath effluent using surfactant driven forward osmosis to achieve zero hazardous chemical discharge. WATER RESEARCH 2023; 230:119524. [PMID: 36584660 DOI: 10.1016/j.watres.2022.119524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This experimental study explores the feasibility of the reuse of dyes recovered from denim and polyester dyebath effluents using forward osmosis (FO) system to achieve zero hazardous material discharge. In batch experiments, the sodium dodecyl sulfate (SDS) at 0.5 M concentration generated an average flux of 3.5 L/m2/h (LMH) and reverse salt flux (RSF) of only 0.012 g/m2/h (GMH), while maintaining 100% dye rejection. This flux stability comes from the property of surfactants to form micelles and exert a stable osmotic pressure (π) above their critical micelle concentration (CMC). The low RSF is due to the greater micelle size. A colored fouling layer was formed on the membrane active layer (AL), which was easily removed using sodium hydroxide (NaOH) and citric acid. According to Fourier transform infrared spectra and atomic forces microscopy images of the AL, the interaction between foulants and membrane active groups did not significantly affect the physiochemical properties of the membrane. In the semi-continuous experiment, a very stable average flux of 7.3 LMH and RSF of 0.03 GMH was obtained using 0.75 M SDS as draw solution. The stacked 1D proton nuclear magnetic resonance analysis (1HNMR) spectra of both original and recovered disperse dyes showed 100% similarity, which validates the concept that the recovered dyes maintained their integrity during reconcentration and can be reused in the next batch dyeing process. Importantly, the diluted SDS concentration can be directly reused within the same textile industry in scouring and finishing processes. The processes of dye recovery and reuse developed in this study do not produce any waste or hazardous by-products and are suitable for scale-up and onsite industrial applications.
Collapse
Affiliation(s)
- Maria Yasmeen
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Muhammad Saqib Nawaz
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sher Jamal Khan
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Noreddine Ghaffour
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Zafar Khan
- School of Chemicals and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
19
|
Gwak J, Lee J, Cha J, Kim M, Hur J, Cho J, Kim MS, Jang KS, Giesy JP, Hong S, Khim JS. Molecular Characterization of Estrogen Receptor Agonists during Sewage Treatment Processes Using Effect-Directed Analysis Combined with High-Resolution Full-Scan Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13085-13095. [PMID: 35973975 DOI: 10.1021/acs.est.2c03428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endocrine-disrupting potential was evaluated during the sewage treatment process using in vitro bioassays. Aryl hydrocarbon receptor (AhR)-, androgen receptor (AR)-, glucocorticoid receptor (GR)-, and estrogen receptor (ER)-mediated activities were assessed over five steps of the treatment process. Bioassays of organic extracts showed that AhR, AR, and GR potencies tended to decrease through the sewage treatment process, whereas ER potencies did not significantly decrease. Bioassays on reverse-phase high-performance liquid chromatography fractions showed that F5 (log KOW 2.5-3.0) had great ER potencies. Full-scan screening of these fractions detected two novel ER agonists, arenobufagin and loratadine, which are used pharmaceuticals. These compounds accounted for 3.3-25% of the total ER potencies and 4% of the ER potencies in the final effluent. The well-known ER agonists, estrone and 17β-estradiol, accounted for 60 and 17% of the ER potencies in F5 of the influent and primary treatment, respectively. Fourier transform ion cyclotron resonance mass spectrometry analysis showed that various molecules were generated during the treatment process, especially CHO and CHOS (C: carbon, H: hydrogen, O: oxygen, and S: sulfur). This study documented that widely used pharmaceuticals are introduced into the aquatic environments without being removed during the sewage treatment process.
Collapse
Affiliation(s)
- Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Min Sung Kim
- Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyoung-Soon Jang
- Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon SK S7N5B3, Canada
- Department of Environmental Science, Baylor University, Waco, Texas 76798-7266, United States
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Li Y, Sun Y, Zhou J, Di Serio M, Zhang Y, Sun J, Liang H, Liu Y. Physicochemical and application properties of C13-branched alcohol ethoxylates (BAEO) with different ethylene oxide addition numbers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Ghanbari S, Fatehizadeh A, Khiadani M, Taheri E, Iqbal HMN. Treatment of synthetic dye containing textile raw wastewater effluent using UV/Chlorine/Br photolysis process followed by activated carbon adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39400-39409. [PMID: 35103940 DOI: 10.1007/s11356-022-18860-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/21/2022] [Indexed: 02/05/2023]
Abstract
This study investigated the efficiency and feasibility of ultraviolet (UV)-assisted photolysis of synthetic dye containing textile raw wastewater effluent. For a said purpose, in-house developed UV/Chlorine/Br process was followed in the presence of activated carbon (AC) which additionally facilitate the dye adsorption. In UV/Chlorine process Cl•, Cl2•-, and HO• are generated in the solution and destroyed compounds that cannot be oxidized by the conventional oxidant. In this process, free bromine is formed and photolyzed by UV radiation and generate Br• and Br2•- that can enhance the rate of pollutant degradation. In the present study, the dye removal efficiency was contributed by dark bromide (7.18%), UV irradiation (26.8%), dark chlorination (78.67%), and UV/Chlorine/Br (87.01%), respectively. With increasing pH from 3.0 to 8.30, the dye removal efficiency was enhanced but decreased by further increasing pH values. In addition, magnetized activated carbon from pomegranate husk using dual-stage chemical activation was used for post-adsorption of the residual dye and its degradation byproducts. The adsorption of the dye residues by AC followed the second-order kinetics with the rate constant of 1.7 × 10-3. The phytotoxicity of the treated textile wastewater by UV irradiation, dark chlorination, and UV/Chlorine/Br was assessed by seed germination of Lepidium sativum seeds. The highest inhibition effect on seed germination was related to treated wastewater by UV irradiation (more than 90% inhibition) that alleviated to less than 10% when this effluent diluted to 5% v/v. The highest germination was observed when the seeds were irrigated by the effluent of the UV/Chlorine/Br process. The significant reduction in the toxicity of the treated wastewater revealed that the UV/Chlorine/Br process has a considerable potential to effectively detoxify textile wastewater. Graphical abstract.
Collapse
Affiliation(s)
- Sobhan Ghanbari
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
22
|
Zhang J, Shi J, Ge H, Tao H, Guo W, Yu X, Zhang M, Li B, Xiao R, Xu Z, Li X. Tiered ecological risk assessment of nonylphenol and tetrabromobisphenol A in the surface waters of China based on the augmented species sensitivity distribution models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113446. [PMID: 35366563 DOI: 10.1016/j.ecoenv.2022.113446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The ecological risks of nonylphenol (NP) and tetrabromobisphenol A (TBBPA) have received continued attention owing to their large consumption, frequently detection, adverse effects on the reproductive fitness, and lack of risk assessment technical systems. The geometric mean of the median concentrations of NP in the 22 surface waters was 0.278 μg/L, and TBBPA in the seven surface waters was 0.014 μg/L in China. The species sensitivity distribution (SSD) models were augmented by extrapolated reproductive toxicity data of native species to reduce uncertainty. The SSD models and the hazardous concentrations for 5% of species exhibited good robustness and reliability using the bootstrap method and minimum sample size determination. The acute and reproductive predicted no-effect concentrations (PNECs) were derived as 9.88 and 0.187 μg/L for NP, and 56.6 and 0.0878 μg/L for TBBPA, respectively. The risk quotients indicated that 11 of 22 locations for NP, and 3 of 7 locations for TBBPA were at high ecological risk levels based on the reproductive PNECs. Furthermore, the higher tier ecological risk assessment (ERA) based on potential affected fraction and joint probability curves indicated that the ecological risks in the four of above locations needed further concern. The ERA based on both the acute and reproductive toxicity is essential for assessing the ecological risks of NP and TBBPA, otherwise using acute PNECs only may result in an underestimation of ecological risk. The developed tiered ERA method and its framework can provide accurate, detailed, quantitative, locally applicable, and economically technical support for ERA of typical endocrine-disrupting chemicals in China.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanyu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Wei Guo
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiangyi Yu
- Solid Waste and Chemical Management Center of Ministry of Ecology and Environment, Beijing 100029, China
| | - Mengtao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijie Xiao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zonglin Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Guo W, Li J, Luo M, Mao Y, Yu X, Elskens M, Baeyens W, Gao Y. Estrogenic activity and ecological risk of steroids, bisphenol A and phthalates after secondary and tertiary sewage treatment processes. WATER RESEARCH 2022; 214:118189. [PMID: 35184019 DOI: 10.1016/j.watres.2022.118189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Effluents of sewage treatment plants (STPs) are an important source of estrogenic substances to the receiving water bodies affecting their ecological safety. In this study, steroids, bisphenol A (BPA) and phthalates were assessed in the secondary (SE) and tertiary effluent (TE) of three typical urban STPs in Beijing (China). In addition, the overall estrogenic activity in these effluents was assessed by an in-vitro bioassay (ERE-CALUX). Results showed that the concentrations and activities of estrogenic compounds in TE were lower than those in SE. The residual concentration of 17β-estradiol (E2) was the highest among the detected steroids, accounting for 51.6 ± 5.1% in SE and 57.5 ± 24.8% in TE. The residual level (25.2-41.6 ng/L) of BPA in effluents was significantly higher than that of steroids (0.2-28.8 ng/L). The residual concentration of diethyl phthalate was the highest among the detected phthalates accounting for 47.1 ± 5.1% in SE and 37.6 ± 11.5% in TE. Steroids and BPA had a higher removal rate (83.5% and 96.7%) in secondary and tertiary treatment than phthalates (68.8% and 83.1%). The hydrophobic characteristics of these estrogenic compounds determined the removal mechanism. The removal of steroids, BPA, dimethyl phthalate and diethyl phthalate (LogKow= 1.61-4.15) mainly occurred through biodegradation in the water phase, while the removal of dibutyl phthalate, butylbenzyl phthalate and di(2-ethylhexyl) phthalate (LogKow= 4.27-7.50) mainly occurred in the solid phase after adsorption on and sedimentation of the suspended particulate matter. According to ERE-CALUX, the estrogenic activity in the final STP effluents was 3.2-45.6 ng E2-equivalents/L, which is higher than reported levels in the effluents of European STPs. Calculation of estrogenic equivalents by using substance specific chemical analysis indicated that the dominant contributor was E2 (56.4-88.4%), followed by 17α-ethinylestradiol (EE2) (4.1-34.8%), both also exerting a moderate risk to the aquatic ecosystem. While the upgrade of treatment processes in STPs has efficiently reduced the emission of estrogenic substances, their ecological risk was not yet phased out.
Collapse
Affiliation(s)
- Wei Guo
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jun Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Mingyue Luo
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Yan Mao
- Solid Waste and Chemicals Management Center of MEE, Beijing, 100029, China
| | - Xiangyi Yu
- Solid Waste and Chemicals Management Center of MEE, Beijing, 100029, China
| | - Marc Elskens
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Yue Gao
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium.
| |
Collapse
|
24
|
Limmun W, Ishikawa N, Momotori J, Terasaki M, Sato T, Kikuchi K, Sasamoto M, Umita T, Ito A. Degradation of the endocrine-disrupting 4-nonylphenol by ferrate(VI): biodegradability and toxicity evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18882-18890. [PMID: 34705206 DOI: 10.1007/s11356-021-17167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
4-Nonylphenol (4-NP) is an endocrine-disrupting and persistent chemical and is partially degraded in conventional wastewater treatment processes. Ferrate(VI) can be used as an environment-friendly oxidizing agent to mediate 4-NP degradation. Thus, this paper evaluates the biodegradability of 4-NP and its degradation products after the addition of ferrate(VI). The biodegradability was examined using NP labeled with 14C as a tracer and activated sludge microorganisms as an inoculum. The addition of ferrate(VI) to the 4-NP solution spiked with the tracer resulted in no remarkable decrease in the concentration of 14C, indicating incomplete mineralization of 4-NP and formation of degradation products. The degradation products from 4-NP with Fe(VI) were estimated based on mass spectra, which detected a unique peak at m/z 223 at low intensity. Four hydrogen atoms might have been added to 4-NP by degradation with Fe(VI). In addition, the effect of ferrate(VI) concentration on the estrogenic activity of 4-NP in an aqueous solution was investigated using a yeast bioassay. The results show that estrogenic activity was significantly decreased at a mass ratio of Fe(VI) to 4-NP greater than or equal to 2.5.
Collapse
Affiliation(s)
- Warunee Limmun
- Department of Frontier Matters and Function Engineering, Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, 020-8551, Japan
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, 17/1, Chumko, Pathio, Chumphon, 86160, Thailand
| | - Nao Ishikawa
- Course of Civil and Environmental Engineering, Department of System Innovation Engineering, Faculty of Science and Engineering, Iwate University, Ueda 4-3-5, Morioka, 020-8551, Japan
| | - Jin Momotori
- Division of Regional Development and Creativity, Graduate School of Arts and Sciences, Iwate University, Morioka, 020-8551, Japan
| | - Masanori Terasaki
- Department of Regional Policy, Faculty of Humanities and Social Sciences, Iwate University, Ueda 3-18-8, Morioka, 020-8550, Japan
| | - Takumu Sato
- Course of Civil and Environmental Engineering, Department of System Innovation Engineering, Faculty of Science and Engineering, Iwate University, Ueda 4-3-5, Morioka, 020-8551, Japan
| | - Kotaro Kikuchi
- Course of Civil and Environmental Engineering, Department of System Innovation Engineering, Faculty of Science and Engineering, Iwate University, Ueda 4-3-5, Morioka, 020-8551, Japan
| | - Makoto Sasamoto
- Technical Office, Faculty of Science and Engineering, Iwate University, Ueda 4-3-5, Morioka, 020-8551, Japan
| | - Teruyuki Umita
- Course of Civil and Environmental Engineering, Department of System Innovation Engineering, Faculty of Science and Engineering, Iwate University, Ueda 4-3-5, Morioka, 020-8551, Japan
| | - Ayumi Ito
- Course of Civil and Environmental Engineering, Department of System Innovation Engineering, Faculty of Science and Engineering, Iwate University, Ueda 4-3-5, Morioka, 020-8551, Japan.
| |
Collapse
|
25
|
Ekdal A, Okutman Tas D, Zengin GE, Onay IB, Olmez Hanci T, Orhon D, Cokgor E. Co-metabolism of nonylphenol ethoxylate in sequencing batch reactor under aerobic conditions. Biodegradation 2022; 33:181-194. [PMID: 35142961 DOI: 10.1007/s10532-022-09974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
The study evaluated the co-metabolism of nonylphenol polyethoxylate (NPEO) within a main substrate stream subjected to biodegradation in an activated sludge system. Peptone mixture simulating sewage was selected as the synthetic substrate. As a novel approach, the NPEO concentration was magnified to match the COD level of the peptone mixture, so that co-metabolism could be evaluated by respirometry and modeling. A sequencing batch reactor (SBR) set-up at high sludge age to also allow nitrification was operated for this purpose. A long acclimation phase was necessary to start NPEO biodegradation, which was completed with 15% residual by-products. Modeling of respirometric data could identify COD fractions of NPEO with corresponding process kinetics for the first time, where the biodegradation of by-products could be interpreted numerically as a hydrolysis mechanism. Nonylphenol diethoxylate (NP2EO) was observed as the major by-product affecting the biodegradation of NPEO, because NPEO and NP2EO accounted for 60 to 70% of the total soluble COD in the solution during the course of biological reactions. The co-metabolism characteristics basically defined NPEO as a substrate, with no appreciable inhibitory action on the microbial culture both in terms of heterotrophic and autotrophic activities.
Collapse
Affiliation(s)
- Alpaslan Ekdal
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Didem Okutman Tas
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Gulsum Emel Zengin
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Irmak Batı Onay
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Tugba Olmez Hanci
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Derin Orhon
- The Science Academy, 34349, Istanbul, Turkey
| | - Emine Cokgor
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
26
|
Liu J, Ren C, Xia Y, Hu X, Fang Y. Nonylcyclohexanol ethoxylates, a green alternative of nonylphenol ethoxylate, on the interfacial physiochemical properties aspects. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jianyi Liu
- State Key Laboratory of Food Science and Technology, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Conglin Ren
- State Key Laboratory of Food Science and Technology, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Xueyi Hu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Yun Fang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering Jiangnan University Wuxi China
| |
Collapse
|
27
|
Bhandari G, Bagheri AR, Bhatt P, Bilal M. Occurrence, potential ecological risks, and degradation of endocrine disrupter, nonylphenol, from the aqueous environment. CHEMOSPHERE 2021; 275:130013. [PMID: 33647677 DOI: 10.1016/j.chemosphere.2021.130013] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is considered a potential endocrine-disrupting chemical affecting humans and the environment. Due to widespread occurrence in the aquatic environment and neuro-, immuno, reproductive, and estrogenic effects, nonylphenol calls for considerable attention from the scientific community, researchers, government officials, and the public. It can persist in the environment, especially soil, for a long duration because of its high hydrophobic nature. Nonylphenol is incorporated into the water matrices via agricultural run-off, wastewater effluents, agricultural sources, and groundwater leakage from the soil. In this regard, assessment of the source, fate, toxic effect, and removal of nonylphenol seems a high-priority concern. Remediation of nonylphenol is possible through physicochemical and microbial methods. Microbial methods are widely used due to ecofriendly in nature. The microbial strains of the genera, Sphingomonas, Sphingobium, Pseudomonas, Pseudoxanthomonas, Thauera, Novosphingonium, Bacillus, Stenotrophomonas, Clostridium, Arthrobacter, Acidovorax, Maricurvus, Rhizobium, Corynebacterium, Rhodococcus, Burkholderia, Acinetobacter, Aspergillus, Pleurotus, Trametes, Clavariopsis, Candida, Phanerochaete, Bjerkandera, Mucor, Fusarium and Metarhizium have been reported for their potential role in the degradation of NP via its metabolic pathway. This study outlines the recent information on the occurrence, origin, and potential ecological and human-related risks of nonylphenol. The current development in the removal of nonylphenol from the environment using different methods is discussed. Despite the significant importance of nonylphenol and its effects on the environment, the number of studies in this area is limited. This review gives an in-depth understanding of NP occurrence, fate, toxicity, and remediation from the environments.
Collapse
Affiliation(s)
- Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University Dehradun, Uttarakhand, India
| | | | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
28
|
Zhang FL, Kong L, Zhao AH, Ge W, Yan ZH, Li L, De Felici M, Shen W. Inflammatory cytokines as key players of apoptosis induced by environmental estrogens in the ovary. ENVIRONMENTAL RESEARCH 2021; 198:111225. [PMID: 33971129 DOI: 10.1016/j.envres.2021.111225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/02/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Natural and synthetic environmental estrogens (EEs), interfering with the physiological functions of the body's estrogens, are widespread and are rising much concern for their possible deleterious effects on human and animal health, in particular on reproduction. In fact, increasing evidence indicate that EEs can be responsible for a variety of disfunctions of the reproductive system especially in females such as premature ovarian insufficiency (POI). Because of their great structural diversity, the modes of action of EEs are controversial. One important way through which EEs exert their effects on reproduction is the induction of apoptosis in the ovary. In general, EEs can exert pro-and anti-apoptotic effects by agonizing or antagonizing numerous estrogen-dependent signaling pathways. In the present work, results concerning apoptotic pathways and diseases induced by representative EEs (such as zearalenone, bisphenol A and di-2-ethylhexyl phthalate), in ovaries throughout development are presented into an integrated network. By reviewing and elaborating these studies, we propose inflammatory factors, centered on the production of tumor necrosis factor (TNF), as a major cause of the induction of apoptosis by EEs in the mammalian ovary. As a consequence, potential strategies to prevent such EE effect are suggested.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Kong
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy.
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|