1
|
Zhang Y, Yip KL, Kim Y, Chouinard C, Licato J, Kim JH. Monolithic Ceramic CoTiO 3/TiO 2 Membrane Balancing Catalytic Efficiency and Durability in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6863-6871. [PMID: 40152342 PMCID: PMC11984476 DOI: 10.1021/acs.est.4c12814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Membrane-based advanced oxidation processes (AOPs) have shown great promise in degrading persistent organic pollutants in wastewater. However, their long-term application is often limited by the trade-off between catalytic efficiency and durability. In this study, we present a stable monolithic ceramic membrane integrating a CoTiO3/TiO2 interface that successfully overcomes this trade-off. The CoTiO3/TiO2 interface enhances peroxymonosulfate (PMS) activation while preventing Co2+ leaching, ensuring both high catalytic efficiency and structural integrity under reactive conditions. Finite element analysis suggests that the optimized distribution of the catalyst across our membrane regulates PMS utilization and minimizes the corrosive effects of radicals, extending the membrane's lifespan. The synthesized membrane demonstrated exceptional catalytic performance and stability, achieving fast bisphenol A removal (up to 99% within 25 s of reaction time) and maintaining structural integrity during 120 h of prolonged exposure to reactive PMS environments. This membrane design not only overcomes efficiency and durability but also offers a scalable solution for advanced water treatment applications.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department
of Chemical and Environmental Engineering, School of Engineering and
Applied Science, Yale University, New Haven, Connecticut 06511, United States
- Zhejiang
Provincial Key Laboratory of Organic Pollution Process and Control,
Department of Environmental Science, Zhejiang
University, Hangzhou 310058, China
| | - Kwan Lam Yip
- Department
of Chemical and Environmental Engineering, School of Engineering and
Applied Science, Yale University, New Haven, Connecticut 06511, United States
| | - Yonghyeon Kim
- Department
of Chemical and Environmental Engineering, School of Engineering and
Applied Science, Yale University, New Haven, Connecticut 06511, United States
| | - Claire Chouinard
- Department
of Chemical and Environmental Engineering, School of Engineering and
Applied Science, Yale University, New Haven, Connecticut 06511, United States
| | - James Licato
- Department
of Chemical and Environmental Engineering, School of Engineering and
Applied Science, Yale University, New Haven, Connecticut 06511, United States
| | - Jae-Hong Kim
- Department
of Chemical and Environmental Engineering, School of Engineering and
Applied Science, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
2
|
Popović M, Morović S, Kovačić M, Košutić K. Pharmaceutical Removal with Photocatalytically Active Nanocomposite Membranes. MEMBRANES 2024; 14:239. [PMID: 39590625 PMCID: PMC11596311 DOI: 10.3390/membranes14110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
The advancement of pharmaceutical science has resulted in the development of numerous tailor-made compounds, i.e., pharmaceuticals, tuned for specific drug targets. These compounds are often characterized by their low biodegradability and are commonly excreted to a certain extent unchanged from the human body. Due to their low biodegradability, these compounds represent a significant challenge to wastewater treatment plants. Often, these compounds end up in effluents in the environment. With the advancement of membrane technologies and advanced oxidation processes, photocatalysis in particular, a synergistic approach between the two was recognized and embraced. These hybrid advanced water treatment processes are the focus of this review, specifically the removal of pharmaceuticals from water using a combination of a photocatalyst and pressure membrane process, such as reverse osmosis or nanofiltration employing photocatalytic nanocomposite membranes.
Collapse
Affiliation(s)
- Marin Popović
- Department of Safety and Protection, Karlovac University of Applied Sciences, Trg Josipa Juraja Strossmayera 9, HR-47000 Karlovac, Croatia
| | - Silvia Morović
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia;
| | - Marin Kovačić
- Department of Polymer Engineering and Organic Chemical Technology, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia;
| | - Krešimir Košutić
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Fan J, Wang R, Zheng X, Jiang H, Hu X. Single-Atom Iron Catalysts with Core-Shell Structure for Peroxymonosulfate Oxidation. Molecules 2024; 29:3508. [PMID: 39124914 PMCID: PMC11313843 DOI: 10.3390/molecules29153508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The chemical tolerance of ketoenamine covalent organic frameworks (COFs) is excellent; however, the tight crystal structure and low surface area limit their applications in the field of catalysis. In this work, a porous single-atom iron catalyst (FeSAC) with a core-shell structure and high surface area was synthesized by using Schiff base COF nanospheres as the core and ketoenamine COF nanosheets growth on the surfaces. Surface defects were created using sodium cyanoborohydride etching treatment to increase specific surface area. The dye degradation experiments by peroxymonosulfate (PMS) catalyzed by the FeSAC proved that methylene blue can be degraded with a degradation rate constant of 0.125 min-1 under the conditions of 0.1 g L-1 catalyst dosage and 0.05 g L-1 peroxymonosulfate. The FeSAC/PMS system effectively degrades various pollutants in the pH range of 4-10 with over 80% efficiency for four cycles and can be recovered by soaking in iron salt solution. Free radical quenching experiments confirmed that singlet oxygen and superoxide radicals are the main active species for catalysis.
Collapse
Affiliation(s)
| | | | | | | | - Xiuli Hu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
4
|
Abioye SO, Majooni Y, Moayedi M, Rezvani H, Kapadia M, Yousefi N. Graphene-based nanomaterials for the removal of emerging contaminants of concern from water and their potential adaptation for point-of-use applications. CHEMOSPHERE 2024; 355:141728. [PMID: 38499073 DOI: 10.1016/j.chemosphere.2024.141728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Considering the plethora of work on the exceptional environmental performance of 2D nanomaterials, there is still a missing link in addressing their practical application in point-of-use (POU) water treatment. By reviewing the exceptional environmental performance of 2D nanomaterials with specific emphasis on graphene and its derivatives, this review aims at inspiring further discussions and research in graphene-based POU water treatment with particular focus on the removal of emerging contaminants of concern (ECCs), which is largely missing in the literature. We outlined the prevalence of ECCs in the environment, their health effects both on humans and marine life, and the potential of efficiently removing them from water using three-dimensional graphene-based macrostructures to ensure ease of adsorbent recovery and reuse compared to nanostructures. Given various successful studies showing superior adsorption capacity of graphene nanosheets, we give an account of the recent developments in graphene-based adsorbents. Moreover, several cost-effective materials which can be easily self-assembled with nanosheets to improve their environmental performance and safety for POU water treatment purposes were highlighted. We highlighted the strategy to overcome challenges of adsorbent regeneration and contaminant degradation; and concluded by noting the need for policy makers to act decisively considering the conservative nature of the water treatment industry, and the potential health risks from ingesting ECCs through drinking water. We further justified the need for the development of advanced POU water treatment devices in the face of the growing challenges regarding ECCs in surface water, and the rising cases of drinking water advisories across the world.
Collapse
Affiliation(s)
- Samson Oluwafemi Abioye
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Yalda Majooni
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada; Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Mahsa Moayedi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Hadi Rezvani
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Mihir Kapadia
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Nariman Yousefi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada.
| |
Collapse
|
5
|
Joseph M, Paulson F, C N, S A, Remello SN, Haridas S, Aravind UK. Layer-by-layer assembled graphitic carbon nitride membranes for water treatment. CHEMOSPHERE 2024; 353:141544. [PMID: 38408573 DOI: 10.1016/j.chemosphere.2024.141544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Meeting societal demand for potable water supply remains one of the prioritized challenges faced in the modern era. The anthropogenic intervention has led to a dire situation threatening ecological balance and human health. There is an inevitable need for the development of new technologies and innovations in existing technologies for water treatment. Photocatalytic Membrane technology, encompassing the merits of membrane filtration and photocatalytic degradation has evolved as a potential and reliable technology for sustainable water treatment. Innovations in photocatalytic materials and membrane fabrication techniques can lead to the goal of commercialization of membrane water treatment technology. Herein, we demonstrate the potential of graphitic carbon nitride (g-C3N4) and its functionalized analog as photocatalytic membranes for sustainable water treatment. g-C3N4 and Tetracarboxyphenylporphyrin sensitized g-C3N4 (g-C3N4/TCPP) was introduced onto commercial nylon membrane surface via a layer-by-layer (LBL) assembly method using chitosan and sodium salt of polystyrene sulphonic acid as polyelectrolytes. The fabricated membranes were characterized to ensure the integration of the photocatalysts. The performance of the membranes for water treatment was assessed by selecting some common dyes as model pollutants. The modified membranes exhibited excellent flux recovery and could afford high rejection rates upon irradiation indicating the prospects for sustainable filtration.
Collapse
Affiliation(s)
- Merin Joseph
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Fredin Paulson
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Nasrin C
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Aparna S
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Sebastian Nybin Remello
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India; Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Suja Haridas
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India; Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, Kerala, India.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, India.
| |
Collapse
|
6
|
Yan Z, Zhang L, Sang Y, Li D, Wang J, Wang J, Zhang Y. Polymer carbon nitride nanosheet-based lamellar membranes inspired by "couple hardness with softness" for ultrafast molecular separation in organic solvents. MATERIALS HORIZONS 2024; 11:923-929. [PMID: 38180454 DOI: 10.1039/d3mh01571h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Membranes with ultrafast molecular separation ability in organic solvents can offer unprecedented opportunities for efficient and low-cost solvent recovery in industry. Herein, a graphene-like polymer carbon nitride nanosheet (PCNN) with a low-friction surface was applied as the main membrane building block to boost the ultrafast transport of the solvent. Meanwhile, inspired by the concept of "couple hardness with softness", soft and flexible graphene oxide (GO) was chosen to fix the random stack of the rigid PCNN and tailor the lamellar structure of the PCNN membrane. The optimal PCNN/GO lamellar membrane shows a remarkable methanol permeance of 435.5 L m-2 h-1 bar-1 (four times higher than that of the GO membrane) while maintaining a high rejection for reactive black (RB, 98.9% in ethanol). Molecular dynamics simulations were conducted to elucidate the ultrafast transport mechanism of the PCNN/GO membrane. This study reveals that PCNN is a promising building block for lamellar membranes and may open up new avenues for high-performance molecular separation membranes.
Collapse
Affiliation(s)
- Zhipeng Yan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Liuqian Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Yudong Sang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Dongyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Jing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
7
|
Li N, Xue W, Han Y, Zhu B, Wu J, Xu Z. Defect Engineering in GO Membranes - Tailoring Size and Oxidation Degree of Nanosheet for Enhanced Pore Channels. Chem Asian J 2024:e202301065. [PMID: 38329385 DOI: 10.1002/asia.202301065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Graphene Oxide (GO) membrane has been extensively applied in the field of water purification and membrane separation processes. While the solute molecule transport in GO membranes encompasses interlayer channels, edge defects, and in-plane crack-like holes, the significance of edge defects or crack-like pores in ultrathin membranes is often overlooked. In our study, we focused on the construction of short-range channel GO membranes with varied defect structures by modulating the transverse size of the porous nanosheets. GO nanosheets with different sizes were procured through high-energy γ-irradiation combined with centrifugation. Notably, the large-sized porous GO nanosheets (L-pGO) exhibit a consistent structure, and numerous in-plane defects. In contrast, the smaller counterparts (S-pGO) present a fewer in-plane defects. The performance metrics revealed that L-pGO exhibited a water flux of 849.25 L m-2 h-1 bar-1 , while S-pGO demonstrated nearly 100 % dye rejection capacity. These findings underscore the potential of defect engineering as a powerful strategy to enhance the efficiency of two-dimensional membranes.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Weihao Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Yu Han
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Bo Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Jinman Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| |
Collapse
|
8
|
Liu J, Ran X, Li J, Wang H, Xue G, Wang Y. Novel insights into carbon nanomaterials enhancing anammox for nitrogen removal: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167146. [PMID: 37726079 DOI: 10.1016/j.scitotenv.2023.167146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Carbon nanomaterials (CNMs) possess the properties including large specific surface area, high porosity, and stable chemical structures, presenting significant application advantages in wastewater treatment. Indeed, CNMs are considered to be added to anammox systems to strengthen anammox function, especially to resolve the challenge of anammox technology, i.e., the slow growth rate of anammox bacteria, as well as its high environmental sensitivity. This paper systematically reviews the promotion effects and mechanisms of CNMs on the nitrogen removal performance of anammox system. Among the zero-, one-, and two-dimensional CNMs, two-dimensional CNMs have best promoting effect on the nitrogen removal performance of anammox system due to its excellent conductivity and abundant functional groups. Then, the promotion effects of CNMs on anammox process are summarized from the perspective of anammox activity and bacteria abundance. Furthermore, CNMs not only enhance the anammox process, but also stimulate the coupling of denitrification pathways with anammox, as well as the improvement of system operational stability (alleviating the inhibitions of low temperature and pH fluctuation), thus contributing to the promoted nitrogen removal performance. Essentially, CNMs are capable of facilitating microbial immobilization and electron transfer, which favor to improve the efficiency and stability of anammox process. Finally, this review highlights the gap in knowledge and future work, aiming to provide a deeper understanding of how CNMs can strengthen the anammox system and provide a novel perspective for the engineering of the anammox process.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- Shanghai Institute of Pollution Control and Ecological Security, Donghua University, Shanghai 201620, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Wang Z, Qi J, Zhao Y, Jiang H, Han B, He H, He M, Ma J. Graphitic carbon nitride membranes intercalated with nano-sized Fe-MOF for enhanced water purification via synergistic separation and Fenton-like processes. CHEMOSPHERE 2023; 340:139937. [PMID: 37619754 DOI: 10.1016/j.chemosphere.2023.139937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Versatile two-dimensional nanomaterials have offered a promising prospect to enhance the water purification efficiency and overcome the fouling obstacle in membrane technology. In this work, a graphitic carbon nitride (g-C3N4) nanosheet membrane intercalated with the nano-sized Fe-based metal-organic framework (MIL-100(Fe)) is developed for the enhanced removal of aqueous organic contaminants by synergically promoting separation and Fenton-like processes. The g-C3N4/MIL-100(Fe) membrane is constructed through a self-assembly route in which the nano-MIL-100(Fe) is anchored into g-C3N4 layers by the coordination bonds between Fe nodes and pyridinic N. The MIL-100(Fe) intercalation not only enlarges the interlayer spacing to raise the membrane permeability, but also expedites the electron transfer between Fe2+ and Fe3+ to improve the Fenton-like activity. With a stable water flux of 98.2 L m2·h-1·bar-1 under wide-range pH and pressures, the g-C3N4/MIL-100(Fe) membrane shows high dye removal efficiency (≥99%) and prominent self-cleaning ability. Mechanism insight proposes a combination of size exclusion, electrostatic interaction and steady radical generation. The intercalation of nano-MIL-100(Fe) into g-C3N4 membranes can realize the mutual promotion between separation and Fenton-like processes, the synergistic effect of which provides an effective and feasible strategy for aqueous pollution abatement.
Collapse
Affiliation(s)
- Ziyue Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jingyao Qi
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Haicheng Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, PR China
| | - Bo Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Haiyang He
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Mingrui He
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
10
|
Zhang L, Pan S, Liu Y, Yu L, Huang T, Xia J, Liu X, Gao J, Sui K, Jiang L. Janus carbon nitride membrane for robust and enhanced nanofluidic power generation from wastewater. WATER RESEARCH 2023; 242:120285. [PMID: 37413750 DOI: 10.1016/j.watres.2023.120285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Nanofluidic membranes have shown great promise in harvesting osmotic power. Yet, previous studies extensively focused on osmotic energy released by the mixing of seawater and river water, while there exist many other osmotic energy sources, such as the mixing of wastewater with other water. However, harvesting the osmotic power of wastewater is highly challenging because it requires the membranes to have environmental remediation capabilities to avoid pollution and biofouling, which has not been satisfied by previous nanofluidic materials. In this work, we demonstrate that a Janus carbon nitride membrane can be used for simultaneous power generation and water purification. The Janus structure of the membrane generates asymmetric band structure and therefore a built-in electric field, facilitating electron-hole separation. As a result, the membrane shows strong photocatalytic capability, which efficiently degrades organic pollutants and kills microorganisms. In particular, the built-in electric field also facilitates ionic transport, significantly promoting the osmotic power density up to 30 W/m2 under simulated sunlight illumination. The power generation performance can be robustly kept with or without the presence of pollutants. This study will shed light on the development of multi-functional power generation materials for the comprehensive utilization of industrial wastewater as well as domestic sewage.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Shangfa Pan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Yang Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Lei Yu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Tao Huang
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Jiaxiang Xia
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Xueli Liu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China.
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China.
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
11
|
Vatanpour V, Paziresh S, Behroozi AH, Karimi H, Esmaeili MS, Parvaz S, Imanian Ghazanlou S, Maleki A. Fe 3O 4@Gum Arabic modified polyvinyl chloride membranes to improve antifouling performance and separation efficiency of organic pollutants. CHEMOSPHERE 2023; 328:138586. [PMID: 37028725 DOI: 10.1016/j.chemosphere.2023.138586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nanofiltration (NF) membranes are promising media for water and wastewater treatment; however, they suffer from their hydrophobic nature and low permeability. For this reason, the polyvinyl chloride (PVC) NF membrane was modified by iron (III) oxide@Gum Arabic (Fe3O4@GA) nanocomposite. First, Fe3O4@GA nanocomposite was synthesized by the co-precipitation approach and then its morphology, elemental composition, thermal stability, and functional groups were characterized by various analyses. Next, the prepared nanocomposite was added to the casting solution of the PVC membrane. The bare and modified membranes were fabricated by a nonsolvent-induced phase separation (NIPS) method. The characteristics of fabricated membranes were assessed by mechanical strength, water contact angle, pore size, and porosity measurements. The optimum Fe3O4@GA/PVC membrane had a 52 L m-2. h-1. bar-1 water flux with a high flux recovery ratio (FRR) value (82%). Also, the filtration experiment exhibited that the Fe3O4@GA/PVC membrane could remarkably remove organic contaminants, achieving high rejection rates of 98% Reactive Red-195, 95% Reactive Blue-19, and 96% Rifampicin antibiotic by 0.25 wt% of Fe3O4@GA/PVC membrane. According to the results, adding Fe3O4@GA green nanocomposite to the membrane casting solution is a suitable and efficient procedure for modifying NF membranes.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University 34469 Istanbul, Turkiye; Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkiye.
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Amir Hossein Behroozi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hamid Karimi
- Central Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran; Nano Material Laboratory, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mir Saeed Esmaeili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran; Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Sina Parvaz
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Siamak Imanian Ghazanlou
- Nano Material Laboratory, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
12
|
Yang C, Zhang Z, Wang P, Xu P, Shen T, Wang M, Zheng Q, Zhang G. Ultrathin g-C 3N 4 composite Bi 2WO 6 embedded in PVDF UF membrane with enhanced permeability, anti-fouling performance and durability for efficient removal of atrazine. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131154. [PMID: 36889068 DOI: 10.1016/j.jhazmat.2023.131154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A novel Bi2WO6-g-C3N4/polyvinylidene fluoride (PVDF) composite ultrafiltration (UF) membrane (BWO-CN/PVDF) was prepared by microwave hydrothermal and immersion precipitation phase transformation method. The BWO-CN/PVDF-0.10 exhibited an outstanding photocatalytic removal rate of atrazine (ATZ) (97.65 %) under the simulated sunlight and enhanced permeate flux (1356.09 L·m-2·h-1). The multiple optical and electrochemical detection confirmed that combining ultrathin g-C3N4 and Bi2WO6 can increase carrier separation rate and prolong its lifetime. The quenching test revealed that h+ and 1O2 were the prominent reactive species. Additionally, after a 10-cycle photocatalytic process, the BWO-CN/PVDF membrane presented remarkable reusability and durability. And it showed excellent anti-fouling performance by filtering BSA, HA, SA, and Songhua River under simulated solar irradiation. The molecular dynamic (MD) simulation showed that the combination of g-C3N4 and Bi2WO6 can enhance the interaction between BWO-CN and PVDF. This work opens up a new idea for designing and constructing a highly efficient photocatalytic membrane for water treatment.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhihao Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyao Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengqi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingzhu Zheng
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangshan Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
13
|
Wang Y, Wang C, Cheng C, Wu H, Liu H. Chromium removal at neutral pHs via electrochemical Cr(VI) reduction and subsequent Cr(III) adsorption with MoS 2 nanoflowers-modified graphite felt. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131582. [PMID: 37163895 DOI: 10.1016/j.jhazmat.2023.131582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
The operation performance and stability of electrochemical Cr(VI) reduction are strongly restricted at neutral pHs (e.g., drinking water and groundwater) by the high Cr(VI) oxidation potentials and cathode passivation of Cr(OH)3 precipitates. Herein, we fabricated MoS2 nanoflowers-modified graphite felt (GF-MoS2) to construct the electrochemical apparatus (EA) and adsorption column (AC), attempting to stable and effective Cr(VI) removal at neutral pHs via electrochemical Cr(VI) reduction and subsequent Cr(III) adsorption. In EA with a sequential oxidation-reduction process, Cr(VI)-contaminated influent (5 mg/L) at neutral pHs (6.0-8.0) was oxidized first by anode to generate large amounts of H+ ions via H2O oxidation, decreasing the pH of anode-oxidized influent to ∼2.5 at 2.6 V and 1000 L/m2/h. Subsequently, the acidic anode-oxidized influent was further reduced by GF-MoS2 cathode, promoting significantly Cr(VI) reduction via decreasing Cr(VI) oxidation potentials and alleviating Cr(III) precipitation on cathode. These results enabled the stable and effective operation of GF-MoS2-based EA with almost Cr(VI) reduction to Cr(III). With further assembling GF-MoS2-based AC, Cr(III) species in EA effluent were easily adsorbed or intercepted by GF-MoS2, achieving undetectable Cr species in AC effluent. Combination techniques of GF-MoS2-based electrochemical reduction and adsorption can be an effective approach for remediating Cr(VI)-contaminated water at neutral pHs.
Collapse
Affiliation(s)
- Yang Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China
| | - Chenyang Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China
| | - Cheng Cheng
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Hai Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
14
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, Li D, Liang P, Zeng RJ, Zhang Y. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4379-4395. [PMID: 36877891 DOI: 10.1021/acs.est.2c07588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electricity-driven microbial metabolism relies on the extracellular electron transfer (EET) process between microbes and electrodes and provides promise for resource recovery from wastewater and industrial discharges. Over the past decades, tremendous efforts have been dedicated to designing electrocatalysts and microbes, as well as hybrid systems to push this approach toward industrial adoption. This paper summarizes these advances in order to facilitate a better understanding of electricity-driven microbial metabolism as a sustainable waste-to-resource solution. Quantitative comparisons of microbial electrosynthesis and abiotic electrosynthesis are made, and the strategy of electrocatalyst-assisted microbial electrosynthesis is critically discussed. Nitrogen recovery processes including microbial electrochemical N2 fixation, electrocatalytic N2 reduction, dissimilatory nitrate reduction to ammonium (DNRA), and abiotic electrochemical nitrate reduction to ammonia (Abio-NRA) are systematically reviewed. Furthermore, the synchronous metabolism of carbon and nitrogen using hybrid inorganic-biological systems is discussed, including advanced physicochemical, microbial, and electrochemical characterizations involved in this field. Finally, perspectives for future trends are presented. The paper provides valuable insights on the potential contribution of electricity-driven microbial valorization of waste carbon and nitrogen toward a green and sustainable society.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
15
|
Shi S, Jia M, Li M, Zhou S, Zhao Y, Zhong J, Dai D, Qiu J. ZnO@g-C3N4 S-scheme photocatalytic membrane with visible-light response and enhanced water treatment performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
16
|
Tang C, Cheng M, Lai C, Li L, Yang X, Du L, Zhang G, Wang G, Yang L. Recent progress in the applications of non-metal modified graphitic carbon nitride in photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Lamellar carbon nitride membrane for enhanced ion sieving and water desalination. Nat Commun 2022; 13:7339. [PMID: 36443321 PMCID: PMC9705542 DOI: 10.1038/s41467-022-35120-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Membrane-based water treatment processes offer possibility to alleviate the water scarcity dilemma in energy-efficient and sustainable ways, this has been exemplified in filtration membranes assembled from two-dimensional (2D) materials for water desalination purposes. Most representatives however tend to swell or disintegrate in a hydrated state, making precise ionic or molecular sieving a tough challenge. Here we report that the chemically robust 2D carbon nitride can be activated using aluminum polycations as pillars to modulate the interlayer spacing of the conjugated framework, the noncovalent interaction concomitantly affords a well-interlinked lamellar structure, to be carefully distinguished from random stacking patterns in conventional carbon nitride membranes. The conformally packed membrane is characterized by adaptive subnanochannel and structure integrity to allow excellent swelling resistance, and breaks permeability-selectivity trade-off limit in forward osmosis due to progressively regulated transport passage, achieving high salt rejection (>99.5%) and water flux (6 L m-2 h-1), along with tunable permeation behavior that enables water gating in acidic and alkaline environments. These findings position carbon nitride a rising building block to functionally expand the 2D membrane library for applications in water desalination and purification scenarios.
Collapse
|
18
|
Zhou Y, Wu Y, Wu H, Xue J, Ding L, Wang R, Wang H. Fast hydrogen purification through graphitic carbon nitride nanosheet membranes. Nat Commun 2022; 13:5852. [PMID: 36195763 PMCID: PMC9532387 DOI: 10.1038/s41467-022-33654-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Two-dimensional graphitic carbon nitride (g-C3N4) nanosheets are ideal candidates for membranes because of their intrinsic in-plane nanopores. However, non-selective defects formed by traditional top-down preparation and the unfavorable re-stacking hinder the application of these nanosheets in gas separation. Herein, we report lamellar g-C3N4 nanosheets as gas separation membranes with a disordered layer-stacking structure based on high quality g-C3N4 nanosheets through bottom-up synthesis. Thanks to fast and highly selective transport through the high-density sieving channels and the interlayer paths, the membranes, superior to state-of-the-art ones, exhibit high H2 permeance of 1.3 × 10−6 mol m−2 s−1 Pa−1 with excellent selectivity for multiple gas mixtures. Notably, these membranes show excellent stability under harsh practice-relevant environments, such as temperature swings, wet atmosphere and long-term operation of more than 200 days. Therefore, such lamellar membranes with high quality g-C3N4 nanosheets hold great promise for gas separation applications. In this work, lamellar graphitic carbon nitride nanosheet membranes are constructed for gas separation. Benefiting from their high-density intrinsic in-plane nanopores and broader permeable interlayer channels, the proposed membranes exhibit high H2 permeance with good selectivity of multiple gas mixtures.
Collapse
Affiliation(s)
- Yisa Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Ying Wu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Haoyu Wu
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Xue
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China.
| | - Li Ding
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Rui Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Haihui Wang
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Lazarenko NS, Golovakhin VV, Shestakov AA, Lapekin NI, Bannov AG. Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials. MEMBRANES 2022; 12:915. [PMID: 36295674 PMCID: PMC9606928 DOI: 10.3390/membranes12100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Every year the problem of water purification becomes more relevant. This is due to the continuous increase in the level of pollution of natural water sources, an increase in the population, and sharp climatic changes. The growth in demand for affordable and clean water is not always comparable to the supply that exists in the water treatment market. In addition, the amount of water pollution increases with the increase in production capacity, the purification of which cannot be fully handled by conventional processes. However, the application of novel nanomaterials will enhance the characteristics of water treatment processes which are one of the most important technological problems. In this review, we considered the application of carbon nanomaterials in membrane water purification. Carbon nanofibers, carbon nanotubes, graphite, graphene oxide, and activated carbon were analyzed as promising materials for membranes. The problems associated with the application of carbon nanomaterials in membrane processes and ways to solve them were discussed. Their efficiency, properties, and characteristics as a modifier for membranes were analyzed. The potential directions, opportunities and challenges for application of various carbon nanomaterials were suggested.
Collapse
|
20
|
Zhao X, Wang X, Dong Y, Zhang H, Zhao W, Wang J, Wang L. New graphitic carbon nitride-based composite membranes: Fast water transport through the synergistic effect of tannic acid and tris(hydroxymethyl) aminomethane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Gui L, Cui Y, Zhu Y, An X, Lan H, Jin J. g-C3N4 nanofibers network reinforced polyamide nanofiltration membrane for fast desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Zhang H, Zheng Y, Yu S, Chen W, Yang J. A Review of Advancing Two-Dimensional Material Membranes for Ultrafast and Highly Selective Liquid Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2103. [PMID: 35745442 PMCID: PMC9229763 DOI: 10.3390/nano12122103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/26/2022]
Abstract
Membrane-based nanotechnology possesses high separation efficiency, low economic and energy consumption, continuous operation modes and environmental benefits, and has been utilized in various separation fields. Two-dimensional nanomaterials (2DNMs) with unique atomic thickness have rapidly emerged as ideal building blocks to develop high-performance separation membranes. By rationally tailoring and precisely controlling the nanochannels and/or nanoporous apertures of 2DNMs, 2DNM-based membranes are capable of exhibiting unprecedentedly high permeation and selectivity properties. In this review, the latest breakthroughs in using 2DNM-based membranes as nanosheets and laminar membranes are summarized, including their fabrication, structure design, transport behavior, separation mechanisms, and applications in liquid separations. Examples of advanced 2D material (graphene family, 2D TMDs, MXenes, metal-organic frameworks, and covalent organic framework nanosheets) membrane designs with remarkably perm-selective properties are highlighted. Additionally, the development of strategies used to functionalize membranes with 2DNMs are discussed. Finally, current technical challenges and emerging research directions of advancing 2DNM membranes for liquid separation are shared.
Collapse
Affiliation(s)
- Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China; (Y.Z.); (W.C.)
| | - Yiling Zheng
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China; (Y.Z.); (W.C.)
| | - Shuwen Yu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China;
| | - Weixing Chen
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China; (Y.Z.); (W.C.)
| | - Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| |
Collapse
|
23
|
Ren L, Ma J, Chen M, Qiao Y, Dai R, Li X, Wang Z. Recent advances in electrocatalytic membrane for the removal of micropollutants from water and wastewater. iScience 2022; 25:104342. [PMID: 35602955 PMCID: PMC9117875 DOI: 10.1016/j.isci.2022.104342] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The increasing occurrence of micropollutants in water and wastewater threatens human health and ecological security. Electrocatalytic membrane (EM), a new hybrid water treatment platform that integrates membrane separation with electrochemical technologies, has attracted extensive attention in the removal of micropollutants from water and wastewater in the past decade. Here, we systematically review the recent advances of EM for micropollutant removal from water and wastewater. The mechanisms of the EM for micropollutant removal are first introduced. Afterwards, the related membrane materials and operating conditions of the EM are summarized and analyzed. Lastly, the challenges and future prospects of the EM in research and applications are also discussed, aiming at a more efficient removal of micropollutants from water and wastewater.
Collapse
Affiliation(s)
- Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mei Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yiwen Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Corresponding author
| |
Collapse
|
24
|
Wang B, Wang Z, Bai C, Yang H, Sun H, Lu G, Liang S, Liu Z. Synergistic Generation of Radicals by Formic Acid/H 2O 2/g-C 3N 4 Nanosheets for Ultra-efficient Oxidative Photodegradation of Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2872-2884. [PMID: 35195422 DOI: 10.1021/acs.langmuir.1c03201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water pollution is a global challenge endangering people's health. In this work, an ultra-efficient photodegradation system of Rhodamine B (RhB) has been established using a graphitic carbon nitride nanosheet (CNNS) as the semiconductor photocatalyst, from which energy is harvested on both the conduction band and valence band by formic acid and hydrogen peroxide, respectively. The optimized FA/H2O2/CNNS system increases the apparent photodegradation rate of RhB by 25 folds, from 0.0198 to 0.4975 min-1. Through a comprehensive investigation with reactive oxygen species scavengers, electron paramagnetic resonance, high-performance liquid chromatography-mass spectrometry, etc., an oxidative mechanism for RhB photodegradation has been proposed, which combines enhanced charge carrier migration and synergistic generation of multiple radicals. Comparable performance improvements have also been observed for similar systems with different semiconductors, suggesting that such a catalytic system could afford a general approach to enhance semiconductor-catalyzed photodegradation.
Collapse
Affiliation(s)
- Bingdi Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Zhida Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Chengkun Bai
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Haoqi Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
- Roll Forging Research Institute, College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Guolong Lu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
25
|
Flocculation performance enhancement of organic polymer flocculants via adjusting cationic block length: molecular structure and characteristics. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
|