1
|
Guajardo-Leiva S, Díez B, Rojas-Fuentes C, Chnaiderman J, Castro-Nallar E, Catril V, Ampuero M, Gaggero A. From sewage to genomes: Expanding our understanding of the urban and semi-urban wastewater RNA virome. ENVIRONMENTAL RESEARCH 2025; 276:121509. [PMID: 40185271 DOI: 10.1016/j.envres.2025.121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Wastewater is a hotspot for viral diversity, harboring various microbial, plant, and animal viruses, including those that infect humans. However, the dynamics, resilience, and ecological roles of viral communities during treatment are largely unknown. In this study, we explored RNA virus ecogenomics using metagenomics from influent and effluent samples across three wastewater catchment areas in Chile, with a population of 7.05 million equivalent inhabitants. We identified 14,212 RNA-dependent RNA polymerase (RdRP)-coding sequences from the Orthornavirae kingdom, clustering into 4989 viral species. Using extensive databases of 14,150 family-level representative sequences, we classified 90 % of our sequences at the family level. Our analysis revealed that treatment reduced viral richness and evenness (Shannon index), but phylogenetic diversity remained unchanged. Effluents showed lower richness and evenness than influents with similar phylogenetic diversity. Species turnover, influenced by catchment area and treatment, accounted for 54 % of sample dissimilarities (Weighted Unifrac). Biomarker analysis indicated that families like Astroviridae and Fiersviridae were more abundant in influents, while Reoviridae and Virgaviridae dominated effluents. This suggests that viral resistance to treatment varies and cannot be solely attributed to genome type, size, or morphology. We traced viral genomes through time and space, identifying sequences like the Pepper Mild Mottle Virus (PMMoV) from the Virgaviridae family over large distances and periods, highlighting its wastewater marker potential. High concentrations of human pathogens, such as Rotavirus (Reoviridae) and Human Astrovirus (Astroviridae), were found in both influents and effluents, stressing the need for continuous monitoring, especially for treated wastewater reuse.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Dirección de Investigación, Vicerrectoría Académica, Universidad de Talca, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile; Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile.
| | - Beatriz Díez
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile; Center for Climate and Resilience Research (CR)2, Chile; Millennium Institute Center for Genome Regulation (CGR), Chile
| | - Cecilia Rojas-Fuentes
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Jonás Chnaiderman
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Eduardo Castro-Nallar
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Valentina Catril
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Manuel Ampuero
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Aldo Gaggero
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
2
|
Viviani L, Vecchio R, Pariani E, Sandri L, Binda S, Ammoni E, Cereda D, Carducci A, Pellegrinelli L, Odone A. Wastewater-based epidemiology of influenza viruses: a systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 986:179706. [PMID: 40449348 DOI: 10.1016/j.scitotenv.2025.179706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/23/2025] [Accepted: 05/16/2025] [Indexed: 06/03/2025]
Abstract
INTRODUCTION Wastewater-based epidemiology (WBE) has emerged as a valuable public health tool for monitoring the circulation of many pathogens, including influenza viruses (IVs). The general aim of this study is to systematically retrieve and summarize evidence on the use of WBE for supporting influenza surveillance. Specific objectives are: (i) to map influenza monitoring activities using WBE; (ii) to assess the performance of viral recovery methods; (iii) to explore association with clinical data; (iv) to evaluate the feasibility of typing/subtyping IVs directly from wastewater. METHODS We conducted a systematic review following the PRISMA guidelines, focusing on original data from peer-reviewed studies identified through PubMed/Medline, Scopus, and Web of Science. RESULTS Of 882 identified citations, 42 studies were included in the review. IVs detection was reported in all but one study, although typically at lower concentration than SARS-CoV-2. Thirteen studies (38.09 %) performed comparative analysis of different protocols, with mostly inconclusive results. Detection of IVs in the solid fraction of wastewater samples generally outperformed detection in the supernatant/liquid. Additionally, we describe the findings from 22 studies (52.38 %) that examined the link between environmental viral concentrations and clinical data, and 14 studies (33.33 %) that described IVs subtyping in wastewater. CONCLUSION WBE has the potential to monitor influenza circulation in humans and animals, offering insights into outbreak size and circulating IVs subtypes. However, several key areas remain unexplored. Further research is needed to refine experimental techniques and standardize protocols, and to understand how to successfully integrate WBE data into public health strategies for influenza control.
Collapse
Affiliation(s)
- Luca Viviani
- PhD National Programme in One Health approaches to infectious diseases and life science research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| | - Riccardo Vecchio
- PhD National Programme in One Health approaches to infectious diseases and life science research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | - Laura Sandri
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | - Emanuela Ammoni
- Directorate General for Health, Lombardy Region, Milan, Italy.
| | - Danilo Cereda
- Directorate General for Health, Lombardy Region, Milan, Italy.
| | | | - Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | - Anna Odone
- School of Public Health, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; Medical Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
3
|
Martins DT, Alegria OVC, Dantas CWD, De Los Santos EFF, Pontes PRM, Cavalcante RBL, Ramos RTJ. CrAssphage distribution analysis in an Amazonian river based on metagenomic sequencing data and georeferencing. Appl Environ Microbiol 2025; 91:e0147024. [PMID: 40277368 DOI: 10.1128/aem.01470-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Viruses are the most abundant biological entities in all ecosystems of the world. Their ubiquity makes them suitable candidates for indicating fecal contamination in rivers. Recently, a group of Bacteroidetes bacteriophages named CrAssphages, which are highly abundant, sensitive, and specific to human feces, were studied as potential viral biomarkers for human fecal pollution in water bodies. In this study, we evaluated the presence, diversity, and abundance of viruses with a focus on crAssphages via metagenomic analysis in an Amazonian river and conducted correlation analyses on the basis of physicochemical and georeferencing data. Several significant differences in viral alpha diversity indexes were observed among the sample points, suggesting an accumulation of viral organisms in the river mouth, whereas beta diversity analysis revealed a significant divergence between replicates of the most downstream point (IT4) when compared to the rest of the samples, possibly due to increased human impact at this point. In terms of the presence of crAssphage, the analysis identified 61 crAssphage contigs distributed along the Itacaiúnas River. Moreover, our analysis revealed significant correlations between 19 crAssphage contigs and human population density, substantiating the use of these viruses as possible markers for human fecal pollution in the Itacaiúnas River. This study is the first to assess the presence of crAssphages in an Amazonian river, with results suggesting the potential use of these viruses as markers for human fecal pollution in the Amazon. IMPORTANCE The Amazon biome is one of the most diverse ecosystems in the world and contains the most vast river network; however, the continuous advance of urban centers toward aquatic bodies exacerbates the discharge of pollutants into these water bodies. Fecal contamination contributes significantly to water pollution, and the application of an improved fecal indicator is essential for evaluating water quality. In this study, we evaluated the presence, diversity, and abundance of crAssphages in an Amazonian river and performed correlation analysis on the basis of physicochemical and georeferencing data to test whether crAssphages are viable fecal pollution markers. Our analysis revealed both the presence of crAssphages and their correlation with physicochemical data and showed significant correlations between the relative abundance of crAssphages and human density. These results suggest the potential use of these viruses as markers for water quality assessment in Amazonian rivers.
Collapse
Affiliation(s)
- David Tavares Martins
- Laboratory of Bioinformatics and Genomics of Microorganisms, Federal University of Pará-UFPA, Belém, Pará, Brazil
- Institute of Biological Sciences, Federal University of Pará-UFPA, Belem, Pará, Brazil
- Laboratory of Simulation and Computational Biology - SIMBIC, Federal University of Pará, Belém, Pará, Brazil
- Center of High Performance Computer and Artificial Intelligence - CCAD, Federal University of Pará, Belem, Pará, Brazil
| | - Oscar Victor Cardenas Alegria
- Laboratory of Bioinformatics and Genomics of Microorganisms, Federal University of Pará-UFPA, Belém, Pará, Brazil
- Institute of Biological Sciences, Federal University of Pará-UFPA, Belem, Pará, Brazil
- Laboratory of Simulation and Computational Biology - SIMBIC, Federal University of Pará, Belém, Pará, Brazil
- Center of High Performance Computer and Artificial Intelligence - CCAD, Federal University of Pará, Belem, Pará, Brazil
| | - Carlos Willian Dias Dantas
- Laboratory of Simulation and Computational Biology - SIMBIC, Federal University of Pará, Belém, Pará, Brazil
- Center of High Performance Computer and Artificial Intelligence - CCAD, Federal University of Pará, Belem, Pará, Brazil
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Rommel Thiago Jucá Ramos
- Laboratory of Bioinformatics and Genomics of Microorganisms, Federal University of Pará-UFPA, Belém, Pará, Brazil
- Institute of Biological Sciences, Federal University of Pará-UFPA, Belem, Pará, Brazil
- Laboratory of Simulation and Computational Biology - SIMBIC, Federal University of Pará, Belém, Pará, Brazil
- Center of High Performance Computer and Artificial Intelligence - CCAD, Federal University of Pará, Belem, Pará, Brazil
| |
Collapse
|
4
|
Santos AFB, Nunes M, Filipa-Silva A, Pimentel V, Pingarilho M, Abrantes P, Miranda MNS, Crespo MTB, Abecasis AB, Parreira R, Seabra SG. Wastewater Metavirome Diversity: Exploring Replicate Inconsistencies and Bioinformatic Tool Disparities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:707. [PMID: 40427823 PMCID: PMC12111215 DOI: 10.3390/ijerph22050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
This study investigates viral composition in wastewater through metagenomic analysis, evaluating the performance of four bioinformatic tools-Genome Detective, CZ.ID, INSaFLU-TELEVIR and Trimmomatic + Kraken2-on samples collected from four sites in each of two wastewater treatment plants (WWTPs) in Lisbon, Portugal in April 2019. From each site, we collected and processed separately three replicates and one pool of nucleic acids extracted from the replicates. A total of 32 samples were processed using sequence-independent single-primer amplification (SISPA) and sequenced on an Illumina MiSeq platform. Across the 128 sample-tool combinations, viral read counts varied widely, from 3 to 288,464. There was a lack of consistency between replicates and their pools in terms of viral abundance and diversity, revealing the heterogeneity of the wastewater matrix and the variability in sequencing effort. There was also a difference between software tools highlighting the impact of tool selection on community profiling. A positive correlation between crAssphage and human pathogens was found, supporting crAssphage as a proxy for public health surveillance. A custom Python pipeline automated viral identification report processing, taxonomic assignments and diversity calculations, streamlining analysis and ensuring reproducibility. These findings emphasize the importance of sequencing depth, software tool selection and standardized pipelines in advancing wastewater-based epidemiology.
Collapse
Affiliation(s)
- André F. B. Santos
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Mónica Nunes
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Andreia Filipa-Silva
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Patrícia Abrantes
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Mafalda N. S. Miranda
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Maria Teresa Barreto Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal;
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana B. Abecasis
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Ricardo Parreira
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Sofia G. Seabra
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| |
Collapse
|
5
|
O'Reilly KM, Wade MJ, Farkas K, Amman F, Lison A, Munday JD, Bingham J, Mthombothi ZE, Fang Z, Brown CS, Kao RR, Danon L. Analysis insights to support the use of wastewater and environmental surveillance data for infectious diseases and pandemic preparedness. Epidemics 2025; 51:100825. [PMID: 40174494 DOI: 10.1016/j.epidem.2025.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/06/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025] Open
Abstract
Wastewater-based epidemiology is the detection of pathogens from sewage systems and the interpretation of these data to improve public health. Its use has increased in scope since 2020, when it was demonstrated that SARS-CoV-2 RNA could be successfully extracted from the wastewater of affected populations. In this Perspective we provide an overview of recent advances in pathogen detection within wastewater, propose a framework for identifying the utility of wastewater sampling for pathogen detection and suggest areas where analytics require development. Ensuring that both data collection and analysis are tailored towards key questions at different stages of an epidemic will improve the inference made. For analyses to be useful we require methods to determine the absence of infection, early detection of infection, reliably estimate epidemic trajectories and prevalence, and detect novel variants without reliance on consensus sequences. This research area has included many innovations that have improved the interpretation of collected data and we are optimistic that innovation will continue in the future.
Collapse
Affiliation(s)
- K M O'Reilly
- Centre for Mathematical Modelling of Infectious Diseases & Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | - M J Wade
- Data, Analytics & Surveillance Group, UK Health Security Agency, 10 South Colonnade, Canary Wharf, London E14 4PU, UK
| | - K Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - F Amman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - A Lison
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, Basel 4056, Switzerland
| | - J D Munday
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, Basel 4056, Switzerland
| | - J Bingham
- South African Center for Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Z E Mthombothi
- South African Center for Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Z Fang
- Biomathematics and Statistics Scotland, James Clerk Maxwell Building, King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - C S Brown
- Clinical & Emerging Infection Directorate, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK; NIHR HPRU in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - R R Kao
- Roslin Institute and School of Physics and Astronomy, University of Edinburgh, EH25 9RG, UK
| | - L Danon
- Department of Engineering Mathematics, Ada Lovelace Building, University Walk, Bristol BS8 1TW, UK
| |
Collapse
|
6
|
Weinheimer AR, Ha AD, Aylward FO. Towards a unifying phylogenomic framework for tailed phages. PLoS Genet 2025; 21:e1011595. [PMID: 39908317 PMCID: PMC11835377 DOI: 10.1371/journal.pgen.1011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Classifying viruses systematically has remained a key challenge of virology due to the absence of universal genes and vast genetic diversity of viruses. In particular, the most dominant and diverse group of viruses, the tailed double-stranded DNA viruses of prokaryotes belonging to the class Caudoviricetes, lack sufficient similarity in the genetic machinery that unifies them to reconstruct an inclusive, stable phylogeny of these genes. While previous approaches to organize tailed phage diversity have managed to distinguish various taxonomic levels, these methods are limited in scalability, reproducibility, and the inclusion of modes of evolution, like gene gains and losses, remain key challenges. Here, we present a novel, comprehensive, and reproducible framework for examining evolutionary relationships of tailed phages. In this framework, we compare phage genomes based on the presence and absence of a fixed set of gene families which are used as binary trait data that is input into maximum likelihood models. Our resulting phylogeny stably recovers known taxonomic families of tailed phages, with and without the inclusion of metagenome-derived phages. We also quantify the mosaicism of replication and structural genes among known families, and our results suggest that these exchanges likely underpin the emergence of new families. Additionally, we apply this framework to large phages (>100 kilobases) to map emergences of traits associated with genome expansion. Taken together, this evolutionary framework for charting and organizing tailed phage diversity improves the systemization of phage taxonomy, which can unify phage studies and advance our understanding of their evolution.
Collapse
Affiliation(s)
- Alaina R. Weinheimer
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech; Blacksburg, Virginia, United States of America
| |
Collapse
|
7
|
Pye HV, Krishnamurthi R, Cook R, Adriaenssens EM. Phage diversity in One Health. Essays Biochem 2024; 68:607-619. [PMID: 39475220 PMCID: PMC12055037 DOI: 10.1042/ebc20240012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024]
Abstract
One Health aims to bring together human, animal, and environmental research to achieve optimal health for all. Bacteriophages (phages) are viruses that kill bacteria and their utilisation as biocontrol agents in the environment and as therapeutics for animal and human medicine will aid in the achievement of One Health objectives. Here, we assess the diversity of phages used in One Health in the last 5 years and place them in the context of global phage diversity. Our review shows that 98% of phages applied in One Health belong to the class Caudoviricetes, compared to 85% of sequenced phages belonging to this class. Only three RNA phages from the realm Riboviria have been used in environmental biocontrol and human therapy to date. This emphasises the lack in diversity of phages used commercially and for phage therapy, which may be due to biases in the methods used to both isolate phages and select them for applications. The future of phages as biocontrol agents and therapeutics will depend on the ability to isolate genetically novel dsDNA phages, as well as in improving efforts to isolate ssDNA and RNA phages, as their potential is currently undervalued. Phages have the potential to reduce the burden of antimicrobial resistance, however, we are underutilising the vast diversity of phages present in nature. More research into phage genomics and alternative culture methods is required to fully understand the complex relationships between phages, their hosts, and other organisms in the environment to achieve optimal health for all.
Collapse
Affiliation(s)
- Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Revathy Krishnamurthi
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Ryan Cook
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Evelien M Adriaenssens
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| |
Collapse
|
8
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Farkas K, Williams RC, Hillary LS, Garcia-Delgado A, Jameson E, Kevill JL, Wade MJ, Grimsley JMS, Jones DL. Harnessing the Power of Next-Generation Sequencing in Wastewater-Based Epidemiology and Global Disease Surveillance. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 17:5. [PMID: 39614945 PMCID: PMC11608212 DOI: 10.1007/s12560-024-09616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Wastewater-based epidemiology (WBE) has emerged as a valuable surveillance tool for SARS-CoV-2 and other pathogens globally, providing insights into community-level infections, including asymptomatic and pre-symptomatic cases. While most WBE programmes focus on quantitative pathogen assessment, next-generation sequencing (NGS) approaches have enabled more detailed analyses, including variant and recombinant genotype identification for viruses like SARS-CoV-2 and poliovirus. Despite recent NGS advancements allowing for the detection of known and novel viruses in wastewater, many of these tools remain underutilised in routine WBE. This short review critically evaluates the applicability of common NGS tools in routine WBE programmes, assessing their capability for identifying emerging threats with epidemic or pandemic potential. Here, we provide evidence-based recommendations for integrating NGS techniques into WBE and the use of results for informed decision-making within a One Health framework, aiming to enhance global infectious disease surveillance and pandemic preparedness.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Rachel C Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
- Verily Life Sciences LLC., South San Francisco, California, 94080, USA
| | - Luke S Hillary
- Department of Plant Pathology, University of California Davis, Davis, California, 95616, USA
| | - Alvaro Garcia-Delgado
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Eleanor Jameson
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Matthew J Wade
- Data, Analytics & Surveillance Group, UK Health Security Agency, London, E14 4PU, UK
| | | | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
- Verily Life Sciences LLC., South San Francisco, California, 94080, USA
| |
Collapse
|
10
|
Xing J, Gao H, Liu G, Cao X, Zhong J, Xu S, Li Y, Pang Y, Zhang G, Sun Y. Mapping the heterogeneous removal landscape of wastewater virome in effluents of different advanced wastewater treatment systems of swine farm. WATER RESEARCH 2024; 266:122446. [PMID: 39298901 DOI: 10.1016/j.watres.2024.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In advanced wastewater treatment plants on pig farms, meticulous design aims to eliminate intrinsic pollutants such as organic matter, heavy metals, and biological contaminants. In our field survey across Southern China, a notable disparity in wastewater treatment procedures among various farming facilities lies in the utilization of terminal chemical oxidation post-sedimentation tank. However, recent focus in wastewater surveillance has predominantly centered on antibiotic resistance genes, leaving the efficacy of virus removal in different effluent systems largely unexplored. To profile virus composition at the effluent, assess the virus elimination efficiency of chemical oxidation at the effluent end, and the potential environmental driver of virus abundance, we deployed a meta-transcriptomics approach to first determine the total virome in effluent specimens of terminal clean water tank system (CWT) and terminal chemical oxidation system (TCO) in Southern China pig farms, respectively. From these data, 172 viruses were identified, with a median reads per million (RPM) of 27,789 in CWT and 19,982 in TCO. Through the integration of analyses encompassing the co-occurrence patterns within viral communities, the ecology of viral diversity, and a comparative assessment of average variation degrees, we have empirically demonstrated that the procedure of TCO may perturb viral communities and diminish their abundance, particularly impacting RNA viral communities. However, despite the diminished abundance, pathogenic viruses such as PEDV and PRRSV persisted in the effluent following chemical deoxidation at a moderate RPM value, indicating a substantial in situ presence at effluent. Our environmental driver modeling, employing GLM and mantel tests, substantiated the intricate nature of virus community variation within the effluent, influenced heterogeneously by diverse factors. Notably, pond temperature emerged as the foremost determinant, while fishing farming exhibited a positive correlation with virus diversity (p < 0.05). This revelation of the cryptic persistence of virus communities in wastewater effluent expands our understanding of the varied responses of different virus categories to oxidation. Such insights transcend mere virus characterization, offering valuable implications for enhancing biosafety measures in farming practices and informing wastewater-based epidemiological surveillance.
Collapse
Affiliation(s)
- Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Han Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Guangyu Liu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xinyu Cao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jianhao Zhong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Sijia Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yue Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yuwan Pang
- Institute of Agricultural Resources and Environmental Sciences, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, PR China.
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| | - Yankuo Sun
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| |
Collapse
|
11
|
Peng L, Yang F, Shi J, Liu Y, Pan L, Mao D, Luo Y. Insights into the panorama of multiple DNA viruses in municipal wastewater and recycled sludge in Tianjin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124215. [PMID: 38797349 DOI: 10.1016/j.envpol.2024.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Environmental viruses in wastewater and sludge are widely recognized for their roles in waterborne diseases. However, previous studies mainly focused on RNA viruses, and little is known about the diversity of DNA viral communities and their driving factors in municipal wastewater treatment environments. Herein, we conducted a pilot study to explore DNA virus profiles in municipal wastewater and recycled sludge by metagenomics method, and track their temporal changes in northern China. Results showed that 467 viral species were co-shared among all the samples. We identified six families of human viruses with a prevalence of 0.1%, which were rare but relatively stable in wastewater and sludge for six months. Adenoviridae, Parvoviridae, and Herpersviridae were the most dominant human viral families in municipal wastewater and recycled sludge. A time series of samples revealed that the dynamic changes of human DNA viruses were stable based on qPCR results, particularly for high-risk fecal-oral transmission viruses of adenovirus, bocavirus, polyomavirus, human gamma herpesvirus, human papillomavirus, and hepatitis B virus. Concentrations of Adenovirus (5.39-7.48 log10 copies/L) and bocavirus (4.36-7.48 log10 copies/L) were observed to be the highest in these samples compared to other viruses. Our findings demonstrated the DNA viruses' high prevalence and persistence in municipal wastewater treatment environments, highlighting the value of enhancing public health responses based on wastewater-based epidemiology.
Collapse
Affiliation(s)
- Liang Peng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - YiXin Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liuzhu Pan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
12
|
Zheng X, Zhao K, Xue B, Deng Y, Xu X, Yan W, Rong C, Leung K, Wu JT, Leung GM, Peiris M, Poon LLM, Zhang T. Tracking diarrhea viruses and mpox virus using the wastewater surveillance network in Hong Kong. WATER RESEARCH 2024; 255:121513. [PMID: 38555782 DOI: 10.1016/j.watres.2024.121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The wastewater surveillance network successfully established for COVID-19 showed great potential to monitor other infectious viruses, such as norovirus, rotavirus and mpox virus. In this study, we established and validated detection methods for these viruses in wastewater. We developed a supernatant-based method to detect RNA viruses from wastewater samples and applied it to the monthly diarrhea viruses (norovirus genogroup I & II, and rotavirus) surveillance in wastewater treatment plants (WWTPs) at a city-wide level for 16 months. Significant correlations were observed between the diarrhea viruses concentrations in wastewater and detection rates in faecal specimens by clinical surveillance. The highest norovirus concentration in wastewater was obtained in winter, consistent with the seasonal pattern of norovirus outbreak in Hong Kong. Additionally, we established a pellet-based method to monitor DNA viruses in wastewater and detected weak signals for mpox virus in wastewater from a WWTP serving approximately 16,700 people, when the first mpox patient in Hong Kong was admitted to the hospital within the catchment area. Genomic sequencing provided confirmatory evidence for the validity of the results. Our findings emphasized the efficacy of the wastewater surveillance network in WWTPs as a cost-effective tool to track the transmission trend of diarrhea viruses and to provide sensitive detection of novel emerging viruses such as mpox virus in low-prevalence areas. The developed methods and surveillance results provide confidence for establishing robust wastewater surveillance programs to control infectious diseases in the post-pandemic era.
Collapse
Affiliation(s)
- Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Keyue Zhao
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bingjie Xue
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chao Rong
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China; The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Joseph T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China; The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; HKU-Pasteur Research Pole, The University of Hong Kong, Sassoon Road, Hong Kong, China; Centre For Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; HKU-Pasteur Research Pole, The University of Hong Kong, Sassoon Road, Hong Kong, China; Centre For Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, Hong Kong, China.
| |
Collapse
|
13
|
Perry WB, Chrispim MC, Barbosa MRF, de Souza Lauretto M, Razzolini MTP, Nardocci AC, Jones O, Jones DL, Weightman A, Sato MIZ, Montagner C, Durance I. Cross-continental comparative experiences of wastewater surveillance and a vision for the 21st century. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170842. [PMID: 38340868 DOI: 10.1016/j.scitotenv.2024.170842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The COVID-19 pandemic has brought the epidemiological value of monitoring wastewater into sharp focus. The challenges of implementing and optimising wastewater monitoring vary significantly from one region to another, often due to the array of different wastewater systems around the globe, as well as the availability of resources to undertake the required analyses (e.g. laboratory infrastructure and expertise). Here we reflect on the local and shared challenges of implementing a SARS-CoV-2 monitoring programme in two geographically and socio-economically distinct regions, São Paulo state (Brazil) and Wales (UK), focusing on design, laboratory methods and data analysis, and identifying potential guiding principles for wastewater surveillance fit for the 21st century. Our results highlight the historical nature of region-specific challenges to the implementation of wastewater surveillance, including previous experience of using wastewater surveillance, stakeholders involved, and nature of wastewater infrastructure. Building on those challenges, we then highlight what an ideal programme would look like if restrictions such as resource were not a constraint. Finally, we demonstrate the value of bringing multidisciplinary skills and international networks together for effective wastewater surveillance.
Collapse
Affiliation(s)
| | - Mariana Cardoso Chrispim
- Environmental and Biosciences Department, School of Business, Innovation and Sustainability, Halmstad University, Kristian IV:s väg 3, 30118 Halmstad, Sweden
| | - Mikaela Renata Funada Barbosa
- Environmental Analysis Department, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil; NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Marcelo de Souza Lauretto
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Arts, Sciences and Humanities, University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo CEP 03828-000, Brazil
| | - Maria Tereza Pepe Razzolini
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Adelaide Cassia Nardocci
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Owen Jones
- School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK
| | - Davey L Jones
- Environment Centre Wales, Bangor University, Bangor LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch WA 6105, Australia
| | | | - Maria Inês Zanoli Sato
- Environmental Analysis Department, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil; NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Cassiana Montagner
- Environmental Chemistry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083970, Brazil
| | - Isabelle Durance
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
14
|
Farkas K, Kevill JL, Adwan L, Garcia-Delgado A, Dzay R, Grimsley JMS, Lambert-Slosarska K, Wade MJ, Williams RC, Martin J, Drakesmith M, Song J, McClure V, Jones DL. Near-source passive sampling for monitoring viral outbreaks within a university residential setting. Epidemiol Infect 2024; 152:e31. [PMID: 38329110 PMCID: PMC10894896 DOI: 10.1017/s0950268824000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has proven to be a powerful tool for the population-level monitoring of pathogens, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For assessment, several wastewater sampling regimes and methods of viral concentration have been investigated, mainly targeting SARS-CoV-2. However, the use of passive samplers in near-source environments for a range of viruses in wastewater is still under-investigated. To address this, near-source passive samples were taken at four locations targeting student hall of residence. These were chosen as an exemplar due to their high population density and perceived risk of disease transmission. Viruses investigated were SARS-CoV-2 and its variants of concern (VOCs), influenza viruses, and enteroviruses. Sampling was conducted either in the morning, where passive samplers were in place overnight (17 h) and during the day, with exposure of 7 h. We demonstrated the usefulness of near-source passive sampling for the detection of VOCs using quantitative polymerase chain reaction (qPCR) and next-generation sequencing (NGS). Furthermore, several outbreaks of influenza A and sporadic outbreaks of enteroviruses (some associated with enterovirus D68 and coxsackieviruses) were identified among the resident student population, providing evidence of the usefulness of near-source, in-sewer sampling for monitoring the health of high population density communities.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jessica L. Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Latifah Adwan
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | | | - Rande Dzay
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jasmine M. S. Grimsley
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- The London Data Company, London, UK
| | | | - Matthew J. Wade
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rachel C. Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Javier Martin
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Hertfordshire, UK
| | - Mark Drakesmith
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Jiao Song
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Victoria McClure
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
15
|
Desdouits M, Reynaud Y, Philippe C, Guyader FSL. A Comprehensive Review for the Surveillance of Human Pathogenic Microorganisms in Shellfish. Microorganisms 2023; 11:2218. [PMID: 37764063 PMCID: PMC10537662 DOI: 10.3390/microorganisms11092218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Bivalve molluscan shellfish have been consumed for centuries. Being filter feeders, they may bioaccumulate some microorganisms present in coastal water, either naturally or through the discharge of human or animal sewage. Despite regulations set up to avoid microbiological contamination in shellfish, human outbreaks still occur. After providing an overview showing their implication in disease, this review aims to highlight the diversity of the bacteria or enteric viruses detected in shellfish species, including emerging pathogens. After a critical discussion of the available methods and their limitations, we address the interest of technological developments using genomics to anticipate the emergence of pathogens. In the coming years, further research needs to be performed and methods need to be developed in order to design the future of surveillance and to help risk assessment studies, with the ultimate objective of protecting consumers and enhancing the microbial safety of bivalve molluscan shellfish as a healthy food.
Collapse
Affiliation(s)
| | | | | | - Françoise S. Le Guyader
- Ifremer, Unité Microbiologie Aliment Santé et Environnement, RBE/LSEM, 44311 Nantes, France; (M.D.); (Y.R.); (C.P.)
| |
Collapse
|
16
|
Richard JC, Blevins E, Dunn CD, Leis EM, Goldberg TL. Viruses of Freshwater Mussels during Mass Mortality Events in Oregon and Washington, USA. Viruses 2023; 15:1719. [PMID: 37632061 PMCID: PMC10458741 DOI: 10.3390/v15081719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Freshwater mussels (Unionida) are globally imperiled, in part due to largely unexplained mass mortality events (MMEs). While recent studies have begun to investigate the possibility that mussel MMEs in the Eastern USA may be caused by infectious diseases, mussels in the Western USA have received relatively little attention in this regard. We conducted a two-year epidemiologic investigation of the role of viruses in ongoing MMEs of the Western pearlshell (Margaritifera falcata) and the Western ridged mussel (Gonidea angulata) in the Chehalis River and Columbia River watersheds in the Western USA. We characterized viromes of mussel hemolymph from 5 locations in 2018 and 2020 using metagenomic methods and identified 557 viruses based on assembled contiguous sequences, most of which are novel. We also characterized the distribution and diversity of a previously identified mussel Gammarhabdovirus related to pathogenic finfish viruses. Overall, we found few consistent associations between viruses and mussel health status. Variation in mussel viromes was most strongly driven by location, with little influence from date, species, or health status, though these variables together only explained ~1/3 of variation in virome composition. Our results demonstrate that Western freshwater mussels host remarkably diverse viromes, but no single virus or combination of viruses appears to be associated with morbidity or mortality during MMEs. Our findings have implications for the conservation of imperiled freshwater mussels, including efforts to enhance natural populations through captive propagation.
Collapse
Affiliation(s)
- Jordan C. Richard
- Department of Pathobiological Sciences and Freshwater & Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Southwestern Virginia Field Office, U.S. Fish and Wildlife Service, Abingdon, VA 24210, USA
| | - Emilie Blevins
- Xerces Society for Invertebrate Conservation, Portland, OR 97232, USA;
| | - Christopher D. Dunn
- Department of Pathobiological Sciences and Freshwater & Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Eric M. Leis
- La Crosse Fish Health Center, Midwest Fisheries Center, U.S. Fish and Wildlife Service, Onalaska, WI 54650, USA;
| | - Tony L. Goldberg
- Department of Pathobiological Sciences and Freshwater & Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA;
| |
Collapse
|
17
|
Potapov S, Gorshkova A, Krasnopeev A, Podlesnaya G, Tikhonova I, Suslova M, Kwon D, Patrushev M, Drucker V, Belykh O. RNA-Seq Virus Fraction in Lake Baikal and Treated Wastewaters. Int J Mol Sci 2023; 24:12049. [PMID: 37569424 PMCID: PMC10418309 DOI: 10.3390/ijms241512049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. Given the uniqueness and importance of Lake Baikal, the issues of biodiversity conservation and the monitoring of potential virological hazards to hydrobionts and humans are important. Wastewater treatment plants discharge treated effluent directly into the lake. In this context, the identification and monitoring of allochthonous microorganisms entering the lake play an important role. Using high-throughput sequencing methods, we found that dsDNA-containing viruses of the class Caudoviricetes were the most abundant in all samples, while Leviviricetes (ssRNA(+) viruses) dominated the treated water samples. RNA viruses of the families Nodaviridae, Tombusviridae, Dicitroviridae, Picobirnaviridae, Botourmiaviridae, Marnaviridae, Solemoviridae, and Endornavirida were found in the pelagic zone of three lake basins. Complete or nearly complete genomes of RNA viruses belonging to such families as Dicistroviridae, Marnaviridae, Blumeviridae, Virgaviridae, Solspiviridae, Nodaviridae, and Fiersviridae and the unassigned genus Chimpavirus, as well as unclassified picorna-like viruses, were identified. In general, the data of sanitary/microbiological and genetic analyses showed that WWTPs inadequately purify the discharged water, but, at the same time, we did not observe viruses pathogenic to humans in the pelagic zone of the lake.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Andrey Krasnopeev
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Galina Podlesnaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Irina Tikhonova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Maria Suslova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Dmitry Kwon
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Maxim Patrushev
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Olga Belykh
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| |
Collapse
|
18
|
Stockdale SR, Blanchard AM, Nayak A, Husain A, Nashine R, Dudani H, McClure CP, Tarr AW, Nag A, Meena E, Sinha V, Shrivastava SK, Hill C, Singer AC, Gomes RL, Acheampong E, Chidambaram SB, Bhatnagar T, Vetrivel U, Arora S, Kashyap RS, Monaghan TM. RNA-Seq of untreated wastewater to assess COVID-19 and emerging and endemic viruses for public health surveillance. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 14:100205. [PMID: 37193348 PMCID: PMC10150210 DOI: 10.1016/j.lansea.2023.100205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
Background The COVID-19 pandemic showcased the power of genomic sequencing to tackle the emergence and spread of infectious diseases. However, metagenomic sequencing of total microbial RNAs in wastewater has the potential to assess multiple infectious diseases simultaneously and has yet to be explored. Methods A retrospective RNA-Seq epidemiological survey of 140 untreated composite wastewater samples was performed across urban (n = 112) and rural (n = 28) areas of Nagpur, Central India. Composite wastewater samples were prepared by pooling 422 individual grab samples collected prospectively from sewer lines of urban municipality zones and open drains of rural areas from 3rd February to 3rd April 2021, during the second COVID-19 wave in India. Samples were pre-processed and total RNA was extracted prior to genomic sequencing. Findings This is the first study that has utilised culture and/or probe-independent unbiased RNA-Seq to examine Indian wastewater samples. Our findings reveal the detection of zoonotic viruses including chikungunya, Jingmen tick and rabies viruses, which have not previously been reported in wastewater. SARS-CoV-2 was detectable in 83 locations (59%), with stark abundance variations observed between sampling sites. Hepatitis C virus was the most frequently detected infectious virus, identified in 113 locations and co-occurring 77 times with SARS-CoV-2; and both were more abundantly detected in rural areas than urban zones. Concurrent identification of segmented virus genomic fragments of influenza A virus, norovirus, and rotavirus was observed. Geographical differences were also observed for astrovirus, saffold virus, husavirus, and aichi virus that were more prevalent in urban samples, while the zoonotic viruses chikungunya and rabies, were more abundant in rural environments. Interpretation RNA-Seq can effectively detect multiple infectious diseases simultaneously, facilitating geographical and epidemiological surveys of endemic viruses that could help direct healthcare interventions against emergent and pre-existent infectious diseases as well as cost-effectively and qualitatively characterising the health status of the population over time. Funding UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) grant number H54810, as supported by Research England.
Collapse
Affiliation(s)
| | - Adam M. Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Amit Nayak
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Aliabbas Husain
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Rupam Nashine
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Hemanshi Dudani
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - C. Patrick McClure
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, United Kingdom
| | - Alexander W. Tarr
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, United Kingdom
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aditi Nag
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Ekta Meena
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Vikky Sinha
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Sandeep K. Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt. Ltd., Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Andrew C. Singer
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Rachel L. Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | - Edward Acheampong
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, United Kingdom
- Department of Statistics and Actuarial Science, University of Ghana, P.O. Box, LG 115, Legon, Ghana
| | - Saravana B. Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, KA, India
| | - Tarun Bhatnagar
- ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, 590010, India
- Virology and Biotechnology Division, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Rajpal Singh Kashyap
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
19
|
Schaeffer J, Desdouits M, Besnard A, Le Guyader FS. Looking into sewage: how far can metagenomics help to detect human enteric viruses? Front Microbiol 2023; 14:1161674. [PMID: 37180249 PMCID: PMC10166864 DOI: 10.3389/fmicb.2023.1161674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
The impact of human sewage on environmental and food contamination constitutes an important safety issue. Indeed, human sewage reflects the microbiome of the local population, and a variety of human viruses can be detected in wastewater samples. Being able to describe the diversity of viruses present in sewage will provide information on the health of the surrounding population health and will help to prevent further transmission. Metagenomic developments, allowing the description of all the different genomes present in a sample, are very promising tools for virome analysis. However, looking for human enteric viruses with short RNA genomes which are present at low concentrations is challenging. In this study we demonstrate the benefits of performing technical replicates to improve viral identification by increasing contig length, and the set-up of quality criteria to increase confidence in results. Our approach was able to effectively identify some virus sequences and successfully describe the viral diversity. The method yielded full genomes either for norovirus, enterovirus and rotavirus, even if, for these segmented genomes, combining genes remain a difficult issue. Developing reliable viromic methods is important as wastewater sample analysis provides an important tool to prevent further virus transmission by raising alerts in case of viral outbreaks or emergence.
Collapse
Affiliation(s)
| | | | | | - Françoise S. Le Guyader
- Ifremer, Laboratoire de Microbiologie, U. Microbiologie Aliment Santé et Environnement, Nantes, France
| |
Collapse
|
20
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
21
|
Robins PE, Dickson N, Kevill JL, Malham SK, Singer AC, Quilliam RS, Jones DL. Predicting the dispersal of SARS-CoV-2 RNA from the wastewater treatment plant to the coast. Heliyon 2022; 8:e10547. [PMID: 36091966 PMCID: PMC9448708 DOI: 10.1016/j.heliyon.2022.e10547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Viral pathogens including SARS-CoV-2 RNA have been detected in wastewater treatment effluent, and untreated sewage overflows, that pose an exposure hazard to humans. We assessed whether SARS-CoV-2 RNA was likely to have been present in detectable quantities in UK rivers and estuaries during the first wave of the Covid-19 pandemic. We simulated realistic viral concentrations parameterised on the Camel and Conwy catchments (UK) and their populations, showing detectable SARS-CoV-2 RNA concentrations for untreated but not for treated loading, but also being contingent on viral decay, hydrology, catchment type/shape, and location. Under mean or low river flow conditions, viral RNA concentrated within the estuaries allowing for viral build-up and caused a lag by up to several weeks between the peak in community infections and the viral peak in the environment. There was an increased hazard posed by SARS-CoV-2 RNA with a T 90 decay rate >24 h, as the estuarine build-up effect increased. High discharge events transported the viral RNA downstream and offshore, increasing the exposure risk to coastal bathing waters and shellfisheries - although dilution in this case reduced viral concentrations well below detectable levels. Our results highlight the sensitivity of exposure to viral pathogens downstream of wastewater treatment, across a range of viral loadings and catchment characteristics - with implications to environmental surveillance.
Collapse
Affiliation(s)
- Peter E. Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Neil Dickson
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Jessica L. Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K. Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | | | - Richard S. Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Davey L. Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6105, Australia
| |
Collapse
|
22
|
Hu Z, Yang L, Han J, Liu Z, Zhao Y, Jin Y, Sheng Y, Zhu L, Hu B. Human viruses lurking in the environment activated by excessive use of COVID-19 prevention supplies. ENVIRONMENT INTERNATIONAL 2022; 163:107192. [PMID: 35354102 PMCID: PMC8938188 DOI: 10.1016/j.envint.2022.107192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 05/09/2023]
Abstract
Due to extensive COVID-19 prevention measures, millions of tons of chemicals penetrated into natural environment. Alterations of human viruses in the environment, the neglected perceiver of environmental fluctuations, remain obscure. To decipher the interaction between human viruses and COVID-19 related chemicals, environmental samples were collected on March 2020 from surroundings of designated hospitals and receivers of wastewater treatment plant effluent in Wuhan. The virus community and chemical concentration were respectively unveiled in virtue of virome and ultra-high-performance liquid chromatography-tandem mass spectrometry. The complex relationship between virus and chemical was ulteriorly elaborated by random forest model. As an indicator, environmental viruses were corroborated to sensitively reflect the ecological disturbance originated from pandemic prevention supplies. Chemicals especially trihalomethanes restrained the virus community diversity. Confronting this adverse scenario, Human gammaherpesvirus 4 and Orf virus with resistance to trihalomethanes flourished while replication potential of Macacine alphaherpesvirus 1 ascended under glucocorticoids stress. Consequently, human viruses lurking in the environment were actuated by COVID-19 prevention chemicals, which was a constant burden to public health in this ongoing pandemic. Besides, segments of SARS-CoV-2 RNA were detected near designated hospitals, suggesting environment as a missing link in the transmission route. This research innovatively underlined the human health risk of pandemic prevention supplies from the virus - environment interaction, appealing for monitoring of environmental viruses in long term.
Collapse
Affiliation(s)
- Zhichao Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zishu Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yihao Jin
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yaqi Sheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058 China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058 China.
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
French R, Charon J, Lay CL, Muller C, Holmes EC. Human Land-Use Impacts Viral Diversity and Abundance in a New Zealand River. Virus Evol 2022; 8:veac032. [PMID: 35494173 PMCID: PMC9049113 DOI: 10.1093/ve/veac032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Although water-borne viruses have important implications for the health of humans and other animals, little is known about the impact of human land use on viral diversity and evolution in water systems such as rivers. We used metatranscriptomic sequencing to compare the diversity and abundance of viruses at sampling sites along a single river in New Zealand that differed in human land-use impacts, ranging from pristine to urban. From this, we identified 504 putative virus species, of which 97 per cent were novel. Many of the novel viruses were highly divergent and likely included a new subfamily within the Parvoviridae. We identified at least sixty-three virus species that may infect vertebrates—most likely fish and water birds—from the Astroviridae, Birnaviridae, Parvoviridae, and Picornaviridae. No putative human viruses were detected. Importantly, we observed differences in the composition of viral communities at sites impacted by human land use (farming and urban) compared to native forest sites (pristine). At the viral species level, the urban sites had higher diversity (327 virus species) than the farming (n = 150) and pristine sites (n = 119), and more viruses were shared between the urban and farming sites (n = 76) than between the pristine and farming or urban sites (n = 24). The two farming sites had a lower viral abundance across all host types, while the pristine sites had a higher abundance of viruses associated with animals, plants, and fungi. We also identified viruses linked to agriculture and human impact at the river sampling sites in farming and urban areas that were not present at the native forest sites. Although based on a small sample size, our study suggests that human land use can impact viral communities in rivers, such that further work is needed to reduce the impact of intensive farming and urbanisation on water systems.
Collapse
Affiliation(s)
- Rebecca French
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Justine Charon
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Callum Le Lay
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Chris Muller
- Wildbase, School of Veterinary Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| |
Collapse
|
24
|
Solomon C, Hewson I. Putative Invertebrate, Plant, and Wastewater Derived ssRNA Viruses in Plankton of the Anthropogenically Impacted Anacostia River, District of Columbia, USA. Microbes Environ 2022; 37:ME21070. [PMID: 35264468 PMCID: PMC9763036 DOI: 10.1264/jsme2.me21070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Anacostia River is a highly impacted watershed in the Northeastern United States which experiences combined sewage outfall in downstream waters. We examined the composition of RNA viruses at three sites in the river using viral metagenomics. Viromes had well represented Picornaviruses, Tombusviruses, Wolframviruses, Nodaviruses, with fewer Tobamoviruses, Sobemoviruses, and Densoviruses (ssDNA). Phylogenetic ana-lyses of detected viruses provide evidence for putatively autochthonous and allochthonous invertebrate, plant, and vertebrate host origin. The number of viral genomes matching Ribovaria increased downstream, and assemblages were most disparate between distant sites, suggesting impacts of the combined sewage overflows at these sites. Additionally, we recovered a densovirus genome fragment which was highly similar to the Clinch ambidensovirus 1, which has been attributed to mass mortality of freshwater mussels in Northeastern America. Taken together, these data suggest that RNA viromes of the Anacostia River reflect autochthonous production of virus particles by benthic metazoan and plants, and inputs from terrestrial habitats including sewage.
Collapse
Affiliation(s)
- Caroline Solomon
- School of Science, Technology, Accessibility, Mathematics and Public Health, Gallaudet University, 800 Florida Ave NE, Washington, DC 20002 USA
| | - Ian Hewson
- Department of Microbiology, Cornell University, Wing Hall 403, Ithaca NY 14853 USA, Corresponding author. E-mail: ; Tel: +1–607–255–0151; Fax: +1–607–255–3904
| |
Collapse
|