1
|
Lu Y, Chu K, Hua Z, Gao C, Liu Y. The response of PFAA mobility in highly contaminated sediment to sluice operation: Coupled effects of scour behavior and physicochemical properties. WATER RESEARCH 2025; 276:123260. [PMID: 39946945 DOI: 10.1016/j.watres.2025.123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/16/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
Despite their widespread occurrence and significant environmental implications, the influence of sluice operations on the mobility of perfluoroalkyl acid (PFAA) in riverine sediments remains largely unexplored. To address this gap, a series of flume experiments were conducted to simulate the sedimentary migration of PFAA under the turbulent conditions generated by opening a sluice. Our study provides novel insights into the mechanisms by which plunging turbulence modulates the transfer of sedimentary PFAAs across the sediment‒water interface. Significant transient release effects were observed in the dissolved and suspended particulate matter (SPM) phases of PFAA, with total concentrations maintaining relative stability over extended periods following disturbance. The fluviraption of plunging turbulence increased PFAA concentrations in the surface sedimentary and porewater phases but weakened the adsorption performance of resuspended particles for the chemicals in the lower reach of the sluice. The instantaneous release of PFAA from sediment, fueled by turbulence, was identified as the primary driver of total mass transfer across the interface, increasing exponentially with the Reynolds number (Rex, R2=0.99, p < 0.01). Notably, the peak PFAA release flux in the SPM phase lagged behind that in the dissolved phase, underscoring the dynamic interplay between phases. A structural equation model (SEM) revealed that plunging turbulence indirectly governs the cross-interface transfer of sedimentary PFAA by altering environmental physicochemical parameters and enhancing porewater diffusion. This finding underscores the complex, coupled effects of scour behavior and physicochemical properties on PFAA fate. Our study offers a unique perspective on the dynamic mechanisms underlying PFAA multimedia migration under sluice operation, contributing valuable insights for managing and regulating these emerging contaminants in aquatic environments.
Collapse
Affiliation(s)
- Ying Lu
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Kejian Chu
- College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Zulin Hua
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chang Gao
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yuanyuan Liu
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
2
|
Fettweis A, Hansul S, Smolders E, De Schamphelaere K. Metal Mixture Effects of Ni, Cu, and Zn in a Multispecies, Two-Trophic-Level Algal-Daphnid Microcosm Can Be Predicted From Single-Trophic-Level Effects: The Role of Indirect Toxicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2350-2364. [PMID: 39189720 DOI: 10.1002/etc.5970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/01/2024] [Accepted: 07/10/2024] [Indexed: 08/28/2024]
Abstract
Effect assessments of metals are mostly based on single-metal, single-species tests, thereby ignoring metal-mixture effects and indirect effects through species interactions. We tested the combined effects of metal and species interactions in two-trophic algal-daphnid microcosms. Metal-mixture effects on daphnid communities may propagate from effects on the generally more sensitive algal communities. Four different algal communities (three species each), with and without addition of the same daphnid community (three species) were exposed to single metals and one metal mixture (17:17:51 µg/L Ni:Cu:Zn). Daphnid densities were negatively affected by metals in the two-trophic test, the magnitude of which depended on the algal community composition. Algal densities were overall positively affected by the metals in the two-trophic test but negatively in the single-trophic test, illustrating an indirect positive effect in the two-trophic system due to a reduced grazing pressure. Metal effects on daphnid communities in the two-trophic test (day 21) were correlated with metal effects on the single-trophic-level algal communities during exponential growth (R2 = 0.55, p = 0.0011). This finding suggests that metal effects propagate across trophic levels due to a reduced food quantity. However, the indirect positive effects on algal densities, resulting in abundant food quantity, suggests that metal effects can also propagate to daphnids due to a reduced food quality (not measured directly). Metal-mixture interactions on daphnid densities varied during exposure, but were additive or antagonistic relative to independent action when final daphnid densities were considered (day 56). This suggests stronger indirect effects of the mixture compared with the single metals. Overall, our study highlights the dynamic aspect of community-level effects, which empirical reference models such as independent action or concentration addition cannot predict. Environ Toxicol Chem 2024;43:2350-2364. © 2024 SETAC.
Collapse
Affiliation(s)
- Andreas Fettweis
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | - Simon Hansul
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Erik Smolders
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | - Karel De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Liu X, Yu L, Zhang Y, Hua Z, Li X, Xue H, Chu K. Release of perfluoroalkyl acids from sediments under the effects of the discharge ratio and flow flux at a Y-shaped confluence. WATER RESEARCH 2024; 260:121947. [PMID: 38901312 DOI: 10.1016/j.watres.2024.121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The sediments in riverine environments contain notably high concentrations of perfluoroalkyl acids (PFAAs), which may be released into the water body under different hydrodynamic forces, such as those occurring at Y-shaped confluences. The release of PFAAs may pose a significant risk to the surrounding aquatic ecosystems. However, our understanding of the release and transport of PFAAs from sediments at Y-shaped confluences remains unclear. Thus, in this study, we performed a series of flume experiments to explore the effects of discharge ratio and total flow flux on the release and redistribution of PFAAs. The results indicated that these two parameters significantly affected the hydrodynamic features of confluences and the water physicochemical parameters. PFAA concentrations in the dissolved phase and suspended particulate matter (SPM) rose significantly as the discharge ratio and total flow flux increased. The dissolved phase was the predominant loading form of PFAAs, with short-chain PFAAs being the main kind, while long-chain PFAAs were dominant in the SPM. The spatial distribution pattern of PFAAs in sediments at the confluence exhibited a high degree of correspondence with hydrodynamic zones. The separation zone and maximum velocity zone were consistent with sediment regions with low and high capacities to release PFAAs, respectively. The patterns of variation in PFAA distribution were comparable to those observed in hydrodynamic zones as the discharge ratio and total flow flux varied. Furthermore, these two parameters altered the partitioning behaviors of PFAAs; specifically, the PFAAs in sediments tended to be released into the pore-water, while the liberated PFAAs tended to attach to SPM. Linear regression and correlation analyses suggested that the stream-wise and vertical flow velocity components near the sediment-water interface were the primary contributors to sediment suspension and PFAA exchange between the water column and pore-water. These findings will help us to understand the patterns of PFAA release in sediments at Y-shaped confluences and assist in the management of PFAA-contaminated sediments at these locations.
Collapse
Affiliation(s)
- Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| |
Collapse
|
4
|
A S, T L, V M. Emerging investigator series: impacts of land use on dissolved organic matter quality in agricultural watersheds: a molecular perspective. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:247-258. [PMID: 38270214 DOI: 10.1039/d3em00506b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
In aquatic systems, dissolved organic matter (DOM) has important ecological and biogeochemical functions, where the molecular composition of DOM has larger-scale implications for climate change and global carbon cycles. However, there is limited information about the relationships between landscape characteristics and human disturbance that influence the molecular composition of DOM changes in watersheds. In this study, we collected water samples from 22 sites across a gradient of topographically characterized agricultural land coverage and community infrastructure development in the Kawartha region in Ontario, Canada. We employed a combination of Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and absorbance spectroscopy to investigate changes in the molecular composition of DOM with increasing agricultural and community development disturbance on the optical and molecular characteristics of DOM. We found that dissolved organic carbon (DOC) concentrations in disturbed (>75%) watersheds ranged from 3.67-32.8 mg L-1 and were significantly higher than in watersheds with more abundant forest coverage (3.78-9.13 mg L-1). In addition, watersheds with higher phosphorus concentrations had more negative nominal oxygenation state of carbon (NOSC) values, suggesting biologically processed DOM correlating with increased phosphorus levels in aquatic systems. To relate the molecular properties of DOM to landscape metrics, we used Spearman's correlation analysis to reveal that agriculturally impacted and community developments enhanced the molecular signature of unsaturated hydrocarbon. In addition, we identified 65 dissolved organic phosphorus (DOP) molecules that significantly increased in abundance with disturbance, likely due to microbial mineralization of existing DOM with the addition of phosphorus to form larger, biologically inaccessible molecules. The overall recalcitrance of the identified molecules can serve as molecular signatures when evaluating the level of disturbance of a watershed.
Collapse
Affiliation(s)
- Sethumadhavan A
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catherine's, Ontario, L2S 3A1, Canada.
| | - Liang T
- Kawartha Region Conservation Authority, 277 Kenrei Road, Lindsay, Ontario, K9V 4R1, Canada
| | - Mangal V
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catherine's, Ontario, L2S 3A1, Canada.
| |
Collapse
|
5
|
van Dael T, Vermeiren C, Smolders E. Internal loading of phosphorus in streams described by a Sediment-Water Exchange Model for Phosphorus (SWEMP): From lab to field scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168912. [PMID: 38016547 DOI: 10.1016/j.scitotenv.2023.168912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
The reaction of phosphorus (P) between sediments and water in streams strongly affects the surface water P concentrations. A new reactive transport model (SWEMP: Sediment-Water Exchange Model for Phosphorus) was developed to describe redox dependent P sorption in the sediment and vertical diffusive transport of solutes to the overlying stream. The model parameters were independently obtained to first predict P release in ten different sediment-water batch systems and in two flumes. Input parameters are the degree of P saturation of the sediment, its organic matter content, dissolved oxygen (DO) concentration and temperature. The dissolved P concentrations in the overlying waters ranged from 0.02 to 1.2 mg P L-1 in these systems and were correctly predicted by the model within, on average, a factor 1.3 (batch) or 1.1 (flume). The P flux from the sediment towards the overlying water increased with increasing sediment P:Fe ratio and respiration rates, and with decreasing DO and water pH. After validation of the model with experimental data, it was used to predict monthly P concentrations in Flemish rivers using the total P emission data, total discharge, average sediment properties and the monthly averaged water temperatures, DO concentrations and electric conductivity. The monthly average P concentrations oscillate annually between 0.24 and 0.73 mg P L-1 and predictions matched the long-term monitoring data within 10 % using only one adjustable parameter for the entire water system (N > 250,000). The model predicts that summer peaks in P are related to internal loading from the sediment under anoxic conditions rather than to emission-dilution effects, i.e. external input of P and/or its concentration at lower flow rates. This suggests that, surface water P concentrations can be lowered by enhanced DO in the water, the addition of Fe and Al rich binding agents to the sediments and by reducing P emissions.
Collapse
Affiliation(s)
- Toon van Dael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium.
| | - Charlotte Vermeiren
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium
| | - Erik Smolders
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Xia L, Verbeeck M, Bergen B, Smolders E. Effect of external and internal loading on source-sink phosphorus dynamics of river sediment amended with iron-rich glauconite sand. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117396. [PMID: 36739774 DOI: 10.1016/j.jenvman.2023.117396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/08/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Glauconite sands (GS) are abundantly available iron (Fe)-rich minerals that are efficient in lowering the release of phosphorus (P) from sediments to the overlying water. Many river sediments are, however, net sinks for P rather than sources and it is unclear if these GS minerals also enhance the P uptake from water. This is because the concentration of Fe(III) minerals at the sediment-water interface (SWI) depends on the redox potential that is affected by physicochemical processes. This study was set-up to investigate if a sediment amendment with GS can both lower P release from the sediment and enhance P uptake from the overlying water. The P fluxes across the SWI were compared between GS-amended (added at 10% weight fraction) and non-amended river sediment in static (incubation) and dynamic (flume) systems. The net P uptake was measured in response to a pulse external P loading (0.5-5 mg P L-1). Sodium glutamate was added to all treatments to simulate water with a high oxygen demand. Before the P pulse, the GS-amended sediments released significantly less P to the overlying water than the non-amended sediments in both static as dynamic systems. Spiking the water reverted the net P flux over the SWI only in the dynamic system, and the net P uptake in the sediment was factor two larger in GS-amended sediment compared to the non-amended sediment. This study showed that GS addition not only reduced internal P release, but also enhanced P uptake from the overlying water. However, the long-term efficiency in streams likely decreases over time due to saturation processes.
Collapse
Affiliation(s)
- Lei Xia
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, 3001, Leuven, Belgium.
| | - Mieke Verbeeck
- Soil Service of Belgium, Willem De Croylaan 48, 3001, Heverlee, Belgium
| | - Benoit Bergen
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, 3001, Leuven, Belgium
| | - Erik Smolders
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, 3001, Leuven, Belgium
| |
Collapse
|
7
|
Zhang F, Yan J, Fang J, Yan Y, Zhang S, Benoit G. Sediment phosphorus immobilization with the addition of calcium/aluminum and lanthanum/calcium/aluminum composite materials under wide ranges of pH and redox conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160997. [PMID: 36535477 DOI: 10.1016/j.scitotenv.2022.160997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Aquatic environment factors often influence and regulate the direction of phosphorus (P) flow at the sediment-water interface (SWI). High pH and low DO, common in eutrophic lakes, would induce large releases of P from sediment, and thus cause the negative effect on the efficiency of some P-passivators. Hence, the development of P passivators that could function over a wide range of pH condition and redox state in the overlaying water with reduced undesirable side effects is critical for the eutrophic lake remediation. In the present study, a calcium (Ca)/aluminum (Al) composite (CA) and a lanthanum (La)/Ca/Al composite (LCA) were prepared for P immobilization in lake sediments, using calcium and lanthanum coprecipitated with aluminum. CA and LCA were shown to have good P sorption performance at pH 4-11, particularly at pH 8-11. Furthermore, CA and LCA have an ability to correct the pH of water that deviates from neutral. The maximum P adsorption (Qmax) of sediment amended by 4 % CA and 4 % LCA increased by 83 % and 103 %, and their equilibrium P concentration (EPC0) decreased by 76 % and 88 %, respectively. Under various pH and DO conditions, the P concentration in overlying water was significantly decreased by CA and LCA amendment, and their addition could effectively counteract the P release from sediments induced by high pH and low DO. The mechanisms of P immobilization in amended sediments under various pH and DO levels are primarily the conversion of reactive P to stable P. The P immobilization performance of CA and LCA could cope with a wide range of pH and redox conditions in eutrophic lakes, and they would help to correct extreme pH values, thus they are expected to be a new generation of commercial P-passivators.
Collapse
Affiliation(s)
- Fengrui Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jin Yan
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jiangling Fang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Yi Yan
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Shenghua Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei 430074, China.
| | - Gaboury Benoit
- School of Forestry & Environmental Studies, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
8
|
He Z, Dong L, Zhu P, Zhang Z, Xu T, Zhang D, Pan X. Nano-scale analysis of uranium release behavior from river sediment in the Ili basin. WATER RESEARCH 2022; 227:119321. [PMID: 36368086 DOI: 10.1016/j.watres.2022.119321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Due to the limitations of the conventional water sample pretreatment methods, some of the colloidal uranium (U) has long been misidentified as "dissolved" phase. In this work, the U species in river water in the Ili Basin was classified into submicron-colloidal (0.1-1 μm), nano-colloidal (0.1 μm-3 kDa) and dissolved phases (< 3 kDa) by using high-speed centrifugation and ultrafiltration. The U concentration in the river water was 5.39-8.75 μg/L, which was dominated by nano-colloidal phase (55-70%). The nano-colloidal particles were mainly composed of particulate organic matter (POM) and had a very high adsorption capacity for U (accounting for 70 ± 23% of colloidal U). Sediment disturbance, low temperature, and high inorganic carbon greatly improved the release of nano-colloidal U, but high levels of Ca2+ inhibited it. The simulated river experiments indicated that the flow regime determined the release of nano-colloidal U, and large amounts of nano-colloidal U might be released during spring floods in the Ili basin. Moreover, global warming increases river flow and inorganic carbon content, which may greatly promote the release and migration of nano-colloidal U.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhibing Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Tao Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
9
|
Xia L, David T, Verbeeck M, Bruneel Y, Smolders E. Iron rich glauconite sand as an efficient phosphate immobilising agent in river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152483. [PMID: 34923017 DOI: 10.1016/j.scitotenv.2021.152483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The reductive dissolution of iron (Fe) (oxy)hydroxides in sediments releases phosphorus (P) to the overlying water and may lead to eutrophication. Glauconite sands (GS) are rich in Fe and may be used as readily available P sorbents. This study was set up to test effects of dose and type of GS on the P immobilisation in sediments under hypoxic conditions. Three different GS were amended to a P-rich river sediment at doses of 0% (control), 5% and 10% (weight fractions) and incubated with overlying water in batch laboratory conditions. Glutamate was added to the solution after 15 days to deplete any residual dissolved oxygen from the sediment-water interface. In the first 15 days, the P concentration in the overlying water peaked to 1.5 mg P L-1 at day 9 in the control and decreased to 0.9 mg P L-1 at lowest Fe-dose and to 0.03 mg P L-1 at the highest Fe-dose, the effects of GS type and dose were explained by the Fe dose. After 15 days, the added glutamate induced a second, and larger peak of P in the overlying water in sediment, that peak was lower in amended sediments but no GS dose or type related effects were found. This suggests that freshly precipitated P species at the sediment-water interface can be remobilised. This study highlights the potential for using this natural mineral as a cheap and easily available sediment remediation material, but its longevity under rare extreme conditions needs to be further investigated.
Collapse
Affiliation(s)
- Lei Xia
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium.
| | - Tom David
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium
| | - Mieke Verbeeck
- Rothamsted Research, Sustainable Agriculture Sciences, North Wyke EX20 2SB, UK
| | - Yaana Bruneel
- Laboratoire de Mesure et Modélisation de la Migration des Radionucléides (L3MR), CEA Commissariat à l'énergie atomique et aux énergies alternatives, Paris-Saclay, France
| | - Erik Smolders
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium
| |
Collapse
|