1
|
Jiang X, Gong Y, Xiong J, Ren B, Qiu Y, Lin Z, Tang Y, Wang S, Wang X, Li C, Yang X, Ding S. Reducing arsenic mobilization in sediments: A synergistic effect of oxidation and adsorption with zirconium-manganese binary metal oxides. WATER RESEARCH 2025; 283:123798. [PMID: 40378466 DOI: 10.1016/j.watres.2025.123798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/18/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
Remediation of arsenic (As)-contaminated sediments is challenging, due to surface sediment often being subjected to hypoxic/anoxic conditions where As(Ⅲ) is the dominant species. In this study, a novel capping material comprising zirconium-manganese binary oxides (ZMBO) was synthesized and its feasibility in controlling sedimentary As release investigated using high-resolution sampling, X-ray absorption near edge structure (XANES) spectroscopy, and scanning electron microscopy (SEM) techniques. Results showed ZMBO exhibited both high oxidation efficiency (94 %) and strong adsorption capacity (151.8 mg As/g) for As(Ⅲ). Capping As-contaminated sediments with ZMBO resulted in a negative diffusive flux of -0.08 ng/cm2/s, effectively maintaining low As levels in the overlying water over 150 days. XANES spectra showed As in surface sediments existed predominantly As(V), consistent with high-resolution data indicating ∼90 % of labile As(Ⅲ) was oxidized and adsorbed by ZMBO. Furthermore, ZMBO also promoted Fe(Ⅱ) oxidation to stable hematite in sediments, providing additional adsorption sites for As. By comparing with current capping materials, ZMBO exhibited a balanced performance in terms of its cost-effectiveness, adsorption capacity, remediation effects, and environmental adaptability. This study highlights the potential of ZMBO as a promising capping material for remediating As-contaminated sediments through combined chemical oxidation and adsorption mechanisms, offering sustainable solutions for improving water quality management worldwide.
Collapse
Affiliation(s)
- Xue Jiang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China
| | - Youzi Gong
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China
| | - Jiaxing Xiong
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Boxian Ren
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yewei Qiu
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhiguo Lin
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ying Tang
- Chongqing Key Laboratory of Soil multi-scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shixiong Wang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiaolong Wang
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China
| | - Cai Li
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China.
| | - Xiangjun Yang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Shiming Ding
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
Sun Y, Wu Z, Lan J, Liu Y, Du Y, Ye H, Du D. Effect of sulfate-reducing bacteria (SRB) and dissimilatory iron-reducing bacteria (DIRB) coexistence on the transport and transformation of arsenic in sediments. WATER RESEARCH 2025; 270:122834. [PMID: 39608159 DOI: 10.1016/j.watres.2024.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Sulfate-reducing bacteria (SRBs) and dissimilatory iron-reducing bacteria (DIRBs) are recognized as significant contributors to the occurrence of elevated arsenic (As) levels in groundwater. However, the precise effects and underlying mechanisms of their interactions on As behavior within sediments remain poorly understood. In this investigation, we compared the impacts and mechanisms of DIRBs, SRBs, and mixed bacterial consortia on the migration behavior of As and Fe/S species. Our findings revealed that during the initial phase of the reaction (0-8 days, Stage 1), the mixed bacterial consortium facilitated As release by intensifying the reduction of Fe (III) and sulfate, resulting in a maximum As concentration 1.5 times higher than that observed with either DIRBs or SRBs in isolation. Subsequently, in the intermediate phase (8-20 days, Stage 2), the mixed consortium suppressed the synthesis of sulfate reductase and the secretion of toxic substances (e.g., o-Methyltoluene) associated with steroid degradation pathways. This inhibition consequently reduced the formation of secondary Fe minerals and the fixation of As. Finally, in the latter stage (20-30 days, Stage 3), the system responded to the threat of toxic substances by secreting significant amounts of organic acids to facilitate their decomposition. However, this process also led to the re-decomposition of iron oxides, resulting in the release of As. These observations shed light on the intricate interplay between DIRBs and SRBs within bacterial consortia, elucidating their coordinated actions in inducing the migration and transformation of arsenic.
Collapse
Affiliation(s)
- Yan Sun
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaoyuan Wu
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jirong Lan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Ying Liu
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yaguang Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Hengpeng Ye
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Dongyun Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
3
|
Jia M, Farid MU, Ho YW, Ma X, Wong PW, Nah T, He Y, Boey MW, Lu G, Fang JKH, Fan J, An AK. Advanced nanobubble flotation for enhanced removal of sub-10 µm microplastics from wastewater. Nat Commun 2024; 15:9079. [PMID: 39433744 PMCID: PMC11493987 DOI: 10.1038/s41467-024-53304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Sub-10 µm microplastics (MPs) in aquatic environments pose significant ecological and health risks due to their mobility and potential to carry harmful microcontaminants. Our effluent analysis from a Hong Kong Sewage Treatment Works shows that traditional treatment often fails to effectively remove these MPs. These small-sized MPs are commonly neglected due to challenges in accurate quantification, analysis, and removal. This study introduces a nanobubble-assisted flotation process that enhances the removal efficiency of both regular and irregular small-sized MPs from wastewater. The proposed process outperforms the traditional flotation process by fostering a more effective interaction between bubbles and MPs, increasing removal rates of MPs from 1 µm to 10 µm by up to 12% and providing a total efficiency boost of up to 17% for various particle sizes. Improvements are attributed to enhanced collision and adhesion probabilities, hydrophobic interactions, as well as better floc flotation. Supported by empirical evidence, mathematical models, and Molecular Dynamics simulations, this research elucidates the nanoscale mechanisms at play. The findings confirm the nanobubble-assisted flotation technique as an innovative and practical approach to removing sub-10 µm MPs in water treatment processes.
Collapse
Affiliation(s)
- Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Yuen-Wa Ho
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Yuk Choi Road, Kowloon, Hong Kong SAR, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Theodora Nah
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Min Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Gang Lu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Yuk Choi Road, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
4
|
Ye J, Zuo Y, Chen Q, Yang Z, Liu S, Yang C, Tan X. Micro-nanobubble-assisted As(III) removal from water by Ni-doped MOF materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43913-43926. [PMID: 38913263 DOI: 10.1007/s11356-024-33996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Micro-nanobubbles (MNBs) can form reactive oxygen species (ROS) with high oxidizing potential. In this study, nickel-doped metal-organic framework materials (MOFs) capable of activating molecular oxygen were synthesized using trivalent arsenic (As(III)) as a target pollutant and combined with peroxymonosulfate (PMS) to construct a MOF/MNB/PMS system. The results included the rapid oxidation of As(III), the successful absorption of oxidized As(V), and finally the efficient removal of As. The effects of pH, amount of PMS used, and preparation time of MNBs on the As removal performance of the MOF/MNB/PMS system were investigated experimentally. The changes in the properties of the materials before and after the reaction were analyzed by XPS, and it was found that the main active sites on the surface of the MOFs were the metal elements and the pyridine nitrogen near the carbon atom. The regular morphology and elemental composition of the MOFs were determined by TEM scanning and EDS test, which indicated the presence of nickel. XRD tests before and after the reaction showed that the MOFs were structurally stable. The results of the free radical burst experiments show that the single linear oxygen (1O2) is the main active substance in the system, and that the MNBs are key factors by which the system achieves efficient oxidation performance. In addition to providing a sustainable supply of molecular oxygen to the MOFs during the reaction process, coupling the MNBs with PMS was found to improve the oxidation capacity of the system. The results of this study thus provide a new concept for As removal and advanced oxidation in water bodies.
Collapse
Affiliation(s)
- Jian Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Yize Zuo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Qiang Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Zhiming Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518055, PR China
| | - Shaobo Liu
- School of Architecture and Art, Central South University, Changsha, 410083, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
- Shenzhen Research Institute of Hunan University, Shenzhen, 518055, PR China.
- Hunan Chuke Taiyan New Materials Co., Ltd., Jishou, 416000, PR China.
| |
Collapse
|
5
|
Huang Q, Qi J, Zhou L, Wang Y, Zhang WX, Hu J, Tai R, Wang S, Liu A, Zhang L. Hydrogen Nanobubbles Generated In Situ from Nanoscale Zerovalent Iron with Water to Further Enhance Selenite Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4357-4367. [PMID: 38326940 DOI: 10.1021/acs.est.3c09187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Gas nanobubbles used for water treatment and recovery give rise to great concern for their unique advantages of less byproducts, higher efficiency, and environmental friendliness. Nanoscale zerovalent iron (nZVI), which has also been widely explored in the field of environmental remediation, can generate gas hydrogen by direct reaction with water. Whether nanoscale hydrogen bubbles can be produced to enhance the pollution removal of the nZVI system is one significant concern involved. Herein, we report direct observations of in situ generation of hydrogen nanobubbles (HNBs) from nZVI in water. More importantly, the formed HNBs can enhance indeed the reduction of Se(IV) beyond the chemical reduction ascribed to Fe(0), especially in the anaerobic environment. The possible mechanism is that HNBs enhance the reducibility of the system and promote electron transport in the solution. This study demonstrates a unique function of HNBs combined with nZVI for the pollutant removal and a new approach for in situ HNB generation for potential applications in the fields of in situ remediation agriculture, biotechnology, medical treatment, health, etc.
Collapse
Affiliation(s)
- Qing Huang
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Juncheng Qi
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wang
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jun Hu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Airong Liu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
6
|
Zhang F, Li S, Wang L, Li X. An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation. Int J Mol Sci 2024; 25:1896. [PMID: 38339174 PMCID: PMC10855730 DOI: 10.3390/ijms25031896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The extensive utilization of zinc oxide nanoparticles in consumer products and the industry has led to their substantial entry into the soil through air and surface runoff transportation, which causes ecotoxicity in agro-ecosystems and detrimental effects on crop production. Nanobubbles (diameter size < 1 µm) have many advantages, such as a high surface area, rapid mass transfer, and long retention time. In this study, wheat seedlings were irrigated with a 500 mg L-1 zinc oxide nanoparticle solution delivered in the form of nanobubble watering (nanobubble-ZnO-NPs). We found that nanobubble watering improved the growth and nutrient status of wheat exposed to zinc oxide nanoparticles, as evidenced by increased total foliar nitrogen and phosphorus, along with enhanced leaf dry mass per area. This effect can be attributed to nanobubbles disassembling zinc oxide aggregates formed due to soil organic carbon, thereby mitigating nutrient absorption limitations in plants. Furthermore, nanobubbles improved the capability of soil oxygen input, leading to increased root activity and glycolysis efficiency in wheat roots. This work provides valuable insights into the influence of nanobubble watering on soil quality and crop production and offers an innovative approach for agricultural irrigation that enhances the effectiveness and efficiency of water application.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxin Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichun Wang
- Key Laboratory of Crop Eco-Physiology and Farming System in the Northeastern, Institute of Agricultural Resources and Environment, Ministry of Agriculture and Rural Affair, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Xiangnan Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Huang M, Nhung NTH, Dodbiba G, Fujita T. Mitigation of arsenic accumulation in rice (Oryza sativa L.) seedlings by oxygen nanobubbles in hydroponic cultures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115700. [PMID: 37976934 DOI: 10.1016/j.ecoenv.2023.115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Arsenic (As) is a toxic non-essential metal. Its accumulation in rice has not only seriously affected the growth of rice, but also poses a significant threat to human health. Many reports have been published to decrease the arsenic accumulation in the rice plant by various additives such as chemicals, fertilizers, adsorbents, microorganisms and analyzing the mechanism. Nanobubble is a new technology widely used in agriculture because of its long existence time and high mass transfer efficiency. However, a few studies have investigated the effect of nanobubbles on arsenic uptake in rice. This study investigated the effect of oxygen nanobubbles on the growth and uptake of As in rice. The oxygen nanobubbles could rupture the salinity of nutrients and produce the hydroxyl radical. The hydroxyl radical caused the oxidation of arsenic As(III) to As (V) and the oxidation of ferrous ions. At the same time, the oxidized iron adsorbing As (V) created the iron plaque on the rice roots to stop arsenic introduction into the rice plant. The results indicated that the treatment of oxygen nanobubbles increased rice biomass under As stress, while they increased the chlorophyll content and promoted plant photosynthesis. Oxygen nanobubbles reduced the As content in rice roots to 12.5% and shoots to 46.4%. In other words, it significantly decreased As accumulation in rice. Overall, oxygen nanobubbles mitigated the toxic effects of arsenic on rice and had the potential to reduce the accumulation of arsenic in rice.
Collapse
Affiliation(s)
- Minyi Huang
- College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nguyen Thi Hong Nhung
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Viet Nam
| | - Gjergj Dodbiba
- Graduate School of Engineering, The University of Tokyo, Bunkyo 113-8656, Japan
| | - Toyohisa Fujita
- College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Jia M, Farid MU, Kharraz JA, Kumar NM, Chopra SS, Jang A, Chew J, Khanal SK, Chen G, An AK. Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference. WATER RESEARCH 2023; 245:120613. [PMID: 37738940 DOI: 10.1016/j.watres.2023.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Since the discovery of nanobubbles (NBs) in 1994, NBs have been attracting growing attention for their fascinating properties and have been studied for application in various environmental fields, including water and wastewater treatment. However, despite the intensive research efforts on NBs' fundamental properties, especially in the past five years, controversies and disagreements in the published literature have hindered their practical implementation. So far, reviews of NB research have mainly focused on NBs' role in specific treatment processes or general applications, highlighting proof-of-concept and success stories primarily at the laboratory scale. As such, there lacks a rigorous review that authenticates NBs' potential beyond the bench scale. This review aims to provide a comprehensive and up-to-date analysis of the recent progress in NB research in the field of water and wastewater treatment at different scales, along with identifying and discussing the challenges and prospects of the technology. Herein, we systematically analyze (1) the fundamental properties of NBs and their relevancy to water treatment processes, (2) recent advances in NB applications for various treatment processes beyond the lab scale, including over 20 pilot and full-scale case studies, (3) a preliminary economic consideration of NB-integrated treatment processes (the case of NB-flotation), and (4) existing controversies in NBs research and the outlook for future research. This review is organized with the aim to provide readers with a step-by-step understanding of the subject matter while highlighting key insights as well as knowledge gaps requiring research to advance the use of NBs in the wastewater treatment industry.
Collapse
Affiliation(s)
- Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Nallapaneni Manoj Kumar
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Center for Circular Supplies, HICCER - Hariterde International Council of Circular Economy Research, Palakkad, Kerala 678631, India
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - John Chew
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
9
|
Lyu T, Wu Y, Zhang Y, Fan W, Wu S, Mortimer RJG, Pan G. Nanobubble aeration enhanced wastewater treatment and bioenergy generation in constructed wetlands coupled with microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165131. [PMID: 37364834 DOI: 10.1016/j.scitotenv.2023.165131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Artificial aeration is a widely used approach in wastewater treatment to enhance the removal of pollutants, however, traditional aeration techniques have been challenging due to the low oxygen transfer rate (OTR). Nanobubble aeration has emerged as a promising technology that utilise nano-scale bubbles to achieve higher OTRs owing to their large surface area and unique properties such as longevity and reactive oxygen species generation. This study, for the first time, investigated the feasibility of coupling nanobubble technology with constructed wetlands (CWs) for treating livestock wastewater. The results demonstrated that nanobubble-aerated CWs achieved significantly higher removal efficiencies of total organic carbon (TOC) and ammonia (NH4+-N), at 49 % and 65 %, respectively, compared to traditional aeration treatment (36 % and 48 %) and the control group (27 % and 22 %). The enhanced performance of the nanobubble-aerated CWs can be attributed to the nearly three times higher amount of nanobubbles (Ø < 1 μm) generated from the nanobubble pump (3.68 × 108 particles/mL) compared to the normal aeration pump. Moreover, the microbial fuel cells (MFCs) embedded in the nanobubble-aerated CWs harvested 5.5 times higher electricity energy (29 mW/m2) compared to the other groups. The results suggested that nanobubble technology has the potential to trigger the innovation of CWs by enhancing their capacity for water treatment and energy recovery. Further research needs are proposed to optimise the generation of nanobubbles, allowing them to be effectively coupled with different technologies for engineering implementation.
Collapse
Affiliation(s)
- Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Bedfordshire MK43 0AL, UK
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210000, China
| | - Yang Zhang
- Shenzhen Guanghuiyuan Environment Water Co., Ltd., Shenzhen 518038, China
| | - Wei Fan
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Robert J G Mortimer
- School of Humanities, York St John University, Lord Mayor's Walk, York YO31 7EX, UK
| | - Gang Pan
- School of Humanities, York St John University, Lord Mayor's Walk, York YO31 7EX, UK.
| |
Collapse
|
10
|
Li C, Ding S, Ma X, Wang Y, Sun Q, Zhong Z, Chen M, Fan X. Sediment arsenic remediation by submerged macrophytes via root-released O 2 and microbe-mediated arsenic biotransformation. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131006. [PMID: 36801722 DOI: 10.1016/j.jhazmat.2023.131006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Arsenic (As)-contaminated water restoration is extremely challenging because As remobilization from sediments can result in episodic or long-term release of As to the overlying water. In this study, by combining high-resolution imaging techniques with microbial community profiling, we examined the feasibility of utilizing the rhizoremediation of submerged macrophytes (Potamogeton crispus) to decrease As bioavailability and regulate its biotransformation in sediments. Results showed that P. crispus considerably decreased the rhizospheric labile As flux to lower than 4 pg cm-2 s-1 from larger than 7 pg cm-2 s-1, suggesting its effectiveness in promoting As retention in sediments. Iron plaques induced by radial oxygen loss from roots decreased the mobility of As by sequestering it. Additionally, Mn-oxides may act as an oxidizer for the oxidation of As(III) to As(V) in the rhizosphere, which can further increase the As adsorption owing to the strong binding affinity between As(V) and Fe-oxides. Furthermore, microbially mediated As oxidation and methylation were intensified in the microoxic rhizosphere, which decreased the mobility and toxicity of As by changing its speciation. Our study demonstrated that root-driven abiotic and biotic transformation contribute to As retention in sediments, which lays a foundation for applying macrophytes to the remediation of As-contaminated sediments.
Collapse
Affiliation(s)
- Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xin Ma
- School of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Qin Sun
- College of Environment, Hohai University, Nanjing 210098, China
| | - Zhilin Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianfang Fan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
11
|
Ali J, Yang Y, Pan G. Oxygen micro-nanobubbles for mitigating eutrophication induced sediment pollution in freshwater bodies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117281. [PMID: 36682273 DOI: 10.1016/j.jenvman.2023.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Sediment hypoxia is a growing problem and has negative ecological impacts on the aquatic ecosystem. Hypoxia can disturb the biodiversity and biogeochemical cycles of both phosphorus (P) and nitrogen (N) in water columns and sediments. Anthropogenic eutrophication and internal nutrient release from lakebed sediment accelerate hypoxia to form a dead zone. Thus, sediment hypoxia mitigation is necessary for ecological restoration and sustainable development. Conventional aeration practices to control sediment hypoxia, are not effective due to high cost, sediment disturbance and less sustainability. Owing to high solubility and stability, micro-nanobubbles (MNBs) offer several advantages over conventional water and wastewater treatment practices. Clay loaded oxygen micro-nanobubbles (OMNBs) can be delivered into deep water sediment by gravity and settling. Nanobubble technology provides a promising route for cost-effective oxygen delivery in large natural water systems. OMNBs also have the immense potential to manipulate biochemical pathways and microbial processes for remediating sediment pollution in natural waters. This review article aims to analyze recent trends employing OMNBs loaded materials to mitigate sediment hypoxia and subsequent pollution. The first part of the review highlights various minerals/materials used for the delivery of OMNBs into benthic sediments of freshwater bodies. Release of OMNBs at hypoxic sediment water interphase (SWI) can provide significant dissolved oxygen (DO) to remediate hypoxia induced sediment pollution Second part of the manuscript unveils the impacts of OMNBs on sediment pollutants (e.g., methylmercury, arsenic, and greenhouse gases) remediation and microbial processes for improved biogeochemical cycles. The review article will facilitate environmental engineers and ecologists to control sediment pollution along with ecological restoration.
Collapse
Affiliation(s)
- Jafar Ali
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Yuesuo Yang
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Gang Pan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, NG25 0QF, United Kingdom; Jiangsu Jiuguan Institute of Environment and Resources, Yixing, China.
| |
Collapse
|
12
|
Fan W, Li Y, Lyu T, Yu J, Chen Z, Jarvis P, Huo Y, Xiao D, Huo M. A modelling approach to explore the optimum bubble size for micro-nanobubble aeration. WATER RESEARCH 2023; 228:119360. [PMID: 36402060 DOI: 10.1016/j.watres.2022.119360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Bubble aeration has been widely applied in water/wastewater treatment, however its low gas utilization rate results in high energy consumption. Application of micro-nanobubbles (MNB) has emerged as a process with the potential to significantly increase gas utilisation due to their high relative surface area and high gas-liquid mass transfer efficiency. In this study, we demonstrate through calibrated models that MNB of an optimum bubble size can shrink and burst at or below the water surface enabling (1) all encapsulated gas to thoroughly dissolve in water, and (2) the bursting of nanobubbles to potentially generate free radicals. Through the understanding of MNB dimensional characteristics and bubble behaviour in water, a dynamic model that integrated force balance (i.e. buoyancy force, gravity, drag force, Basset force and virtual mass force), and mass transfer was developed to describe the rising velocity and radius variation of MNB along its upward trajectory. Unlike for conventional millimetre-sized bubbles, intensive gas dissolution of MNBs led to radius reduction for small bubbles, while a large initial radius triggers bubble swelling. The initial water depth was also crucial, where greater depth could drive the potential for bubble shrinkage so that they were more liable to contract. For example, the optimum bubble size of air (42-194 μm) and oxygen (127-470 μm) MNB that could achieve complete gas transfer (100% gas utilisation) for a range of specific water depths (0.5-10 m) were calculated. The modelling results for microbubbles (10-530 μm) were well validated by the experimental data (R2>0.85). However, the validation of the modelling results for nanobubble (<1 μm) aeration requires further study due to a lack of available empirical data. In this study, the proposed model and analysis provided new insights into understanding bubble dynamics in water and offered fundamental guidance for practitioners looking to upgrade bubble aeration system.
Collapse
Affiliation(s)
- Wei Fan
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Yuhang Li
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Jia'ao Yu
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Zhen Chen
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Peter Jarvis
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Yang Huo
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China.
| | - Dan Xiao
- Jilin Academy of Agricultural Science, 1363 Shengtai Street, Changchun 130033, China.
| | - Mingxin Huo
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| |
Collapse
|
13
|
Fundamentals and applications of nanobubbles: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Tang Y, Liu X, Tian R, Li R, Li H. Risk Assessment and Source Identification of Arsenic in Surface Sediments from Caohai Lake, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:698-705. [PMID: 34988608 DOI: 10.1007/s00128-021-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Urban freshwaters containing arsenic are facing an increasing problem of eutrophication. This study evaluated the spatial distribution, ecological risk, and origin of As in surface sediments obtained from Caohai Lake, a typical hypertrophic urban lake in China. It revealed that the total As concentration in surface sediments decreased gradually from north to south, consisted with the lake eutrophication status. The average As level was 161 mg/kg, dominated by reducible and oxidisable fractions. The analyses of geoaccumulation index and enrichment factor indicated that As ranged between moderately-to-heavily and heavily contamination, was severely influenced by anthropogenic factors, i.e. industrial discharges and agricultural activities. Risk assessment code and potential ecological risk index results showed moderate to high potential ecological risk could be observed although the current As risk was low, supporting by the experimentally quantified As release data.
Collapse
Affiliation(s)
- Ying Tang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, Department of Soil Science, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xinmin Liu
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, Department of Soil Science, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Rui Tian
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, Department of Soil Science, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Rui Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, Department of Soil Science, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hang Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, Department of Soil Science, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
15
|
Abstract
Ozone (O3) has been widely used for water and wastewater treatment due to its strong oxidation ability, however, the utilization efficiency of O3 is constrained by its low solubility and short half-life during the treatment process. Thereby, an integrated approach using novel nanobubble technology and ozone oxidation method was studied in order to enhance the ozonization of ammonia. Artificial wastewater (AW) with an initial concentration of 1600 mg/L ammonia was used in this study. In the ozone-nanobubble treatment group, the concentration of nano-sized bubbles was 2.2 × 107 particles/mL, and the bubbles with <200 nm diameter were 14 times higher than those in the ozone-macrobubble treatment control group. Ozone aeration was operated for 5 min in both nanobubble treatment and control groups, however, the sampling and measurement were conducted for 30 min to compare the utilization of O3 for ammonia oxidation. H+ was the by-product of the ammonia ozonation process, thus the pH decreased from 8 to 7 and 7.5 in nanobubble treatment and control groups, respectively, after 30 min of operation. The fast removal of ammonia was observed in both systems in the first 10 min, where the concentration of ammonia decreased from 1600 mg/L to 835 and 1110 mg/L in nanobubble treatment and control groups, respectively. In the nanobubble treatment group, ammonia concentrations kept the fast-decreasing trend and reached the final removal performance of 82.5% at the end of the experiment, which was significantly higher than that (44.2%) in the control group. Moreover, the first-order kinetic model could be used to describe the removal processes and revealed a significantly higher kinetic rate constant (0.064 min−1) compared with that (0.017 min−1) in the control group. With these results, our study highlights the viability of the proposed integrated approach to enhance the ozonation of a high level of ammonia in contaminated water.
Collapse
|
16
|
Han Z, Kurokawa H, Matsui H, He C, Wang K, Wei Y, Dodbiba G, Otsuki A, Fujita T. Stability and Free Radical Production for CO 2 and H 2 in Air Nanobubbles in Ethanol Aqueous Solution. NANOMATERIALS 2022; 12:nano12020237. [PMID: 35055254 PMCID: PMC8779326 DOI: 10.3390/nano12020237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023]
Abstract
In this study, 8% hydrogen (H2) in argon (Ar) and carbon dioxide (CO2) gas nanobubbles was produced at 10, 30, and 50 vol.% of ethanol aqueous solution by the high-speed agitation method with gas. They became stable for a long period (for instance, 20 days), having a high negative zeta potential (−40 to −50 mV) at alkaline near pH 9, especially for 10 vol.% of ethanol aqueous solution. The extended Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory was used to evaluate the nanobubble stability. When the nanobubble in ethanol alkaline aqueous solution changed to an acidic pH of around 5, the zeta potential of nanobubbles was almost zero and the decrease in the number of nanobubbles was identified by the particle trajectory method (Nano site). The collapsed nanobubbles at zero charge were detected thanks to the presence of few free radicals using G-CYPMPO spin trap reagent in electron spin resonance (ESR) spectroscopy. The free radicals produced were superoxide anions at collapsed 8%H2 in Ar nanobubbles and hydroxyl radicals at collapsed CO2 nanobubbles. On the other hand, the collapse of mixed CO2 and H2 in Ar nanobubble showed no free radicals. The possible presence of long-term stable nanobubbles and the absence of free radicals for mixed H2 and CO2 nanobubble would be useful to understand the beverage quality.
Collapse
Affiliation(s)
- Zhenyao Han
- School of Chemistry and Chemical Engineering, College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (Z.H.); (C.H.); (K.W.)
| | - Hiromi Kurokawa
- Algae Biomass Energy System R&D Center (ABES), University of Tsukuba, Tsukuba 305-8572, Japan;
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Chunlin He
- School of Chemistry and Chemical Engineering, College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (Z.H.); (C.H.); (K.W.)
| | - Kaituo Wang
- School of Chemistry and Chemical Engineering, College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (Z.H.); (C.H.); (K.W.)
| | - Yuezou Wei
- School of Nuclear Science and Technology, University of South China, Hengyang City 421001, China;
| | - Gjergj Dodbiba
- Graduate School of Engineering, The University of Tokyo, Bunkyo 113-8656, Japan;
| | - Akira Otsuki
- Ecole Nationale Supérieure de Géologie, Geo Ressources UMR 7359 CNRS, University of Lorraine, 2 Rue du Doyen Marcel Roubault, BP 10162, 54505 Vandoeuvre-lès-Nancy, France;
- Waste Science & Technology, Luleå University of Technology, SE 971 87 Luleå, Sweden
| | - Toyohisa Fujita
- School of Chemistry and Chemical Engineering, College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (Z.H.); (C.H.); (K.W.)
- Correspondence:
| |
Collapse
|