1
|
Pan S, Zhang W, Yan F, Ding Y, Hellweger FL, Shang J, Yan Y, Yu F, Li Y. Keystone microbial taxa identified by deep learning reveal mechanisms of phosphorus stoichiometric homeostasis in submerged macrophytes under different hydrodynamic states. WATER RESEARCH 2025; 282:123721. [PMID: 40311292 DOI: 10.1016/j.watres.2025.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/26/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Phosphorus (P) pollution in aquatic ecosystems triggers eutrophication, disrupting ecological processes. Although phytoremediation using submerged macrophytes is promising, its efficacy depends on plant-microbe interactions and stoichiometric homeostasis. A significant knowledge gap exists regarding the assembly and impact of key microbial communities on stoichiometric homeostasis under fluctuating environmental conditions, hindering the optimization of phytoremediation strategies. Given that hydrodynamic fluctuations are a primary source of environmental variability in aquatic systems, this study explored the intricate relationships among stoichiometric homeostasis, microbial community structure, and ecosystem stability, with a specific focus on their impact on rhizosphere P metabolism in Vallisneria natans and Myriophyllum spicatum under different hydrodynamic states. A Deep Learning-based Keystoneness Taxa Identification (DLKTI) framework was developed to identify key microbial taxa. Microbial community stability analysis preceded key taxa determination to enhance result reliability and ecological relevance based on the premise that distinct states provide a more dependable baseline for attributing observed changes to specific perturbations rather than to inherent fluctuations. These findings indicate that the key taxa identified by the DLKTI framework adequately characterized the overall ecological features of the microbial community (average ρ = 0.39, p<0.05). Moreover, including microbial pools and diversity indices of the screened key microbial taxa improved the explanatory power for submerged macrophyte traits (5% and 6%, respectively) and rhizosphere oxidative stress responses (25% and 4%, respectively). Partial least squares path modeling demonstrated the crucial role of stoichiometric homeostasis for P in ecosystem functioning (path coefficient of inhibition of phytoplankton growth = 0.58, p<0.001). The findings elucidating plant-microbe interaction patterns under different hydrodynamic states allow for the development of targeted interventions to enhance rhizosphere P metabolism, thereby increasing the efficiency of phytoremediation for eutrophication management and aquatic ecosystem restoration.
Collapse
Affiliation(s)
- Shenyang Pan
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Wenlong Zhang
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China.
| | - Feng Yan
- Faculty of Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Yanan Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ferdi L Hellweger
- Water Quality Engineering, Technical University of Berlin, Berlin 10623, Germany
| | - Jiahui Shang
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuting Yan
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Yu
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Li
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
2
|
Zhao C, Liu Y, Yan Z, Zhao W, Sun J. Combining effects of submerged macrophytes and lanthanum-modified bentonite on sediment enzyme activity: Evidence from mesocosm study. CHEMOSPHERE 2024; 364:143002. [PMID: 39097111 DOI: 10.1016/j.chemosphere.2024.143002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Lanthanum-modified bentonite (LMB) combined with submerged macrophytes (SM) has been a conventional means of eutrophication management in lakes in recent years, and is one of the most important methods for P removal. However, trends in nutrients and sediment enzymes at the water-sediment interface during this process have not been systematically assessed, and there are still some gaps in how abiotic properties drive changes in enzyme activity. Here, we show changes in aquatic environmental conditions under the action of different ratios of modified bentonite (0, 10%, 20%, and 30%) in combination with SM (Vallisneria natans, Potamogeton lucens, and Hydrilla verticillate) and quantify their effects on sediment enzyme activities. The results showed that the nutrient cycling at the water-sediment interface was facilitated by the combined effect of SM and LMB, which effectively reduced the overlying water nutrient concentration, increased the sediment enzyme activity and enhanced the N cycling process. Partial least squares structural equation model (PLS-SEM) showed that sediment parameters strongly influenced changes in enzyme activity, with NO3-N as the main controlling factors. Our study fills in the process of changing environmental conditions in lake water under geoengineered materials combined with macrophyte measures, especially the changes in biological properties enzyme activities, which contributes to a clearer understanding of nutrient fluxes during the management of eutrophication in lakes.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yuling Liu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China.
| | - Zixuan Yan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Wangben Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jiayu Sun
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
3
|
Shang J, Li Y, Zhang W, Ma X, Niu L, Wang L, Zheng J. Hysteretic and asynchronous regime shifts of bacterial and micro-eukaryotic communities driven by nutrient loading. WATER RESEARCH 2024; 261:122045. [PMID: 38972236 DOI: 10.1016/j.watres.2024.122045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/14/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Nutrient pollution is pervasive in many urban rivers, while restoration measures that reduce nutrient loading but fail to improve biological communities often lack effectiveness due to the indispensable role of biota, especially multi-taxa, in enhancing ecosystem stability and function. The investigation of the response patterns of multi-taxa to the nutrient loading in urban rivers is important for the recovery of biota structure and thus ecosystem function. However, little is known about the response patterns of multi-taxa and their impact on ecosystem structure and function in urban rivers. Here, the study, from the perspective of alternative stable states theory, showed the hysteretic response of both bacterial and micro-eukaryotic communities to nutrient loading based on the field investigation and environmental DNA metabarcoding. Bistability was shown to exist in both bacterial and micro-eukaryotic communities, demonstrating that the response of microbiota to nutrient loading was a regime shifts with hysteresis. Potential analysis then indicated that the increased nutrient loading drove regime shifts in the bacterial community and the micro-eukaryotic community towards a state dominated by anaerobic bacteria and benthic Bacillariophyta, respectively. High nutrient loading was found to reduce the relative abundance of metazoan, but increase that of eukaryotic algae, which made the trophic pyramid top-lighter and bottom-heavier, probably exacerbating the degradation of ecosystem function. It should be noted that, in response to the reduced nutrient loading, the recovery threshold of micro-eukaryotic communities (nutrient loading = ∼0.5) was lower than that of bacterial communities (nutrient loading = ∼1.2), demonstrating longer hysteresis of micro-eukaryotic communities. In addition, the markedly positive correlation between the status of microbial communities and N-related enzyme activities suggested the recovery of microbial communities probably will benefit the improvement of N-cycling functionality. The obtained results provide a deep insight into the collapse and recovery trajectories of multi-trophic microbiota to the nutrient loading gradient and their impact on the N transformation potential, therefore benefiting the restoration and management of urban rivers.
Collapse
Affiliation(s)
- Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jinhai Zheng
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
4
|
Yuan G, Levi EE, Davidson TA, Lauridsen TL, Søndergaard M, Yang Z, Wu A, Cao T, Li Y, Fu H, Jeppesen E. Warming alters the network of physiological traits and their contribution to plant abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173573. [PMID: 38823703 DOI: 10.1016/j.scitotenv.2024.173573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
The impact of global warming on plant abundance has been widely discussed, but it remains unclear how warming affects plant physiological traits, and how these traits contribute to the abundance of aquatic plants. We explored the adjustments in physiological traits of two common aquatic plant species (Potamogeton crispus L. and Elodea canadensis Michx.) and their links to plant abundance in three temperature treatments by determining twelve physiological traits and plant abundance over an 11-month period in outdoor mesocosms. This mesocosms facility has been running uninteruptedly for 16 years, rendering the plants a unique opportunity to adapt to the warming differences. We found that 1) warming reduced the starch storage in winter for P. crispus and in summer for E. canadensis while increased the nitrogenous substances (e.g., TN, FAA, and proline) in winter for P. crispus. 2) For E. canadensis, TC, starch, SC, and sucrose contents were higher in summer than in winter regardless of warming, while TC, SC, and sucrose contents were lower in summer for P. crispus. 3) Warming decreased the association strength between physiological traits and plant abundance for P. crispus but enhanced it for E. canadensis. 4) E. canadensis showed increased interaction strength among physiological traits under warming, indicating increased metabolic exertion in the response to warming, which contributed to the reduction in abundance. Trait interaction strength of P. crispus was reduced under warming, but with less impact on plant abundance compared with E. canadensis. Our study emphasizes that warming alters the network of plant physiological traits and their contribution to abundance and that different strengths of susceptibility to warming of the various plant species may alter the composition of plant communities in freshwater ecosystems.
Collapse
Affiliation(s)
- Guixiang Yuan
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China; Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark.
| | - Eti E Levi
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark
| | - Thomas A Davidson
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark
| | - Torben L Lauridsen
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China
| | - Martin Søndergaard
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China
| | - Zhenzhi Yang
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Aiping Wu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Te Cao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| | - Hui Fu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China; Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark.
| | - Erik Jeppesen
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 60800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin 33731, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Xu J, He C, Bai W, Cao F, Dai J. Efficient and sustained inhibition of ammonia nitrogen release from sediment in water by microbial self-aggregation zeolite layer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51197-51210. [PMID: 39106013 DOI: 10.1007/s11356-024-34563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Despite global efforts to manage water eutrophication, the continual release of ammonia nitrogen from sediments maintains the eutrophic state of water bodies, presenting serious challenges to the management. In order to find an efficient method for sediment remediation, the experiment of using signal molecules to enhance the adhesion of microorganisms on zeolite was carried out. Five different zeolitic ammonium adsorptions were examined using two different signal molecules, N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) and N-(β-ketocaproyl)-DL-homoserine lactone (C6), to enhance microbial attachment on two types of zeolites. The results showed that the modified microbial attached Z1 zeolite reinforced with signal molecule C6 had the best effect. The effect was better in the case of high ammonium adsorption, and the TN removal could reach 7.99 mg·L-1 with an inhibition rate of 90.08%. The ammonia nitrogen removal reached 4.75 mg·L-1 with an inhibition rate of 87.64%, and the ammonia nitrogen and total nitrogen of the overlying water reached the surface III water quality standard. In addition, the addition of the signal molecule increased the zeta potential on the surface of the bacterial colloid. In addition, the amount of protein I in the dissolved organic matter (DOM) fraction increased, improving microbial adhesion ability and facilitating their attachment to the zeolite surface. The signal molecule C6 could increase the zeta potential of microbial surface and promote the production of protein I, thus strengthening the attachment of zeolite biofilm and improving the water quality.
Collapse
Affiliation(s)
- Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Beijing, China.
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China.
| | - Chen He
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Beijing, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Wenguang Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Beijing, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Fen Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Beijing, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Jianan Dai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Beijing, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| |
Collapse
|
6
|
Peng Q, Yang Y, Ou W, Wei L, Li Z, Deng X, Gao Q. The characteristics and environmental significance of BVOCs released by aquatic macrophytes. CHEMOSPHERE 2024; 361:142574. [PMID: 38852633 DOI: 10.1016/j.chemosphere.2024.142574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Biogenic volatile organic compounds (BVOCs) emitted by plants serve crucial biological functions and potentially impact atmospheric environment and global carbon cycling. Despite their significance, BVOC emissions from aquatic macrophytes have been relatively understudied. In this study, for the first time we identified there were 68 major BVOCs released from 34 common aquatic macrophytes, and these compounds referred to alcohols, aldehydes, alkanes, alkenes, arenes, ethers, furans, ketones, phenol. For type of BVOC emissions from different life form and phylogenetic group of aquatic macrophytes, 34 of the 68 BVOCs from emergent and submerged macrophytes are classified into alkene and alcohol compounds, over 50% BVOCs from dicotyledon and monocotyledon belong to alcohol and arene compounds. Charophyte and pteridophyte emitted significantly fewer BVOCs than dicotyledon and monocotyledon, and each of them only released 12 BVOCs. These BVOCs may be of great importance for the growth and development of macrophytes, because many BVOCs, such as azulene, (E)-β-farnesene, and dimethyl sulfide are proved to play vital roles in plant growth, defense, and information transmission. Our results confirmed that both life form and phylogenetic group of aquatic macrophytes had significantly affected the BVOC emissions form macrophytes, and suggested that the intricate interplay of internal and external factors that shape BVOC emissions from aquatic macrophytes. Thus, further studies are urgently needed to investigate the influence factors and ecological function of BVOCs released by macrophytes within aquatic ecosystem.
Collapse
Affiliation(s)
- Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Yujing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Wenhui Ou
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Lifei Wei
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China.
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| |
Collapse
|
7
|
Yu H, Le X, Peñuelas J, Sardans J, Xu C, Zou Y, Zhang X, Li C, Mao Z, Cheng D, Zhong Q. Trait divergence and opposite above- and below-ground strategies facilitate moso bamboo invasion into subtropical evergreen broadleaf forest. FRONTIERS IN PLANT SCIENCE 2024; 15:1410372. [PMID: 39100082 PMCID: PMC11294163 DOI: 10.3389/fpls.2024.1410372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
Understanding the invasion of moso bamboo (Phyllostachys edulis) into adjacent evergreen broadleaf forest based on functional traits is crucial due to its significant influence on ecosystem processes. However, existing research has primarily focused on above- or below-ground traits in isolation, lacking a comprehensive integration of both. In this study, we conducted a trait-based analysis including 23 leaf traits and 11 root traits in three forest types - bamboo forest, mixed bamboo and broadleaf forest, and evergreen broadleaf forest - to investigate trait differences, phenotypic integration, and above- and below-ground resource strategies in bamboo and broadleaf species. Our findings demonstrated significant differences in leaf and root key traits between bamboo and broadleaf species, strongly supporting the "phenotypic divergence hypothesis". Bamboo exhibited stronger trait correlations compared to broadleaf species, indicating higher phenotypic integration. Above- and below-ground strategies were characterized by trade-offs rather than coordination, resulting in a multi-dimensional trait syndrome. Specifically, a unidimensional leaf economics spectrum revealed that bamboo with higher leaf N concentrations (LNC), P concentrations (LPC), and specific leaf area (SLA) adopted a "fast acquisitive" above-ground strategy, while broadleaf species with thicker leaves employed a "slow conservative" above-ground strategy. A two-dimensional root trait syndrome indicated a "conservation" gradient with bamboo adopting a "slow conservative" below-ground strategy associated with higher root tissue density (RTD), and broadleaf species exhibiting a "fast acquisitive" below-ground strategy linked to higher root N concentrations (RNC) and P concentrations (RPC), and a "collaboration" gradient probably ranging from broadleaf species with a "do-it-yourself" strategy characterized by high specific root length (SRL), to bamboo adopting an "outsourcing" strategy with thicker roots. In conclusion, key trait divergence from coexisting broadleaf species, higher phenotypic integration, and multi-dimensional opposite above- and below-ground resource strategies confer competitive advantages to moso bamboo, shedding light on the mechanistic understanding of its invasion into subtropical evergreen broadleaf forest and providing theoretical guidance for maintaining the stability of subtropical forest ecosystem.
Collapse
Affiliation(s)
- Hua Yu
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Xingui Le
- Department of Protection and Management, Administrative Bureau of Yangjifeng National Nature Reserve, Guixi, Jiangxi, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain
- Ecological and Forestry Applications Research Center (CREAF), Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain
- Ecological and Forestry Applications Research Center (CREAF), Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Chaobin Xu
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian, China
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian, China
| | - Yuxing Zou
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- College of Tourism and Resources Environment, Zaozhuang University, Zaozhuang, Shandong, China
| | - Xue Zhang
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian, China
| | - Conghui Li
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhenwei Mao
- Department of Protection and Management, Administrative Bureau of Yangjifeng National Nature Reserve, Guixi, Jiangxi, China
| | - Dongliang Cheng
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian, China
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian, China
| | - Quanlin Zhong
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian, China
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Jin L, Wu Q, Xie S, Chen W, Duan C, Sun C, Pan Y, Lauridsen TL. Phosphorus stoichiometric homeostasis of submerged macrophytes and associations with interspecific interactions and community stability in Erhai Lake, China. WATER RESEARCH 2024; 256:121575. [PMID: 38636121 DOI: 10.1016/j.watres.2024.121575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
According to stoichiometric homeostasis theory, eutrophication is expected to increase the dominance of submerged macrophytes with low homeostatic regulation coefficients (H) relative to those with high H values, ultimately reducing macrophyte community stability. However, empirical evidence supporting this hypothesis is limited. In this study, we conducted a three-year tracking survey (seven sampling events) at 81 locations across three regions of Erhai Lake. We assessed the H values of submerged macrophyte species, revealing significant H values for phosphorus (P) and strong associations of HP values (range: 1.58-2.94) with species and community stability. Moreover, in plots simultaneously containing the dominant high-HP species, Potamogeton maackianus, and its low-HP counterpart, Ceratophyllum demersum, we explored the relationships among eutrophication, interspecific interaction shifts, and community dynamics. As the environmental P concentration increased, the dominance of P. maackianus decreased, while that of C. demersum increased. This shift coincided with reductions in community HP and stability. Our study underpins the effectiveness of H values for forecasting interspecific interactions among submerged macrophytes, thereby clarifying how eutrophication contributes to the decline in stability of the submerged macrophyte community.
Collapse
Affiliation(s)
- Ling Jin
- School of Ecology and Environmental Sciences, Yunnan University & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan, 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming, Yunnan, 650091, China
| | - Qihang Wu
- School of Ecology and Environmental Sciences, Yunnan University & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan, 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming, Yunnan, 650091, China
| | - Shijie Xie
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, China
| | - Wenwen Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Changqun Duan
- School of Ecology and Environmental Sciences, Yunnan University & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan, 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming, Yunnan, 650091, China
| | - Changqing Sun
- Guizhou Agricultural Science and Technology Information Institute, Guiyang, 550006, China
| | - Ying Pan
- School of Ecology and Environmental Sciences, Yunnan University & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan, 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming, Yunnan, 650091, China.
| | - Torben L Lauridsen
- Department of Ecoscience and WATEC, Aarhus University, C.F. Møllers Allé 4-6, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Xian L, Yang J, Muthui SW, Ochieng WA, Linda EL, Yu J. Which Has a Greater Impact on Plant Functional Traits: Plant Source or Environment? PLANTS (BASEL, SWITZERLAND) 2024; 13:903. [PMID: 38592931 PMCID: PMC10975183 DOI: 10.3390/plants13060903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
The deterioration of water quality caused by human activities has triggered significant impacts on aquatic ecosystems. Submerged macrophytes play an important role in freshwater ecosystem restoration. Understanding the relative contributions of the sources and environment to the adaptive strategies of submerged macrophytes is crucial for freshwater restoration and protection. In this study, the perennial submerged macrophyte Myriophyllum spicatum was chosen as the experimental material due to its high adaptability to a variable environment. Through conducting reciprocal transplant experiments in two different artificial environments (oligotrophic and eutrophic), combined with trait network and redundancy analysis, the characteristics of the plant functional traits were examined. Furthermore, the adaptive strategies of M. spicatum to the environment were analyzed. The results revealed that the plant source mainly influenced the operational pattern among the traits, and the phenotypic traits were significantly affected by environmental factors. The plants cultured in high-nutrient water exhibited a higher plant height, longer leaves, and more branches and leaves. However, their physiological functions were not significantly affected by the environment. Therefore, the adaptation strategy of M. spicatum to the environment mainly relies on its phenotypic plasticity to ensure the moderate acquisition of resources in the environment, thereby ensuring the stable and efficient operation of plant physiological traits. The results not only offered compelling evidence on the adaptation strategies of M. spicatum in variable environments but also provided theoretical support for the conservation of biodiversity and sustainable development.
Collapse
Affiliation(s)
- Ling Xian
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.X.); (S.W.M.); (W.A.O.)
| | - Jiao Yang
- School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Samuel Wamburu Muthui
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.X.); (S.W.M.); (W.A.O.)
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Wyckliffe Ayoma Ochieng
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.X.); (S.W.M.); (W.A.O.)
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Elive Limunga Linda
- School of Resources and Environmental Science, Hubei University, Wuhan 430062, China;
| | - Junshuang Yu
- Changjiang Water Resources and Hydropower Development Group Co., Ltd., Wuhan 430010, China
| |
Collapse
|
10
|
Tao M, Zhang C, Zhang Z, Zuo Z, Zhao H, Lv T, Li Y, Yu H, Liu C, Yu D. Species-specific functional trait responses of canopy-forming and rosette-forming macrophytes to nitrogen loading: Implications for water-sediment interactions. ENVIRONMENT INTERNATIONAL 2024; 185:108557. [PMID: 38458117 DOI: 10.1016/j.envint.2024.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Globally intensified lake eutrophication, attributed to excessive anthropogenic nitrogen loading, emerges as a significant driver of submerged vegetation degradation. Consequently, the impact of nitrogen on the decline of submerged macrophytes has received increasing attention. However, a functional trait-based approach to exploring the response of submerged macrophytes to nitrogen loading and its environmental feedback mechanism was unclear. Our study utilized two different growth forms of submerged macrophytes (canopy-forming Myriophyllum spicatum, and rosette-forming Vallisneria natans) to established "submerged macrophytes-water-sediment" microcosms. We assessed the influence of nitrogen loading, across four targeted total nitrogen concentrations (original control, 2, 5, 10 mg/L), on plant traits, water parameters, sediment properties, enzyme activities, and microbial characteristics. Our findings revealed that high nitrogen (10 mg/L) adversely impacted the relative growth rate of fresh biomass and total chlorophyll content in canopy-forming M. spicatum, while the chlorophyll a/b and free amino acid content increased. On the contrary, the growth and photosynthetic traits of resource-conservative V. natans were not affected by nitrogen loading. Functional traits (growth, photosynthetic, and stoichiometric) of M. spicatum but not V. natans exhibited significant correlations with environmental variables. Nitrogen loading significantly increased the concentration of nitrogen components in overlying water and pore water. The presence of submerged macrophytes significantly reduced the ammonia nitrogen and total nitrogen both in overlying water and pore water, and decreased total organic carbon in pore water. Nitrogen loading significantly inhibited sediment extracellular enzyme activities, but the planting of submerged macrophytes mitigated their negative effects. Furthermore, rhizosphere bacterial interactions were less compact compared to bare control, while eukaryotic communities exhibited increased complexity and connectivity. Path modeling indicated that submerged macrophytes mitigated the direct effects of nitrogen loading on overlying water and amplified the indirect effects on pore water, while also attenuating the direct negative effects of pore water on extracellular enzymes. The findings indicated that the restoration of submerged vegetation can mitigate eutrophication resulting from increased nitrogen loading through species-specific changes in functional traits and direct or indirect feedback mechanisms in the water-sediment system.
Collapse
Affiliation(s)
- Min Tao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Zhiqiang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Zhenjun Zuo
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Haocun Zhao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Yang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Haihao Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|
11
|
Peng Q, Huo B, Yang H, Xu Z, Mao H, Yang S, Dai Y, Li Z, Deng X. Increased invasion of submerged macrophytes makes native species more susceptible to eutrophication in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168658. [PMID: 37979865 DOI: 10.1016/j.scitotenv.2023.168658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Invasion and eutrophication are considered to pose serious threats to freshwater biodiversity and ecosystem function. However, little is known about the synergistic effects of invasion density and nutrient concentration on native submerged macrophytes. Here, we selected a common invasive species (Elodea nuttallii) and two native plants (Hydrilla verticillata and Potamogeton maackianus) to elucidate the effects of invasion density and eutrophication on native submerged plants. We found that (1) high nutrient concentrations inhibited the growth of both invasive and native species, but E. nuttallii, with a wide ecological niche, was more tolerant to eutrophication than the two native species. (2) High invasion density had a remarkable negative effect on the growth of the two native species under the medium and high nutrient concentrations. (3) Medium and high invasion densities of E. nuttallii made native macrophytes more susceptible to eutrophication. (4) The two native macrophytes had species-specific responses to medium and high invasion densities under medium and high nutrient concentrations. Specifically, a high invasion density of E. nuttallii significantly delayed the growth of H. verticillata rather than P. maackianus. Thus, it is necessary to consider the synergistic effects of invasion with eutrophication when assessing invasion in freshwater ecosystems. And our results implied that invasion with eutrophication was a powerful factor determining the results of interspecific competition among submerged macrophytes, which could change the biodiversity, community structure and functions of freshwater ecosystems.
Collapse
Affiliation(s)
- Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Bingbing Huo
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Shiwen Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Yuitai Dai
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
12
|
Zhao H, Zuo Z, Yang L, Zhang L, Lv T, Yu D, Wang Z. Similarities and differences in the physiological adaptation to water salinity between two life forms of aquatic plants in alpine and arid wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168449. [PMID: 37952678 DOI: 10.1016/j.scitotenv.2023.168449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Aquatic plants play a crucial role in freshwater ecosystems as primary producers, but their survival is threatened by salinization. Understanding the physiological responses of aquatic plants to increasing water salinity is important for predicting their adaptive strategies under future climate change scenarios. In this study, we measured 15 physiological traits of 49 aquatic plant species along a large environmental gradient in alpine and arid regions of western China to explore their physiological adaptations and compare the similarities and differences in adaptive strategies between emergent and submerged life forms. We found that water salinity and low temperature were key factors affecting aquatic plants in these regions. Aquatic plants adapted to saline habitats by accumulating proline and sulfur (S) concentrations, and to cold habitats by increasing ascorbate peroxidase activity. Plant trait network analysis revealed that S was the hub trait in emergent plants, while proline was the hub trait in submerged plants, indicating that emergent plants balanced osmoregulation and reactive oxygen metabolism through S-containing compounds, while submerged plants prioritized the regulation of osmotic balance through proline.
Collapse
Affiliation(s)
- Haocun Zhao
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Zhenjun Zuo
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Lei Yang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Liangjian Zhang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Tian Lv
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Dan Yu
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Zhong Wang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China; Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, 850000 Lhasa, China.
| |
Collapse
|
13
|
Cui Z, Huang Q, Sun J, Wan B, Zhang S, Shen J, Wu J, Li J, Yang C. The Secchi disk depth to water depth ratio affects morphological traits of submerged macrophytes: Development patterns and ecological implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167882. [PMID: 37858823 DOI: 10.1016/j.scitotenv.2023.167882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Water clarity, represented by Secchi disk depth (SD), and water depth (WD) alter bottom light availability, and SD/WD is critical for morphological trait development of submerged macrophytes in freshwater ecosystems. However, the underlying mechanism and trait development patterns of submerged macrophytes to a decreasing SD/WD gradient remains largely unknown. Here, we performed a 42-day mesocosm experiment with the erect type submerged macrophyte, Hydrilla verticillata, along a decreasing SD/WD gradient to study the relationship of morphological trait development with light availability, to determine the critical SD/WD at which changes in the development of morphological traits occur, and to gain insights into the potential mechanism involved. The results indicate that most of the morphological traits, including biomass, relative growth rate, number of clonal propagules, and the root/shoot ratio decreased with a decrease in the SD/WD ratio. Conversely, plant height and shoot increment rate increased with a decrease in the SD/WD ratio. Principal component analysis indicated that the SD/WD ratio is critical in determining the growth, stability, and reproduction of H. verticillata, and that only SD/WD ratios ≥ 0.45 and ≥0.55 ensured growth ability and stability, respectively. Possible development patterns of functional traits in relation to SD/WD reduction were investigated, and patterns of key traits of H. verticillata were distinct from those of Vallisneria natans, indicating different strategies for the adaptation to conditions of decreasing light availability. These results highlight the role of adaptive changes in morphology, resource allocation and life strategies for the maintenance of growth, stability and resilience of submerged macrophytes in low light conditions. Our present study provides a basis from which we could enhance our understanding of the critical transition mechanisms involved in morphological trait development in response to bottom light availability.
Collapse
Affiliation(s)
- Zhijie Cui
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiajia Sun
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Bin Wan
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Shaohua Zhang
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Jianwei Shen
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Jingwen Wu
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Jianhua Li
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Changtao Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China.
| |
Collapse
|
14
|
Su H, Li M, Wang C, Fu G, Le R, Sun G. Effects of light regimes and benthic fish disturbance on the foraging behavior of Vallisneria natans in heterogeneous sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:331-342. [PMID: 38012492 DOI: 10.1007/s11356-023-31196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
In shallow eutrophic lakes, submersed macrophytes are significantly influenced by two main factors: light availability and benthic fish disturbance. Plant foraging is one of the most crucial aspects of plant behavior. The present study was carried out to effects of light regimes and fish disturbance on the foraging behavior of Vallisneria natans in heterogeneous sediments. V. natans was cultivated in heterogeneous sediments with four treatments: high-light regime (H), high-light regime with benthic fish (HF), low-light regime (L), and low-light regime with benthic fish (LF). We use plant trait network analysis to evaluate the relationships between traits in heterogeneous sediments. We found the plant foraging intensity was positively correlated with trait network modularity. The biomass of stem, maternal plant biomass ratio, and ramet number were the hub traits of plant growing in heterogeneous habitats. Although the plant relative growth rate (RGR) was positively correlated with foraging intensity, the hub traits had closer links with plant RGR than foraging intensity. Light regime and benthic fish indirectly affected the plant foraging intensity by changing the chlorophyll a content and pH of overlying water. Overall, our analysis provides valuable insights into plant foraging behavior in response to environmental changes.
Collapse
Affiliation(s)
- Hong Su
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China.
| | - Mingfan Li
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Chao Wang
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Guanbao Fu
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Ruijie Le
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Gang Sun
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| |
Collapse
|
15
|
Pan S, Zhang W, Li Y, Gao Y, Yu F, Tang Z, Zhu Y. Unveiling novel perspectives on niche differentiation and plasticity in rhizosphere phosphorus forms of submerged macrophytes with different stoichiometric homeostasis. WATER RESEARCH 2023; 246:120679. [PMID: 37806123 DOI: 10.1016/j.watres.2023.120679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Stoichiometric homeostasis is the ability of organisms to maintain their element composition through various physiological mechanisms, regardless of changes in nutrient availability. Phosphorus (P) is a critical limiting element for eutrophication. Submerged macrophytes with different stoichiometric homeostasis regulated sediment P pollution by nutrient resorption, but whether and how P homeostasis and resorption in submerged macrophytes changed under variable plant community structure was unclear. Increasing evidence suggests that rhizosphere microbes drive niche overlap and differentiation for different P forms to constitute submerged macrophyte community structure. However, a greater understanding of how this occurs is required. This study examined the process underlying the metabolism of different rhizosphere P forms of submerged macrophytes under different cultivation patterns by analyzing physicochemical data, basic plant traits, microbial communities, and transcriptomics. The results indicate that alkaline phosphatase serves as a key factor in revealing the existence of a link between plant traits (path coefficient = 0.335, p < 0.05) and interactions with rhizosphere microbial communities (average path coefficient = 0.362, p < 0.05). Moreover, this study demonstrates that microbial communities further influence the niche plasticity of P by mediating plant root P metabolism genes (path coefficient = 0.354, p < 0.05) and rhizosphere microbial phosphorus storage (average path coefficient = 0.605, p < 0.01). This research not only contributes to a deeper comprehension of stoichiometric homeostasis and nutrient dynamics but also provides valuable insights into potential strategies for managing and restoring submerged macrophyte-dominated ecosystems in the face of changing nutrient conditions.
Collapse
Affiliation(s)
- Shenyang Pan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Feng Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zikang Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yajie Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
16
|
Guo Q, Gao Y, Song C, Zhang X, Wang G. Morphological and transcriptomic responses/acclimations of erect-type submerged macrophyte Hydrilla verticillata both at low-light exposure and light recovery phases. Ecol Evol 2023; 13:e10583. [PMID: 37809356 PMCID: PMC10556543 DOI: 10.1002/ece3.10583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Light intensity is a determinant for submerged macrophytes. Little is known about their molecular responses to low-light exposure, despite more informative and responsive than morphological traits. For erect-type submerged macrophytes, the stem is more crucial relative to the leaf in acclimation to low-light stress, but receives less attention. We determined morphological and stem transcriptomic responses/acclimations of Hydrilla verticillata to extremely and mildly low light (7.2 and 36 μmol photons m-2 s-1, respectively), that is, EL and ML, with the radiation intensity of 180 μmol photons m-2 s-1 as the control. Low-light exposure continued for 9 days, followed by a 7-day recovery phase (180 μmol photons m-2 s-1). At the exposure phase, the low-light treatments, in particular the EL, decreased the relative growth ratio, but induced greater height and longer stem internode distance and epidermal cell. Such responses/acclimations continued into the recovery phase, despite more or less changes in the magnitude. Transcriptome showed that the photosynthetic system was inhibited at the exposure phase, but the macrophyte adjusted hormone synthesis relating to cell division and elongation. Moreover, the EL activated cell stress responses such as DNA repair. Following light recovery, the macrophyte exhibited a strong-light response, although energy metabolism enhanced. Especially, the EL enriched the pathways relating to anthocyanin synthesis at such phase, indicating an activation of photoprotective mechanism. Our findings suggest that negative influences of low light occur at both low-light exposure and recovery phases, but submerged macrophytes would acclimate to light environments. Transcriptome can show molecular basis of plant responses/acclimations, including but not limited to morphology. This study establishes a bridge connecting morphological and molecular responses/acclimations.
Collapse
Affiliation(s)
- Qingchun Guo
- School of EnvironmentNanjing Normal UniversityNanjingChina
| | - Yuxuan Gao
- School of EnvironmentNanjing Normal UniversityNanjingChina
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Chao Song
- School of EnvironmentNanjing Normal UniversityNanjingChina
| | - Xinhou Zhang
- School of EnvironmentNanjing Normal UniversityNanjingChina
| | - Guoxiang Wang
- School of EnvironmentNanjing Normal UniversityNanjingChina
| |
Collapse
|
17
|
Li F, Zuo Z, Zhao H, Yu W, Yu H, Yu D, Liu C. Adaptive responses and transgenerational plasticity of a submerged plant to benthivorous fish disturbance. Ecol Evol 2023; 13:ECE310398. [PMID: 37533969 PMCID: PMC10390469 DOI: 10.1002/ece3.10398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
Submerged macrophytes play a key role in the restoration of shallow eutrophic lakes. However, in some subtropical lakes, benthivorous fishes dominate the fish assemblages and influence the growth of submerged plants. A comprehensive understanding of the direct and indirect effects of benthivorous fishes on submerged plants is important. We conducted mesocosm experiments to examine the effects of three densities of benthivorous fish, Misgurnus anguillicaudatus, on the water properties, the growth, asexual reproduction, and the germination of turions of Potamogeton crispus L. Our results showed that fish disturbance increased TN, TP, PO4-P, NH4-N, and NO3-N of the water, raising the extinction coefficient K, Chl a, and the periphyton biomass. Benthivorous fish disturbance reduced the total biomass, root length, relative growth rate (RGR), and branching number while increasing the plant height of P. crispus. The P stoichiometric homeostasis coefficient (H P) (except turions) and H N was lower in plant tissues due to fish disturbance. Benthivorous fish disturbances promoted turions formation (e.g., increased turions total numbers and biomass) of P. crispus. Moreover, P. crispus exhibited transgenerational plasticity for benthivorous fish affecting turion emergence. The maximum final germination rate occurred only when fish density in the mother plant grow experiment matched that in the turion germination experiment. Turions generated by P. crispus disturbed by low-density fish exhibited increased germination rates. Our findings suggest that controlling benthivorous fish reduces its indirect and direct effects on submerged vegetation, facilitating the successful restoration of these plants.
Collapse
Affiliation(s)
- Fuchao Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, Department of Ecology, College of Life SciencesWuhan UniversityWuhanChina
| | - Zhenjun Zuo
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, Department of Ecology, College of Life SciencesWuhan UniversityWuhanChina
| | - Haocun Zhao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, Department of Ecology, College of Life SciencesWuhan UniversityWuhanChina
| | - Weicheng Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, Department of Ecology, College of Life SciencesWuhan UniversityWuhanChina
| | - Haihao Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, Department of Ecology, College of Life SciencesWuhan UniversityWuhanChina
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, Department of Ecology, College of Life SciencesWuhan UniversityWuhanChina
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, Department of Ecology, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
18
|
Yuan G, Tan X, Guo P, Xing K, Chen Z, Li D, Yu S, Peng H, Li W, Fu H, Jeppesen E. Linking trait network to growth performance of submerged macrophytes in response to ammonium pulse. WATER RESEARCH 2023; 229:119403. [PMID: 36446174 DOI: 10.1016/j.watres.2022.119403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Extreme precipitation events caused by climate change leads to large variation of nitrogen input to aquatic ecosystems. Our previous study demonstrated the significant effect of different ammonium pulse patterns (differing in magnitude and frequency) on submersed macrophyte growth based on six plant morphological traits. However, how connectivity among plant traits responds to nitrogen pulse changes, which in turn affects plant performance, has not yet been fully elucidated. The response of three common submersed macrophytes (Myriophyllum spicatum, Vallisneria natans and Potamogeton maackianus) to three ammonium pulse patterns was tested using plant trait network (PTN) analysis based on 18 measured physiological and morphological traits. We found that ammonium pulses enhanced trait connectivity in PTN, which may enable plants to assimilate ammonium and/or mitigate ammonium toxicity. Large input pulses with low frequency had stronger effects on PTNs compared to low input pulses with high frequency. Due to the cumulative and time-lagged effect of the plant response to the ammonium pulse, there was a profound and prolonged effect on plant performance after the release of the pulse. The highly connected traits in PTN were those related to biomass allocation (e.g., plant biomass, stem ratio, leaf ratio and ramet number) rather than physiological traits, while phenotype-related traits (e.g., plant height, root length and AB ratio) and energy storage-related traits (e.g., stem starch) were least connected. V. natans showed clear functional divergence among traits, making it more flexible to cope with unfavorable habitats (i.e., high input pulses with low frequencies). M. spicatum with high RGR revealed strong correlations among traits and thus supported nitrogen accumulation from favourable environments (i.e., low input pulses with high frequencies). Our study highlights the responses of PTN for submerged macrophytes to ammonium pulses depends on their intrinsic metabolic rates, the magnitude, frequency and duration of the pulses, and our results contribute to the understanding of the impact of resource pulses on the population dynamics of submersed macrophytes within the context of global climate change.
Collapse
Affiliation(s)
- Guixiang Yuan
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China.
| | - Xiaoyao Tan
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Peiqin Guo
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Ke Xing
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Zhenglong Chen
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Dongbo Li
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Sizhe Yu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Hui Peng
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Wei Li
- Research Institute of Ecology & Environmental Sciences, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Hui Fu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Erik Jeppesen
- Lake section, Department of Ecoscience, Aarhus University, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| |
Collapse
|
19
|
Li D, Wang Y, Song X, Jiang M, Zhao X, Cao X. The inhibitory effects of simulated light sources on the activity of algae cannot be ignored in photocatalytic inhibition. CHEMOSPHERE 2022; 309:136611. [PMID: 36179922 DOI: 10.1016/j.chemosphere.2022.136611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Harmful algal blooms (HABs) destroy the balance of the aquatic ecosystem, causing huge economic losses and even further endangers human health. In addition to traditional methods of algae removal, photocatalytic inhibition of algae is drawing more and more interests with rich application scenarios and considerable potential. Simulated visible light sources are used to excite photocatalytic materials and optimize their performance. However, most of the light irradiation intensities used in the study exceeded 50 mW/cm2. And the effects of intense light irradiation conditions on algal growth have rarely been addressed in previous studies. So we focused on the effect of different intensity of light irradiation on the growth of algae. We explored the relationship between light irradiation intensity and algal inactivation rate, and investigated the changes in ROS levels in algal cells under different light irradiation and the resulting response of the antioxidant system. We have found that several major antioxidant enzyme activities, such as SOD and CAT, were significantly higher and lipid peroxidation products (MDA) were accumulating. Intense light irradiation had the most direct effect on the photosynthetic system of algal cells, with the photosynthetic rate and relative electron transfer rate decaying to almost 0 within 30 min, indicating that algal photosynthesis was inhibited in a fairly short period of time. We further observed the physiological and morphological changes of algal cells during this process using TEM and found that the progressive dissolution of the cell membrane system and the damage of organelles associated with photosynthesis play a major role in promoting cell death. We thus conclude that light irradiation has a significant effect on the physiological activity of algal cells and is a non-negligible factor in the study of photocatalytic removal of harmful algae. It will provide theoretical guidance for the future study of photocatalysis on algae inhibition.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mengqi Jiang
- Center for Ecological Research, Kyoto University, Shiga, 520-2113, Japan
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
20
|
Wang L, Rao Q, Su H, Ruan L, Deng X, Liu J, Chen J, Xie P. Linking the network topology of plant traits with community structure, functioning, and adaptive strategies of submerged macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158092. [PMID: 35985576 DOI: 10.1016/j.scitotenv.2022.158092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Plant trait network analysis can calculate the topology of trait correlations and clarify the complex relationships among traits, providing new insights into ecological topics, including trait dimensions and phenotypic integration. However, few studies have focused on the relationships between network topology and community structure, functioning, and adaptive strategies, especially in natural submerged macrophyte communities. In this study, we collected 15 macrophyte community-level traits from 12 shallow lakes in the Yangtze River Basin in the process of eutrophication and analyzed the changes in trait network structure (i.e., total phosphorus, TP) by using a moving window method. Our results showed that water TP significantly changed the topology of trait networks. Specifically, under low or high nutrient levels, the network structure was more dispersed, with lower connectance and higher modularity than that found at moderate nutrient levels. We also found that network connectance was positively correlated with community biomass and homeostasis, while network modularity was negatively correlated with community biomass and homeostasis. In addition, modules and hub traits also changed with the intensity of eutrophication, which can reflect the trait integration and adaptation strategies of plants in a stressful environment. At low or high nutrient levels, more modules were differentiated, and those modules with higher strength were related to community nutrition. Our results clarified the dynamics of community structure and functioning from a new perspective of plant trait networks, which is key to predicting the response of ecosystems to environmental changes.
Collapse
Affiliation(s)
- Lantian Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingyang Rao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Haojie Su
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Linwei Ruan
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China.
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jiarui Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
21
|
The Growth of Vallisneria natans and Its Epiphytic Biofilm in Simulated Nutrient-Rich Flowing Water. WATER 2022. [DOI: 10.3390/w14142236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This paper investigates the effects of water flow on the growth and physiological indicators of the submerged macrophyte, Vallisneria natans, and the bacteria and algae community composition on its epiphytic biofilm-covered leaves. The authors set up a simulated flowing water laboratory experiment testing high nitrogen (N) and phosphorus (P) concentrations. Total chlorophyll and dissolved oxygen (DO) was significantly enhanced, and turbidity was reduced, thereby accelerating the growth of V. natans. These experiments were compared to another set of observations on a static group. The accumulation of malonaldehyde (MDA) in the dynamic groups was significantly higher than that in the static group. As an antioxidant stress response, the total superoxide dismutase (T-SOD) was also induced in plants exposed to nutrient-rich flowing water. The results of 16S rRNA high-throughput sequencing analyses showed that the water flow increased the bacteria community diversity of biofilm-producing bacteria with N and P removing bacteria, carbon cycle bacteria, and plant growth-promoting rhizobacteria on the epiphytic biofilm. This research determined that water flow alleviates the adverse effects of eutrophication when V. natans grows in water containing high N and P concentrations. Water flow also inhibits the growth of cyanobacteria (also referred to as blue-green algae) in epiphytic biofilm. The ecological factor of water flow, such as water disturbance and aeration measures, could alleviate the adverse effect of eutrophic water by providing a new way to restore submerged macrophytes, such as V. natans, in eutrophic water.
Collapse
|
22
|
Rao Q, Su H, Ruan L, Xia W, Deng X, Wang L, Xu P, Shen H, Chen J, Xie P. Phosphorus enrichment affects trait network topologies and the growth of submerged macrophytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118331. [PMID: 34637833 DOI: 10.1016/j.envpol.2021.118331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/19/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Significant differences in the morphological and physiological characteristics of submerged macrophytes have been studied following nutrient addition, but little research has investigated the changes in plant trait network topology structures and trait interactions at the whole-plant perspective along nutrient gradients. Plant trait interactions and coordination strongly determine ecosystem structure and functioning. Thirty plant traits were collected from a three-month experiment to construct plant trait networks to clarify the variations in trait connections and network organization arising from five total phosphorus (TP) addition concentrations in water, including a control (CK), 0.1 (TP1), 0.2 (TP2), 0.4 (TP3), and 0.8 (TP4) mg L-1. Nonmetric multidimensional scaling analysis showed a clear difference in the distribution of plant trait space among the different TP treatments. Distinct network structures showed that water TP-deficiency and TP-repletion changed the plant trait network into loose assemblages of more modules, which was related to low plant carbohydrate levels. Most plant functions involving biomass accumulation and carbohydrate synthesis were reduced under high TP conditions compared to moderate TP enrichment. Moreover, the percentage of significant relationships between plant functions and corresponding network modules was lower in the CK and TP4 treatments. These results suggested that low plant carbohydrates in high TP environments induced by high water chlorophyll a and tissue phosphorus could not support rapid resource transport among organs and thus inefficiently performed plant functions. Plant carbohydrates were a vital variable that impacted the network edge density, trait interactions, and plant growth. In summary, we demonstrated that high water TP enrichment reduces plant trait network connectedness and plant functional potentials, which may be correlated with reducing tissue carbohydrates. This study explores the correlations between plant trait network topology and functions to improve our understanding of physiological and ecological rules regulating trait interactions among organs and plant growth under eutrophic conditions.
Collapse
Affiliation(s)
- Qingyang Rao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haojie Su
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Linwei Ruan
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China
| | - Wulai Xia
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lantian Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengke Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Shen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
| |
Collapse
|