1
|
do Nascimento MCA, Rosa CR, Demoliner M, Geraldini DB, Campos GRF, Quevedo DM, Miceli RN, Spilki FR, Araújo JP, Calmon MF, Rahal P. Epidemiological and Molecular Surveillance of Aichi Virus A at Different Stages of Sewage Treatment: A One-Year Study in the Southeast of Brazil. Viruses 2025; 17:736. [PMID: 40431747 PMCID: PMC12115472 DOI: 10.3390/v17050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/06/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Enteric viruses, such as the Aichi virus (AiV), pose a potential health risk due to their high excretion rates through fecal elimination, limited removal during treatment processes, and prolonged survival, highlighting the need to assess the potential for exposure and disease transmission through sanitation systems. This study investigated the prevalence of AiV at three key stages of sewage treatment in the city of São José do Rio Preto, São Paulo state, Brazil, as well as its viral concentrations, infectious potential, and molecular characterization. The data were also analyzed for potential correlations with reported diarrheal disease cases in the city and the physicochemical properties of sewage. The methodology employed included Nested PCR, qPCR, Sanger Sequencing, and phylogenetic analysis, as well as infectivity testing in cell cultures. The prevalence of AiV throughout the year in raw sewage samples was 90.4%, 78.8% in post-anaerobic biological treatment, and 71.1% in post-chemical treatment, totaling 125 positive samples out of 156, being characterized as AiV genotype A. The virus also demonstrated persistence and infectious potential at all three stages analyzed. The AiV-A mean concentration ranged from 2.05 log10 to 4.64 GC/mL, 2.31 to 4.72 log10 GC/mL, and 2.13 to 2.85 log10 GC/mL for the same treatment stages, respectively. A significant difference (p ≤ 0.05) suggests higher viral concentrations in summer at the three sewage process points analyzed, while lower viral concentrations were observed in post-chemical treatment samples (p ≤ 0.01). Additionally, no statistically significant relationship was observed between the virus occurrence in samples and cases of acute diarrheal diseases in the city. In conclusion, this study highlights that much remains to be understood about AiV while providing valuable insights into the relationship between AiV, environmental factors, and public health.
Collapse
Affiliation(s)
- Mariah C. A. do Nascimento
- Department of Biology, São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (M.C.A.d.N.); (C.R.R.); (D.B.G.); (P.R.)
| | - Camila R. Rosa
- Department of Biology, São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (M.C.A.d.N.); (C.R.R.); (D.B.G.); (P.R.)
| | - Meriane Demoliner
- Molecular Microbiology Laboratory, University Feevale, Novo Hamburgo 93525-075, RS, Brazil; (M.D.); (F.R.S.)
| | - Dayla B. Geraldini
- Department of Biology, São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (M.C.A.d.N.); (C.R.R.); (D.B.G.); (P.R.)
| | - Guilherme R. F. Campos
- Department of Dermatological, Infectious and Parasitic Diseases, Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil;
| | - Daniela M. Quevedo
- Institute of Exact and Technological Sciences (ICET), University Feevale, Novo Hamburgo 93525-075, RS, Brazil;
| | - Rafael N. Miceli
- SeMAE—Autonomous Municipal Water and Sewage Service, São José do Rio Preto 15048-000, SP, Brazil;
| | - Fernando R. Spilki
- Molecular Microbiology Laboratory, University Feevale, Novo Hamburgo 93525-075, RS, Brazil; (M.D.); (F.R.S.)
| | - João Pessoa Araújo
- Biotechnology Institute, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
| | - Marilia F. Calmon
- Department of Biology, São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (M.C.A.d.N.); (C.R.R.); (D.B.G.); (P.R.)
| | - Paula Rahal
- Department of Biology, São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (M.C.A.d.N.); (C.R.R.); (D.B.G.); (P.R.)
| |
Collapse
|
2
|
Xu F, Liu T, Deng Z, Li J, Zhang Y, Wu Y, Xiao S, Mai B, Ke C, Wu R. A loop-mediated isothermal amplification assay for the rapid and quantitative tracking of fecal contamination sources in water. ENVIRONMENTAL RESEARCH 2025; 272:121162. [PMID: 39971111 DOI: 10.1016/j.envres.2025.121162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
Fecal contamination in water poses a serious threat to public health and the ecological environment. Numerous qPCR-based methods have been used to identify the source of fecal contamination, but this method relies on expensive equipment, well-established laboratory conditions, and experienced personnel, significantly reducing the timeliness of identifying contamination sources. Here, we developed a loop-mediated isothermal amplification (LAMP) assay for tracking the sources of fecal contamination to rapid identifying and quantifying humans, ruminants, pigs, and poultry fecal contamination. The results demonstrated that LAMP assay enabled us to easily and quickly (<30 min) detect associated gene of the host gut microbes for tracking of fecal contamination sources, exhibiting a same detection level of 100 gene copies/μL as lab-based qPCR. Compared to LAMP molecular markers of other bacterial genera and bacteriophages, the LAMP molecular markers of Bacteroidales showed a higher sensitivity and detection concentration. The majority of the non-target species (96.9%) showed little effect on the LAMP marker genes of the target species. Moreover, the LAMP assay was used to identify a multiple fecal contamination and spatial distribution characteristics in the Liuxi River basin. The detection frequency and abundance of human-associated marker genes were the highest, followed by pig-associated marker gene; the mean concentration of human- and pig-associated marker gene in tributaries were higher than that in the mainstem. This LAMP assay could be used to easily and quickly identify the sources of fecal contamination and contribute in the control and treatment of fecal contamination in water.
Collapse
Affiliation(s)
- Fengshun Xu
- The Key Laboratory of Water Environment Simulation and Pollution Control, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China; College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Tiancai Liu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Zhiyi Deng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Jincai Li
- The Key Laboratory of Water Environment Simulation and Pollution Control, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Yang Zhang
- The Key Laboratory of Water Environment Simulation and Pollution Control, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Yongjie Wu
- The Key Laboratory of Water Environment Simulation and Pollution Control, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Shijie Xiao
- The Key Laboratory of Water Environment Simulation and Pollution Control, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Changdong Ke
- The Key Laboratory of Water Environment Simulation and Pollution Control, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Renren Wu
- The Key Laboratory of Water Environment Simulation and Pollution Control, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China; College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
3
|
Xue X, Zhang Y. Review of the detection of pathogenic Escherichia coli based-microchip technology. ANAL SCI 2025; 41:225-236. [PMID: 39654011 DOI: 10.1007/s44211-024-00693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/12/2024] [Indexed: 02/18/2025]
Abstract
Escherichia coli (E. coli) is a pathogen that has generated global concern due to the public health challenges it has created. Therefore, the rapid and accurate detection of E. coli is important to public health safety. Microchips have become a popular analytical technique for detecting E. coli due to their automation, high analytical efficiency, and low analyte consumption. Therefore, this paper highlights multiple microchip-based strategies for the detection of E. coli, reviews their limitations, and provides strategies and future perspectives for analyzing E. coli..
Collapse
Affiliation(s)
- Xudong Xue
- Xi'an Innovation College of Yan'an University, Xi'an, 710100, China
| | - Yan Zhang
- Science of Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
4
|
Egbo TE, Blancett CD, Payne JM, Stefan CP, Minogue TD, Sellers JH, Koehler JW. Rapid identification of bacterial select agents using loop-mediated isothermal amplification. BMC Infect Dis 2025; 25:63. [PMID: 39810089 PMCID: PMC11734227 DOI: 10.1186/s12879-024-09573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Point of need diagnostics provide efficient testing capability for remote or austere locations, decreasing the time to answer by minimizing travel or sample transport requirements. Loop-mediated isothermal amplification (LAMP) is an appealing technology for point-of-need diagnostics due to its rapid analysis time and minimal instrumentation requirements. METHODS Here, we designed and optimized nine LAMP assays that are sensitive and specific to targeted bacterial select agents including Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Brucella spp. Evaluation of each assay determined preliminary limit of detection (LOD) with LOD confirmed across 60 replicates (≥ 95% positivity rate). Testing across a robust set of strains of the target agent, common DNA agents, and near-neighbors documented sensitivity and specificity for independent assays. RESULTS Specifically, all assays were 100% specific and sensitive except for Y. pestis Caf1 (90% inclusive across Y. pestis strains). CONCLUSION Here, we optimized assay turn-around-time, decreasing a standard 60 min traditional polymerase chain reaction (PCR) to 30 min using LAMP with positive results in as little as 5-10 min. Incorporating point of need sample processing and evaluating the potential inhibitory impact of sample matrices such as whole blood and soil would be needed to enable this test system for use on field-forward clinical and environmental sample testing.
Collapse
Affiliation(s)
- Timothy E Egbo
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, 21702, United States of America.
| | - Candace D Blancett
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, 21702, United States of America
| | - Jackie M Payne
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, 21702, United States of America
| | - Christopher P Stefan
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, 21702, United States of America
| | - Timothy D Minogue
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, 21702, United States of America
| | - John H Sellers
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, 21702, United States of America
| | - Jeffrey W Koehler
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, 21702, United States of America
| |
Collapse
|
5
|
Sewid AH, Dylewski HC, Ramos JH, Morgan BM, Gelalcha BD, D'Souza DH, Wu JJ, Dego OK, Eda S. Colorimetric and electrochemical analysis of DNAzyme-LAMP amplicons for the detection of Escherichia coli in food matrices. Sci Rep 2024; 14:28942. [PMID: 39578633 PMCID: PMC11584896 DOI: 10.1038/s41598-024-80392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Foodborne bacteria like Escherichia coli threaten global food security, necessitating affordable, on-site detection methods, especially in resource-limited settings. This study optimized loop-mediated isothermal amplification (LAMP) integrated with peroxidase-mimicking G-quadruplex DNA structures (DNAzyme), termed DNAzyme-LAMP which was designed to incorporate two different catalytic DNAzymes per amplification unit, enabling colorimetric detection of E. coli in leafy vegetables and milk samples. Additionally, we introduce a novel electrochemical method that enhances analytical sensitivity. The optimized DNAzyme-LAMP achieved a detection limit below 6.3 CFU per reaction or 0.1 aM gene copies. This system lays the groundwork for the development of on-site biosensors and can be adapted for detecting other foodborne pathogens.
Collapse
Affiliation(s)
- Alaa H Sewid
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Haley C Dylewski
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Joseph H Ramos
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Bailey M Morgan
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Benti D Gelalcha
- Departments of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Doris H D'Souza
- Departments of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, USA
| | - Oudessa Kerro Dego
- Departments of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Shigetoshi Eda
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| |
Collapse
|
6
|
do Nascimento MCA, Smith WJM, Liu Y, Simpson SL, Bivins A, Rahal P, Ahmed W. Development and comparative assessment of RT-qPCR and duplex RT-LAMP assays for the monitoring of Aichi virus A (AiV-A) in untreated wastewater samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175440. [PMID: 39153611 DOI: 10.1016/j.scitotenv.2024.175440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Diverse enteric pathogens, transmitted through human and animal feces, can cause gastroenteritis. Enteric viruses, such as human Aichi virus, specifically genotype A (AiV-A), are emerging pathogens that cause illnesses even at low doses and are spreading globally. This research developed a reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting the 3CD junction and a reverse transcription colorimetric loop-mediated isothermal amplification (RT-cLAMP) duplex assay targeting junctions 2BC and 3CD of the AiV-A genome for rapid and sensitive detection of this virus in metropolitan and regional wastewater samples in Queensland, Australia. The performance of these assays was evaluated using control materials and by analyzing wastewater samples. In serially diluted control materials, RT-qPCR provided quantifiable data (mean 1.51 log10 GC/2 μL of nucleic acid) down to a dilution of 1 × 10-5 pg/μL. In comparison, the duplex RT-cLAMP assay detected down to 1 × 10-4 pg/μL, indicating that its sensitivity was one order of magnitude less than that of RT-qPCR. Of the 38 wastewater samples from 38 metropolitan and regional wastewater treatment plants (WWTPs) in Queensland, Australia, 21 (55.3 %) tested positive by RT-qPCR with concentrations ranging from 3.60 to 6.23 log10 GC/L. In contrast, only 15 (39.5 %) of 38 wastewater samples were positive using the duplex RT-cLAMP assay. The methods demonstrated substantial qualitative agreement (κ = 0.730), with a concordance of 86.5 %, demonstrating the reliability of RT-cLAMP for detecting AiV-A in wastewater samples. The duplex RT-cLAMP assay, despite demonstrating reduced detection sensitivity, has proven effective and holds promise as a supplementary approach, especially in settings with limited resources where rapid and affordable testing is crucial.
Collapse
Affiliation(s)
- Mariah C A do Nascimento
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.; Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Yawen Liu
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.; State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Stuart L Simpson
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Paula Rahal
- Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia..
| |
Collapse
|
7
|
Preechakasedkit P, Pulsrikarn C, Nuanualsuwan S, Rattanadilok Na Phuket N, Citterio D, Ruecha N. Label-Free Detection of Waterborne Pathogens Using an All-Solid-State Laser-Induced Graphene Potentiometric Ion Flux Immunosensor. Anal Chem 2024; 96. [PMID: 39263981 PMCID: PMC11428094 DOI: 10.1021/acs.analchem.4c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Waterborne pathogens are harmful microorganisms transmitted through water sources. Early and rapid pathogen detection is important for preventing illnesses and implementing stringent water safety measures to minimize the risk of contamination. This work introduces a miniaturized all-solid-state potentiometric ion flux immunosensor for the rapid and label-free detection of waterborne pathogens. A screen-printed silver/silver chloride electrode coated with a reference electrode membrane and polyurethane as an all-solid-state reference electrode was combined with a solid-state contact ion-selective electrode (ISE). An all-solid-state ISE was constructed on laser-induced graphene by coating it with a cationic marker and a carboxylated poly(vinyl chloride)-based membrane for immobilizing antibodies and controlling ion fluxes through the membrane. Proof-of-concept was achieved by detecting Escherichia coli and Salmonella enterica serovar Typhimurium using the assembled immunosensors within 10 min. The potentiometric response shift attributed to the blocking effect in the ion flux caused by pathogen-antibody interaction corresponded to pathogen concentration, indicating detection limits of 0.1 CFU/mL and working ranges of 0.1-105 CFU/mL. Furthermore, the developed sensors revealed high selectivity and were directly applied in groundwater and tap water without any sample preparation, demonstrating high recovery percentages. The simple operation and elimination of sample preparation are key benefits to further usability of the developed immunosensors for efficient pathogen detection.
Collapse
Affiliation(s)
- Pattarachaya Preechakasedkit
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd, Pathumwan, Bangkok 10330, Thailand
| | - Chaiwat Pulsrikarn
- National
Institute of Health, Department of Medical Science, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Suphachai Nuanualsuwan
- Department
of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Daniel Citterio
- Department
of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Nipapan Ruecha
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd, Pathumwan, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Jiang H, Chang W, Zhu X, Liu G, Liu K, Chen W, Wang H, Qin P. Development of a Colorimetric and SERS Dual-Signal Platform via dCas9-Mediated Chain Assembly of Bifunctional Au@Pt Nanozymes for Ultrasensitive and Robust Salmonella Assay. Anal Chem 2024; 96:12684-12691. [PMID: 39037392 DOI: 10.1021/acs.analchem.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Timely screening for harmful pathogens is a great challenge in emergencies where traditional culture methods suffer from long assay time and alternative methods are limited by poor accuracy and low robustness. Herein, we present a dCas9-mediated colorimetric and surface-enhanced Raman scattering (SERS) dual-signal platform (dCas9-CSD) to address this challenge. Strategically, the platform used dCas9 to accurately recognize the repetitive sequences in amplicons produced by loop-mediated isothermal amplification (LAMP), forming nucleic acid frameworks that assemble numerous bifunctional gold-platinum (Au@Pt) nanozymes into chains on the surface of streptavidin-magnetic beads (SA-MB). The collected Au@Pt converted colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) via its Pt shell and then enhanced the Raman signal of oxTMB by its Au core. Therefore, the presence of Salmonella could be dexterously converted into cross-validated colorimetric and SERS signals, providing more reliable conclusions. Notably, dCas9-mediated secondary recognition of amplicons reduced background signal caused by nontarget amplification, and two-round signal amplification consisting of LAMP reaction and Au@Pt catalysis greatly improved the sensitivity. With this design, Salmonella as low as 1 CFU/mL could be detected within 50 min by colorimetric and SERS modes. The robustness of dCas9-CSD was further confirmed by various real samples such as lake water, cabbage, milk, orange juice, beer, and eggs. This work provides a promising point-of-need tool for pathogen detection.
Collapse
Affiliation(s)
- Han Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Wei Chang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, PR China
| | - Xiaofan Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Gang Liu
- Environmental Protection Monitoring Station, Anhui Provincial Lake Chaohu Administration, Chaohu 238000, PR China
| | - Kaiyong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Wei Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Hua Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, PR China
| | - Panzhu Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| |
Collapse
|
9
|
Camacho MJ, Albuquerque DC, Inácio ML, Martins VC, Mota M, Freitas PP, de Andrade E. FTA-LAMP based biosensor for a rapid in-field detection of Globodera pallida-the pale potato cyst nematode. Front Bioeng Biotechnol 2024; 12:1337879. [PMID: 38303911 PMCID: PMC10830618 DOI: 10.3389/fbioe.2024.1337879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The combination of a sensitive and specific magnetoresistive sensing device with an easy DNA extraction method and a rapid isothermal amplification is presented here targeting the on-site detection of Globodera pallida, a potato endoparasitic nematode. FTA-cards were used for DNA extraction, LAMP was the method developed for DNA amplification and a nanoparticle functionalized magnetic-biosensor was used for the detection. The combinatorial effect of these three emerging technologies has the capacity to detect G. pallida with a detection limit of one juvenile, even when mixed with other related species. This combined system is far more interesting than what a single technology can provide. Magnetic biosensors can be combined with any DNA extraction protocol and LAMP forming a new solution to target G. pallida. The probe designed in this study consistently distinguished G. pallida (∆Vac binding/Vac sensor above 1%) from other cyst nematodes (∆Vac binding/Vac sensor below 1%). It was confirmed that DNA either extracted with FTA-cards or Lab extraction Kit was of enough quantity and quality to detect G. pallida whenever present (alone or in mixed samples), ensuring probe specificity and sensitivity. This work provides insights for a new strategy to construct advanced devices for pathogens in-field diagnostics. LAMP runs separately but can be easily integrated into a single device.
Collapse
Affiliation(s)
- Maria João Camacho
- INIAV—National Institute for Agriculture and Veterinary Research, Oeiras, Portugal
- NemaLab/ MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, University of Évora, Évora, Portugal
- INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
| | - Débora C. Albuquerque
- INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
- IST—Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Maria L. Inácio
- INIAV—National Institute for Agriculture and Veterinary Research, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | | | - Manuel Mota
- NemaLab/ MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, University of Évora, Évora, Portugal
| | - Paulo P. Freitas
- INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
- INL—International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Eugénia de Andrade
- INIAV—National Institute for Agriculture and Veterinary Research, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| |
Collapse
|
10
|
Akter J, Smith WJM, Gebrewold M, Kim I, Simpson SL, Bivins A, Ahmed W. Evaluation of colorimetric RT-LAMP for screening of SARS-CoV-2 in untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167964. [PMID: 37865239 DOI: 10.1016/j.scitotenv.2023.167964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
This study compared reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and three reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays targeting the N and E genes of the SARS-CoV-2 genome for detecting RNA in untreated wastewater samples. RT-qPCR assays exhibited consistent amplification down to 2 × 102 GC/reaction, with greater analytical sensitivity at 2 × 101 GC/reaction by US CDC N1 and US CDC N2 assays. In contrast, RT-LAMP exhibited lower sensitivity, detecting SARS-CoV-2 only at or above 2 × 103 GC/reaction. For SARS-CoV-2 seeded wastewater samples, the US CDC N1 assay exhibited greater analytical sensitivity than the US CDC N2, E_Sarbeco, and RT-LAMP assays. Out of 30 wastewater samples, RT-qPCR detected endogenous SARS-CoV-2 RNA in 29 samples, while RT-LAMP identified 27 positive samples, with 20 displaying consistent amplifications in all three RT-LAMP technical replicates. Agreement analysis revealed a strong concordance between RT-LAMP and the US CDC N1 and E_Sarbeco RT-qPCR assays (κ = 0.474) but lower agreement with the US CDC N2 RT-qPCR assay (κ = 0.359). Quantification of SARS-CoV-2 RNA in positive samples revealed a strong correlation between the US CDC N1 and E_Sarbeco assays, while the US CDC N1 and US CDC N2 assays exhibited weak correlation. Logistic regression analysis indicated that RT-LAMP results correlated with RNA quantified by the US CDC N1 and E_Sarbeco assays, with 95 % limits of detection of 3.99 and 3.47 log10 GC/15 mL, respectively. In conclusion, despite lower sensitivity compared to RT-qPCR assays, RT-LAMP may offer advantages for wastewater surveillance, such as rapid results (estimated as twice as fast), and simplicity, making it a valuable tool in the shifting landscape of COVID-19 wastewater surveillance. Furthermore, LAMP positive wastewater samples might be prioritized for SARS-CoV-2 sequencing due to reduced analytical sensitivity. These findings support the use of RT-LAMP as a specific and efficient method for screening wastewater samples for SARS-CoV-2, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Jesmin Akter
- Department of Civil and Environmental Engineering, University of Science and Technology, Republic of Korea; Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Republic of Korea; CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Metasebia Gebrewold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Ilho Kim
- Department of Civil and Environmental Engineering, University of Science and Technology, Republic of Korea; Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Republic of Korea
| | | | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
11
|
Choix FJ, Palacios OA, Nevarez-Moorillón GV. Traditional and new proposals for environmental microbial indicators-a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1521. [PMID: 37995003 DOI: 10.1007/s10661-023-12150-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The continuous increment in world population coupled with the greatest natural resource consumption and waste generation has an enormous impact on the environment. To date, using biological indicators (bioindicators) to evaluate the biological quality of natural environments is very common. Nonetheless, selecting those suitable for each ecosystem or contaminant is one of the most important issues for environmental sciences. Bacteria and helminths are mainly related to fecal contamination, while antibiotic-resistant bacteria, fungi, viruses, and microalgae are organisms used to determine deteriorated ecosystems by diverse contaminants. Nowadays, each bioindicator is used as a specific agent of different contaminant types, but detecting and quantifying these bioindicator microorganisms can be performed from simple microscopy and culture methods up to a complex procedure based on omic sciences. Developing new techniques based on the metabolism and physiological responses of traditional bioindicators is shown in a fast environmental sensitivity analysis. Therefore, the present review focuses on analyzing different bioindicators to facilitate developing suitable monitoring environmental systems according to different pollutant agents. The traditional and new methods proposed to detect and quantify different bioindicators are also discussed. Their vital role is considered in implementing efficient ecosystem bioprospection, restoration, and conservation strategies directed to natural resource management.
Collapse
Affiliation(s)
- Francisco J Choix
- CONAHCYT - Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México.
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México.
| | - Oskar A Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | | |
Collapse
|
12
|
Eitzmann DR, Shamsaei D, Anderson JL. Versatile dual-channel loop-mediated isothermal amplification assay featuring smartphone imaging enables determination of fecal indicator bacteria in environmental waters. Talanta 2023; 265:124890. [PMID: 37421790 DOI: 10.1016/j.talanta.2023.124890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Rapid diagnostic assays are often a critical tool for monitoring water quality in developing and developed countries. Conventional testing requires 24-48 h for incubation, resulting in delayed remediation and increasing the likelihood of negative outcomes. In this study, we report a workflow for detection of E. coli, a common indicator of fecal contamination. Following large volume filtration, E. coli is then solubilized enabling the facile isolation and recovery of genetic material by a thin film microextraction (TFME) device featuring a polymeric ionic liquid (PIL) sorbent. Rapid recovery of pure nucleic acids is achieved using a PIL sorbent with high affinity for DNA to significantly increase mass transfer and facilitate adsorption and desorption of DNA. Downstream detection is performed by a versatile, dual channel loop mediated isothermal amplification (LAMP) assay featuring a colorimetric dye and a sequence-specific molecular beacon. A portable LAMP companion box enables consistent isothermal heating and endpoint smartphone imaging while being powered by a single 12-V battery. Programmable LEDs are switched from white or blue light to facilitate the independent imaging of the colorimetric dye or fluorometric probe following amplification. The methodology positively identified E. coli in environmental samples spiked to concentrations of 6600 colony forming units (CFU) per milliliter and 660 CFU/mL with 100% and 22% positivity, respectively.
Collapse
Affiliation(s)
- Derek R Eitzmann
- Department of Chemistry, Iowa State University, Ames, IA, 50011, United States
| | - Danial Shamsaei
- Department of Chemistry, Iowa State University, Ames, IA, 50011, United States
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, United States.
| |
Collapse
|
13
|
Tang Y, Wu Z, Zhang Y, Wang C, Ma X, Zhang K, Pan R, Cao Y, Zhou X. Cultivation-dependent and cultivation-independent investigation of O-methylated pollutant-producing bacteria in three drinking water treatment plants. WATER RESEARCH 2023; 231:119618. [PMID: 36706470 DOI: 10.1016/j.watres.2023.119618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
O-methylated pollutants (OMPs) are emerging contaminants in drinking water and mainly produced through bacterial O-methylation. However, the information of OMP-producing bacteria (OMPPB) in drinking water treatment plant (DWTP) is largely unknown so far. In this study, the OMPPB in water samples from three DWTPs (XL, JX and NX) were investigated by using cultivation-dependent and cultivation-independent technologies. Four OMPs were detected and their odor and toxicity risks were assessed. Formation potentials (FPs) of 2,4,6-trichloanisole, 2,3,6-trichloanisole, 2,4,6-tribromoanisole, pentachloroanisole and diclofenac methyl ester were determined in water samples and their values shifted significantly among DWTPs. A most probable number (MPN) method was established to quantify OMPPB numbers and the relationships between total haloanisole FPs (HAFPs) (y) and OMPPB numbers (x) in three DWTPs could be described by the following functions: y = 0.496×0.373 (XL), y = 0.041×0.465 (JX) and y = 0.218×0.237 (NX). Several genera like Bacillus, Ralstonia, Brevundimonas, etc. were newly found OMPPB among the cultivable bacteria, and their OMP products were evaluated in terms of quantity and environment risks (odor, toxicity and bioaccumulation). High-throughput sequencing revealed treatment process was the main driving factor to shape the OMPPB community structures and Mantel test showed HAFP profile was significantly influenced by Mycobacterium and Pelomonas. PICURSt2 analysis discovered four phenolic O-methyltransferases (OMTs) and four carboxylic OMTs which might be responsible for OMP formation. Several strategies were recommended to assess risk and control contamination brought by OMPPB in DWTPs.
Collapse
Affiliation(s)
- Yiran Tang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Zhixuan Wu
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Yanfen Zhang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Chuanxuan Wang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Xuelian Ma
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Renjie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yucheng Cao
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Xinyan Zhou
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
14
|
Das D, Lin CW, Chuang HS. LAMP-Based Point-of-Care Biosensors for Rapid Pathogen Detection. BIOSENSORS 2022; 12:bios12121068. [PMID: 36551035 PMCID: PMC9775414 DOI: 10.3390/bios12121068] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/01/2023]
Abstract
Seeking optimized infectious pathogen detection tools is of primary importance to lessen the spread of infections, allowing prompt medical attention for the infected. Among nucleic-acid-based sensing techniques, loop-mediated isothermal amplification is a promising method, as it provides rapid, sensitive, and specific detection of microbial and viral pathogens and has enormous potential to transform current point-of-care molecular diagnostics. In this review, the advances in LAMP-based point-of-care diagnostics assays developed during the past few years for rapid and sensitive detection of infectious pathogens are outlined. The numerous detection methods of LAMP-based biosensors are discussed in an end-point and real-time manner with ideal examples. We also summarize the trends in LAMP-on-a-chip modalities, such as classical microfluidic, paper-based, and digital LAMP, with their merits and limitations. Finally, we provide our opinion on the future improvement of on-chip LAMP methods. This review serves as an overview of recent breakthroughs in the LAMP approach and their potential for use in the diagnosis of existing and emerging diseases.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
15
|
Wang B, Park B. Microfluidic Sampling and Biosensing Systems for Foodborne Escherichia coli and Salmonella. Foodborne Pathog Dis 2022; 19:359-375. [PMID: 35713922 DOI: 10.1089/fpd.2021.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developments of portable biosensors for field-deployable detections have been increasingly important to control foodborne pathogens in regulatory environment and in early stage of outbreaks. Conventional cultivation and gene amplification methods require sophisticated instruments and highly skilled professionals; while portable biosensing devices provide more freedom for rapid detections not only in research laboratories but also in the field; however, their sensitivity and specificity are limited. Microfluidic methods have the advantage of miniaturizing instrumental size while integrating multiple functions and high-throughput capability into one streamlined system at low cost. Minimal sample consumption is another advantage to detect samples in different sizes and concentrations, which is important for the close monitoring of pathogens at consumer end. They improve measurement or manipulation of bacteria by increasing the ratio of functional interface of the device to the targeted biospecies and in turn reducing background interference. This article introduces the major active and passive microfluidic devices that have been used for bacteria sampling and biosensing. The emphasis is on particle-based sorting/enrichment methods with or without external physical fields applied to the microfluidic devices and on various biosensing applications reported for bacteria sampling. Three major fabrication methods for microfluidics are briefly discussed with their advantages and limitations. The applications of these active and passive microfluidic sampling methods in the past 5 years have been summarized, with the focus on Escherichia coli and Salmonella. The current challenges to microfluidic bacteria sampling are caused by the small size and nonspherical shape of various bacterial cells, which can induce unpredictable deviations in sampling and biosensing processes. Future studies are needed to develop rapid prototyping methods for device manufacturing, which can facilitate rapid response to various foodborne pathogen outbreaks.
Collapse
Affiliation(s)
- Bin Wang
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Bosoon Park
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| |
Collapse
|
16
|
A Mobile Laboratory Enables Fecal Pollution Source Tracking in Catchments Using Onsite qPCR Assays. WATER 2022. [DOI: 10.3390/w14081224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Onsite molecular diagnostics can revolutionize fecal pollution source tracking. We aimed to validate a method for onsite qPCR assays with a miniature speaker-sized Q qPCR instrument and other portable equipment items. We showed that marker genes for total bacteria (16S) and E. coli (rodA) in 100 mL of river water measured with this method agreed within ±0.3 log10 units with results obtained when using conventional laboratory equipment items. We then deployed the portable method in a mobile laboratory (‘lab in a van’) and quantified HF183 marker genes for human host associated Bacteroides in river water within 3 h of sampling. We also used the mobile laboratory to investigate urban river water and effluents from two storm drains and a retention pond and collected comprehensive microbial and physicochemical water quality data. We found significantly higher HF183 gene levels in the older storm drain compared to the river water (6.03 ± 0.04 vs. 4.23 ± 0.03 log10 gene copies per 100 mL), and a principal component analysis revealed that storm drain effluent retention in a pond beneficially altered water characteristics, making them more like those of the receiving river. In conclusion, onsite qPCR assays can be performed with portable equipment items to quickly test water.
Collapse
|
17
|
Zhu Y, Wu X, Gu A, Dobelle L, Cid C, Li J, Hoffmann MR. Membrane-Based In-Gel Loop-Mediated Isothermal Amplification (mgLAMP) System for SARS-CoV-2 Quantification in Environmental Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:862-873. [PMID: 34967203 PMCID: PMC8751019 DOI: 10.1021/acs.est.1c04623] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 05/06/2023]
Abstract
Since the COVID-19 pandemic is expected to become endemic, quantification of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in ambient waters is critical for environmental surveillance and for early detection of outbreaks. Herein, we report the development of a membrane-based in-gel loop-mediated isothermal amplification (mgLAMP) system that is designed for the rapid point-of-use quantification of SARS-CoV-2 particles in environmental waters. The mgLAMP system integrates the viral concentration, in-assay viral lysis, and on-membrane hydrogel-based RT-LAMP quantification using enhanced fluorescence detection with a target-specific probe. With a sample-to-result time of less than 1 h, mgLAMP successfully detected SARS-CoV-2 below 0.96 copies/mL in Milli-Q water. In surface water, the lowest detected SARS-CoV-2 concentration was 93 copies/mL for mgLAMP, while the reverse transcription quantitative polymerase chain reaction (RT-qPCR) with optimal pretreatment was inhibited at 930 copies/mL. A 3D-printed portable device is designed to integrate heated incubation and fluorescence illumination for the simultaneous analysis of nine mgLAMP assays. Smartphone-based imaging and machine learning-based image processing are used for the interpretation of results. In this report, we demonstrate that mgLAMP is a promising method for large-scale environmental surveillance of SARS-CoV-2 without the need for specialized equipment, highly trained personnel, and labor-intensive procedures.
Collapse
Affiliation(s)
- Yanzhe Zhu
- Linde Laboratories, California
Institute of Technology, Pasadena, California 91125, United States
| | - Xunyi Wu
- Linde Laboratories, California
Institute of Technology, Pasadena, California 91125, United States
| | - Alan Gu
- Linde Laboratories, California
Institute of Technology, Pasadena, California 91125, United States
| | - Leopold Dobelle
- Linde Laboratories, California
Institute of Technology, Pasadena, California 91125, United States
| | - Clément
A. Cid
- Linde Laboratories, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jing Li
- Linde Laboratories, California
Institute of Technology, Pasadena, California 91125, United States
| | - Michael R. Hoffmann
- Linde Laboratories, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Hong T, Liu X, Zhou Q, Liu Y, Guo J, Zhou W, Tan S, Cai Z. What the Microscale Systems "See" In Biological Assemblies: Cells and Viruses? Anal Chem 2021; 94:59-74. [PMID: 34812604 DOI: 10.1021/acs.analchem.1c04244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xing Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jing Guo
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China.,Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.,Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| |
Collapse
|
19
|
Zhang Y, Hu X, Wang Q, Zhang Y. Recent advances in microchip-based methods for the detection of pathogenic bacteria. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|