1
|
Torres-Franco AF, Leroy-Freitas D, García-Encina PA, Muñoz R. Viral RNA reduction from wastewaters using microalgae-based treatments: Elucidating the effect of light and zero-valent iron nanoparticles. BIORESOURCE TECHNOLOGY 2025; 427:132389. [PMID: 40089032 DOI: 10.1016/j.biortech.2025.132389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Microalgae-based systems can potentially inactivate E. coli and viruses. In this work, batch algal-bacterial photobioreactors were operated to elucidate the effect of zero-valent iron (ZVI) nanoparticles and light intensity on the reduction of viral RNA (MS2, Phi6 and Bovine coronavirus, BCoV) and uidA gene (E. coli) during secondary wastewater treatment. Biodegradation and abiotic control photoreactors were operated at high light intensity (1100 µE m-2 s-1), with and without ZVI-nanoparticles addition (HLNP and HL) and low light intensity (450 µE m-2 s-1), without nanoparticles (LL). After 72 h, HLNP matched or increased the reductions of at least 99.9 % for viruses and 99 % for uidA achieved within 192 h in HL and LL. Oxidative reactions in the presence of ZVI-nanoparticles seemed to mediate the decay of viral RNA and uidA. This work demonstrated for the first time the potential for enhanced reduction of viral RNA and E. coli by ZVI-nanoparticles during microalgae-based wastewater treatment.
Collapse
Affiliation(s)
- Andrés F Torres-Franco
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Deborah Leroy-Freitas
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
2
|
Shaheen MNF, Ahmed NI, Elmahdy EM. Wastewater and Clinical Based Epidemiology for Viral Surveillance in the Nile Delta of Egypt. Curr Microbiol 2025; 82:296. [PMID: 40394397 DOI: 10.1007/s00284-025-04267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/29/2025] [Indexed: 05/22/2025]
Abstract
The release of inadequately treated wastewater, containing human viruses, into the water environment or agricultural use represent a major problem in public health. In this study, SYBR Green-based real-time polymerase chain (qPCR) was applied to evaluate the prevalence of human polyomavirus (HPyV), papillomavirus (HPV), hepatitis A virus (HAV), and hepatitis E virus (HEV) in urban sewage and among children with acute gastroenteritis. The seasonal distribution in wastewater and viral removal by wastewater treatment process were also evaluated, over the 2 year sampling period. HPyV, HPV, HAV, and HEV were detected in 68%, 39.6% 42.4%, and 33.3% of the raw sewage, respectively, with highest incidence in winter season. In treated sewage samples, HPyV, HPV, HAV, and HEV were detected in 21%, 9.4%, 18.7%, and 0%, respectively. Furthermore, among the 200 diarrheal stool samples, HPyV, HPV, HAV, and HEV were detected in 72.5%, 50%, 13%, and 5%, respectively. HPyV was more prevalent in both environmental and clinical samples. The mean concentration of these viruses in raw sewage, treated sewage, and stool samples was 3.62 × 106 GC/ml, 4.03 × 103 GC/ml, and 4.05 × 106 GC/g, respectively. Examination of wastewater treatment process efficiency based on mean concentration values at entry and exit observed an overall reduction of 49.5%, 47.9%, 41.2%, 100%, for HPyV, HPV, HAV, and HEV, respectively. This study showed the benefit of environmental monitoring as an additional tool to investigate the epidemiology of these viruses circulating in a given community.
Collapse
Affiliation(s)
- Mohamed Nasr Fathi Shaheen
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Nehal Ismail Ahmed
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Elmahdy Mohamed Elmahdy
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
3
|
Wang Y, He GX, Sanchez-Quete F, Loeb SK. Systematic Review and Meta-analysis on the Inactivation Rate of Viruses and Bacteriophage by Solar Wavelength Radiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7421-7439. [PMID: 40210473 DOI: 10.1021/acs.est.4c04766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Sunlight is a known biocide, and photodriven inactivation is an important avenue for controlling viruses in both natural and engineered systems. However, there remain significant unknowns regarding damage to viruses by sunlight, including the impact of wavelength and viral characteristics. Herein, a systematic review of the literature and meta-analysis was conducted to identify inactivation rate constants (k-values) when exposed to solar wavelengths (280-700 nm) for common human viruses and surrogates in natural and synthetic matrices. We identified 457 k-values, with 356 for nonenveloped viruses. Extracted rate constants were transformed into UV fluence-normalized k-values to isolate the most photobiologically relevant wavelengths in the solar spectrum and reported for the first time in terms of energy, rather than time, based units. Each spectral region was assessed independently, with UVB illumination reporting the highest inactivation rates, UVA contributing to inactivation both in the presence and absence of photosensitizers, and visible light demonstrating no biocidal activity. Inactivation mechanisms are reviewed identifying knowledge gaps in translating UVC mechanisms to longer wavelengths. The data compiled in this meta-analysis can be applied to inform the environmental transport of viruses, estimate solar disinfection performance in variable light conditions, or design disinfection systems based on UVA and UVB light.
Collapse
Affiliation(s)
- Yiding Wang
- Department of Civil Engineering, McGill University, 817 Sherbrooke St. W, Montreal, Quebec H3A OC3, Canada
| | - Greyson Xinghan He
- Department of Civil Engineering, McGill University, 817 Sherbrooke St. W, Montreal, Quebec H3A OC3, Canada
| | - Fernando Sanchez-Quete
- Department of Civil Engineering, McGill University, 817 Sherbrooke St. W, Montreal, Quebec H3A OC3, Canada
| | - Stephanie K Loeb
- Department of Civil Engineering, McGill University, 817 Sherbrooke St. W, Montreal, Quebec H3A OC3, Canada
| |
Collapse
|
4
|
Hua Y, Chen S, Tong T, Li X, Ji R, Xu Q, Zhang Y, Dai X. Elucidating the Molecular Mechanisms and Comprehensive Effects of Sludge-Derived Plant Biostimulants on Crop Growth: Insights from Metabolomic Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404210. [PMID: 39540297 PMCID: PMC11727372 DOI: 10.1002/advs.202404210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The utilization of urban waste for land management plays a crucial role in reshaping material flows between human activities and the environment. Sewage sludge alkaline thermal hydrolysis (ATH) produces sludge-derived plant biostimulants (SPB), which have garnered attention due to the presence of indole-3-acetic acid. However, there remains a gap in understanding SPB's molecular-level effects and its comprehensive impact on crops throughout their growth cycle. In this study, non-targeted and targeted metabolomic approaches are employed to analyze 51 plant hormones and 1,177 metabolites, revealing novel insights. The findings demonstrate that low concentrations of SPB exerted multiple beneficial effects on rice roots, leaves, and the root-soil system, facilitating rapid cell division and enhancing antioxidant defense mechanisms. These results provide a vital foundation for understanding ATH metabolic pathways and advocating for widespread SPB application, offering significant implications for sustainable land management.
Collapse
Affiliation(s)
- Yu Hua
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Shuxian Chen
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Tong Tong
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijing100012China
| | - Xiaoou Li
- Nantong Yuezichun Biological Agriculture Technology Co., LtdNantong226000China
| | - Rongting Ji
- Nanjing Institute of Environmental ScienceMinistry of Ecology and Environment of the People's Republic of ChinaNanjing210042China
| | - Qiujin Xu
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijing100012China
| | - Yue Zhang
- China Civil Engineering Society Water Industry AssociationBeijing100082China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| |
Collapse
|
5
|
Zhang J, Zhang J, Sano D, Chen R. Comparison of activated sludge and virus interactions in aerobic and anaerobic membrane bioreactors. iScience 2024; 27:111450. [PMID: 39735431 PMCID: PMC11681883 DOI: 10.1016/j.isci.2024.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Membrane bioreactors (MBRs) are effective sewage treatment technologies, yet the differences in virus removal efficiency between aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR), remain inadequately understood. This study compared the virus removal efficiency of AeMBR and AnMBR, focusing on the interactions between aerobic (AeS) and anaerobic (AnS) activated sludge and viruses in the sewage treatment process. Results showed average log removal values (LRVs) for MS2 of 2.53 ± 0.54 in AeMBR and 1.64 ± 0.90 in AnMBR due to the higher virus inactivation in the aerobic mixed liquor. The virus concentration in AnS was greater than in AeS, consistent with the predictions from the pseudo-second-order kinetic model. Soluble extracellular polymeric substances (S-EPS) were key to virus adsorption in AeS, while tightly bound EPS (TB-EPS) were significant in AnS. Additionally, more fluorescent substances in AnS contributed to virus adsorption, while more functional groups in AeS offered adsorption sites.
Collapse
Affiliation(s)
- Jinfan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| | - Jie Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| | - Daisuke Sano
- Department of Civil and Environment Engineering, Graduate School of Engineering, Tohoku University, Aoba 606-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| |
Collapse
|
6
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Yang W, Cai C, Wang S, Wang X, Dai X. Unveiling the inactivation mechanisms of different viruses in sludge anaerobic digestion based on factors identification and damage analysis. BIORESOURCE TECHNOLOGY 2024; 413:131541. [PMID: 39341425 DOI: 10.1016/j.biortech.2024.131541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Despite anaerobic digestion having potential for pathogen reduction in sewage sludge, the behaviors of viruses as the primary health concern are rarely studied. This study investigated the inactivation kinetics and mechanisms of four typical virus surrogates with different structures in mesophilic (MAD) and thermophilic (TAD) anaerobic digestion of sludge. Virus inactivation in MAD was virus-type-dependent correspondingly to different function loss. Temperature drove the faster inactivation proceeding for enveloped Phi6, while temperature and ammonia were the critical inactivation factors for nonenveloped MS2, causing genome degradation and protein functional damage. Interaction with sludge solids played critical role in DNA viruses T4 and Phix174 inactivation via inducing host binding function damage. By comparison, TAD enhanced viral protein denaturation, bringing efficient inactivation with reducing heterogeneity among nonenveloped viruses. These insights into unique virus behaviors in anaerobic digestion systems can provide guidance for developing more effective disinfection protocols and improving sludge biosafety.
Collapse
Affiliation(s)
- Wan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Manoha C, Dequiedt AL, Thery L, Marotel M, Pez F, Vouillon B, Gueneau E, de Rougemont A. Multisite community-scale monitoring of respiratory and enteric viruses in the effluent of a nursing home and in the inlet of the local wastewater treatment plant. Appl Environ Microbiol 2024; 90:e0115824. [PMID: 39387558 PMCID: PMC11577779 DOI: 10.1128/aem.01158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
The aim of this study was to evaluate whether community-level monitoring of respiratory and enteric viruses in wastewater can provide a comprehensive picture of local virus circulation. Wastewater samples were collected weekly at the wastewater treatment plant (WWTP) inlet and at the outlet of a nearby nursing home (NH) in Burgundy, France, during the winter period of 2022/2023. We searched for the pepper mild mottle virus as an indicator of fecal content as well as for the main respiratory viruses [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, and respiratory syncytial virus] and enteric viruses (rotavirus, sapovirus, norovirus, astrovirus, and adenovirus). Samples were analyzed using real-time reverse transcription PCR-based methods. SARS-CoV-2 was the most frequently detected respiratory virus, with 66.7% of positive samples from the WWTP and 28.6% from the NH. Peaks of SARS-CoV-2 were consistent with the chronological incidence of infections recorded in the sentinel surveillance and the nearby hospital databases. The number of positive samples was lower in the NH than in WWTP for the three respiratory viruses. Enteric viruses were frequently detected, most often sapovirus and norovirus genogroup II, accounting both for 77.8% of positive samples in the WWTP and 57.1% and 37%, respectively, in the NH. The large circulation of sapovirus was unexpected in particular in the NH. Combined wastewater surveillance using simple optimized methods can be a valuable tool for monitoring viral circulation and may serve as a suitable early warning system for identifying both local outbreaks and the onset of epidemics. These results encourage the application of wastewater-based surveillance (WBS) to SARS-CoV2, norovirus, and sapovirus.IMPORTANCEWBS provides valuable information on the spread of epidemic viruses in the environment using appropriate and sensitive detection methods. By monitoring the circulation of viruses using reverse transcription PCR methods in wastewater from the inlet of a wastewater treatment plant and the outlet of a nearby retirement home (connected to the same collective sewer network), we aimed to demonstrate that implementing combined WBS at key community sites allows effective detection of the occurrence of respiratory (influenza, respiratory syncytial virus, and SARS-CoV-2) and enteric (norovirus, rotavirus, and sapovirus) virus infections within a given population. This analysis on a localized scale provided new information on the viral circulation in the two different sites. Implementing WBS to monitor the circulation or the emergence of infectious diseases is an important means of alerting the authorities and improving public health management. WBS could participate actively to the health of humans, animals, and the environment.
Collapse
Affiliation(s)
- Catherine Manoha
- Laboratory of Virology, University Hospital of Dijon Bourgogne, Dijon, France
| | - Anne-Laure Dequiedt
- Departmental Laboratory of Côte d’Or, Departmental Council of Côte-d'Or, Dijon, France
| | - Lucie Thery
- National Reference Centre for Gastroenteritis Viruses, University Hospital of Dijon Bourgogne, Dijon, France
| | - Marina Marotel
- Departmental Laboratory of Côte d’Or, Departmental Council of Côte-d'Or, Dijon, France
| | | | - Bruno Vouillon
- Departmental Laboratory of Côte d’Or, Departmental Council of Côte-d'Or, Dijon, France
| | - Eric Gueneau
- Departmental Laboratory of Côte d’Or, Departmental Council of Côte-d'Or, Dijon, France
| | - Alexis de Rougemont
- Laboratory of Virology, University Hospital of Dijon Bourgogne, Dijon, France
- National Reference Centre for Gastroenteritis Viruses, University Hospital of Dijon Bourgogne, Dijon, France
| |
Collapse
|
9
|
Yang S, Jiao Y, Dong Q, Li S, Xu C, Liu Y, Sun L, Huang X. Evaluating approach uncertainties of quantitative detection of SARS-CoV-2 in wastewater: Concentration, extraction and amplification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175285. [PMID: 39102960 DOI: 10.1016/j.scitotenv.2024.175285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Substantial uncertainties pose challenges to the accuracy of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) quantification in wastewater. We conducted a comprehensive evaluation of two concentration methods, three nucleic acid extraction methods, and the amplification performance of eight primer-probe sets. Our results showed that the two concentration methods exhibited similar recovery rates. Specifically, using a 30 kDa cut-off ultrafilter and a centrifugal force of 2500 g achieved the highest virus recovery rates (27.32 ± 8.06 % and 26.37 ± 7.77 %, respectively), with lower corresponding quantification uncertainties of 29.51 % and 29.47 % in ultrafiltration methods. Similarly, a 15 % PEG concentration with 1.5 M NaCl markedly improved virus recovery (26.76 ± 5.92 % and 28.47 ± 6.74 %, respectively), and reducing variation to 22.16 % and 23.66 % in the PEG precipitation method. Additionally, employing a vigorous bead-beating approach at 6 m/s during viral RNA extraction significantly increased RNA yield, with an efficiency reaching up to 82.18 %. Among the evaluated eight primer-probe sets, the E_Sarbeco primer-probe set provided the most stable and consistent quantitative results across various sample matrices. These findings are crucial for establishing robust viral quantification protocols and enhancing methodological precision for effective wastewater surveillance, enabling sensitive and precise detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yang Jiao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| | - Lingli Sun
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
10
|
Chaqroun A, Bertrand I, Wurtzer S, Moulin L, Boni M, Soubies S, Boudaud N, Gantzer C. Assessing infectivity of emerging enveloped viruses in wastewater and sewage sludge: Relevance and procedures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173648. [PMID: 38825204 DOI: 10.1016/j.scitotenv.2024.173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
The emergence of SARS-CoV-2 has heightened the need to evaluate the detection of enveloped viruses in the environment, particularly in wastewater, within the context of wastewater-based epidemiology. The studies published over the past 80 years focused primarily on non-enveloped viruses due to their ability to survive longer in environmental matrices such as wastewater or sludge compared to enveloped viruses. However, different enveloped viruses survive in the environment for different lengths of time. Therefore, it is crucial to be prepared to assess the potential infectious risk that may arise from future emerging enveloped viruses. This will require appropriate tools, notably suitable viral concentration methods that do not compromise virus infectivity. This review has a dual purpose: first, to gather all the available literature on the survival of infectious enveloped viruses, specifically at different pH and temperature conditions, and in contact with detergents; second, to select suitable concentration methods for evaluating the infectivity of these viruses in wastewater and sludge. The methodology used in this data collection review followed the systematic approach outlined in the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. Concentration methods cited in the data gathered are more tailored towards detecting the enveloped viruses' genome. There is a lack of suitable methods for detecting infectious enveloped viruses in wastewater and sludge. Ultrafiltration, ultracentrifugation, and polyethylene glycol precipitation methods, under specific/defined conditions, appear to be relevant approaches. Further studies are necessary to validate reliable concentration methods for detecting infectious enveloped viruses. The choice of culture system is also crucial for detection sensitivity. The data also show that the survival of infectious enveloped viruses, though lower than that of non-enveloped ones, may enable environmental transmission. Experimental data on a wide range of enveloped viruses is required due to the variability in virus persistence in the environment.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | | | | | - Mickael Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | | | | | | |
Collapse
|
11
|
Goitom E, Ariano S, Gilbride K, Yang MI, Edwards EA, Peng H, Dannah N, Farahbakhsh F, Hataley E, Sarvi H, Sun J, Waseem H, Oswald C. Identification of environmental and methodological factors driving variability of Pepper Mild Mottle Virus (PMMoV) across three wastewater treatment plants in the City of Toronto. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172917. [PMID: 38701931 DOI: 10.1016/j.scitotenv.2024.172917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
PMMoV has been widely used to normalize the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, influenza, and respiratory syncytial virus (RSV) to account for variations in the fecal content of wastewater. PMMoV is also used as an internal RNA recovery control for wastewater-based epidemiology (WBE) tests. While potentially useful for the interpretation of WBE data, previous studies have suggested that PMMoV concentration can be affected by various physico-chemical characteristics of wastewater. There is also the possibility that laboratory methods, particularly the variability in centrifugation steps to remove supernatant from pellets can cause PMMoV variability. The goal of this study is to improve our understanding of the main drivers of PMMoV variability by assessing the relationship between PMMoV concentration, the physico-chemical characteristics of wastewater, and the methodological approach for concentrating wastewater samples. We analyzed 24-hour composite wastewater samples collected from the influent stream of three wastewater treatment plants (WWTPs) located in the City of Toronto, Ontario, Canada. Samples were collected 3 to 5 times per week starting from the beginning of March 2021 to mid-July 2023. The influent flow rate was used to partition the data into wet and dry weather conditions. Physico-chemical characteristics (e.g., total suspended solids (TSS), biological oxygen demand (BOD), alkalinity, electrical conductivity (EC), and ammonia (NH3)) of the raw wastewater were measured, and PMMoV was quantified. Spatial and temporal variability of PMMoV was observed throughout the study period. PMMoV concentration was significantly higher during dry weather conditions. Multiple linear regression analysis demonstrates that the number and type of physico-chemical parameters that drive PMMoV variability are site-specific, but overall BOD and alkalinity were the most important predictors. Differences in PMMoV concentration for a single WWTP between two different laboratory methods, along with a weak correlation between pellet mass and TSS using one method may indicate that differences in sample concentration and subjective subsampling bias could alter viral recovery and introduce variability to the data.
Collapse
Affiliation(s)
- Eyerusalem Goitom
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Sarah Ariano
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada; Department of Earth and Planetary Sciences, McGill University, Canada
| | - Kim Gilbride
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Canada; School of the Environment, University of Toronto, Canada
| | - Nora Dannah
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Farnaz Farahbakhsh
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Eden Hataley
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Hooman Sarvi
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Canada
| | - Hassan Waseem
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Claire Oswald
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada.
| |
Collapse
|
12
|
Kantor RS, Jiang M. Considerations and Opportunities for Probe Capture Enrichment Sequencing of Emerging Viruses from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8161-8168. [PMID: 38691513 PMCID: PMC11097388 DOI: 10.1021/acs.est.4c02638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Until recently, wastewater-based monitoring for pathogens of public health concern primarily used PCR-based quantification methods and targeted sequencing for specific pathogens (e.g., SARS-CoV-2). In the past three years, researchers have expanded sequencing to monitor a broad range of pathogens, applying probe capture enrichment to wastewater. The goals of those studies included (1) monitoring and expanding fundamental knowledge of disease dynamics for known pathogens and (2) evaluating the potential for early detection of emerging diseases resulting from zoonotic spillover or novel viral variants. Several studies using off-the-shelf probe panels designed for clinical and environmental surveillance reported that enrichment increased virus relative abundance but did not recover complete genomes for most nonenteric viruses. Based on our experience and recent results reported by others using these panels for wastewater, clinical, and synthetic samples, we discuss challenges and technical factors that affect the rates of false positive and false negative results. We identify trade-offs and opportunities throughout the workflow, including in wastewater sample processing, probe panel design, and bioinformatic analysis. We suggest tailored methods of virus concentration and background removal, carefully designed probe panels, and multithresholded bioinformatics analysis.
Collapse
Affiliation(s)
- Rose S. Kantor
- Department of Civil and Environmental
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Minxi Jiang
- Department of Civil and Environmental
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Carine MR, Pagilla KR. A mass balance approach for quantifying the role of natural decay and fate mechanisms on SARS-CoV-2 genetic marker removal during water reclamation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11015. [PMID: 38599573 DOI: 10.1002/wer.11015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
The recent SARS-CoV-2 outbreak yielded substantial data regarding virus fate and prevalence at water reclamation facilities (WRFs), identifying influential factors as natural decay, adsorption, light, pH, salinity, and antagonistic microorganisms. However, no studies have quantified the impact of these factors in full scale WRFs. Utilizing a mass balance approach, we assessed the impact of natural decay and other fate mechanisms on genetic marker removal during water reclamation, through the use of sludge and wastewater genetic marker loading estimates. Results indicated negligible removal of genetic markers during P/PT (primary effluent (PE) p value: 0.267; preliminary and primary treatment (P/PT) accumulation p value: 0.904; and thickened primary sludge (TPS) p value: 0.076) indicating no contribution of natural decay and other fate mechanisms toward removal in P/PT. Comparably, adsorption and decomposition was found to be the dominant pathway for genetic marker removal (thickened waste activated sludge (TWAS) log loading 9.75 log10 GC/day); however, no estimation of log genetic marker accumulation could be carried out due to high detections in TWAS. PRACTITIONER POINTS: The mass balance approach suggested that the contribution of natural decay and other fate mechanisms to virus removal during wastewater treatment are negligible compared with adsorption and decomposition in P/PT (p value: 0.904). During (P/PT), a higher viral load remained in the (PE) (14.16 log10 GC/day) compared with TPS (13.83 log10 GC/day); however, no statistical difference was observed (p value: 0.280) indicting that adsorption/decomposition most probably did not occur. In secondary treatment (ST), viral genetic markers in TWAS were consistently detected (13.41 log10 GC/day) compared with secondary effluent (SE), indicating that longer HRT and the potential presence of extracellular polymeric substance-containing enriched biomass enabled adsorption/decomposition. Estimations of total solids and volatile solids for TPS and TWAS indicated that adsorption affinity was different between solids sampling locations (p value: <0.0001).
Collapse
Affiliation(s)
- Madeline R Carine
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
14
|
Toribio-Avedillo D, Gómez-Gómez C, Sala-Comorera L, Galofré B, Muniesa M. Adapted methods for monitoring influenza virus and respiratory syncytial virus in sludge and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170636. [PMID: 38331285 DOI: 10.1016/j.scitotenv.2024.170636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Wastewater-based surveillance constitutes a valuable methodology for the continuous monitoring of viral circulation, with the capacity to function as an early warning system. It holds particular significance in scenarios where respiratory viruses exhibit overlapping clinical presentations, as occurs with SARS-CoV-2, influenza virus (IV), and respiratory syncytial virus (RSV), and allows seasonal virus outbreaks to be distinguished from COVID-19 peaks. Furthermore, sewage sludge, given it harbors concentrated human waste from a large population, serves as a substantial reservoir for pathogen detection. To effectively integrate wastewater-based epidemiology into infectious disease surveillance, the detection methods employed in wastewater samples must be adapted to the distinct characteristics of sludge matrices. In this study, we adapted and applied protocols for the detection of IV and RSV in sewage sludge, comparing their performance with the results obtained in wastewater. To assess the efficiency of these protocols, sludge and wastewater samples were spiked with IV and RSV RNA, either free or incorporated in lentiviral particles. Samples were concentrated using the aluminum hydroxide adsorption-precipitation method before viral RNA extraction. Absolute virus quantification was carried out by RT-qPCR, including an internal control to monitor potential inhibitory factors. Recovery efficiencies for both free IV and RSV RNA were 60 % in sludge, and 75 % and 71 % respectively in wastewater, whereas the values for IV and RSV RNA in lentiviral particles were 16 % and 10 % in sludge and 21 % and 17 % in wastewater respectively. Additionally, the protocol enabled the quantification of naturally occurring IV and RSV in wastewater and sludge samples collected from two wastewater treatment plants during the winter months, thus affirming the efficacy of the employed methodologies.
Collapse
Affiliation(s)
- Daniel Toribio-Avedillo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain
| | - Belén Galofré
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, General Batet 1-7, Barcelona 08028, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain.
| |
Collapse
|
15
|
Dong T, Ai J, Zong Y, Zhang Y, Li L, Zhou H, Peng S, He H, Zhang Z, Wang Q. Novel multiplexed alkali enzyme lysis coupled with EDTA pretreatment for RNA virus extraction from wastewater sludge: Optimization, recovery, and detection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120102. [PMID: 38228046 DOI: 10.1016/j.jenvman.2024.120102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
RNA viruses are readily enriched in wastewater sludge owing to adsorption by extracellular polymeric substances (EPS) during wastewater treatment, causing pathogenicity. However, conventional wastewater extraction methods often fail to fully extract these viruses from sludge. In this study, three methods: enzymatic (ENP), alkaline (ALP), and ethylenediaminetetraacetic acid (EDTA) pretreatments were applied to sludges and promote the RNA virus extraction from sludge. Our results show that the total recovery rate of RNA viruses increased by 87.73% after ENP pretreatment, whereas ALP pretreatment inhibited virus extraction. The highest recovery rate of viruses from sludge, reaching 296.80%, was achieved with EDTA pretreatment (EDP) coupled with ENP. Notably, the most significant increase was observed in the abundance of Astroviruses, which increased from 7.60 × 107 to 7.86 × 108 copies/g TSS after EDP + ENP treatment. Our investigations revealed that virus extraction was affected by a class of short-wavelength protein substances, as opposed to tryptophan or tyrosine, which were eluted by proteins with beef paste buffer by substitution after EDP + ENP treatment. The results of this study provide essential insights for sludge-based epidemiology with the required sensitivity for managing the extraction of RNA epidemic viruses to control viral transmission.
Collapse
Affiliation(s)
- Tianyi Dong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jing Ai
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Yuxi Zong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Sainan Peng
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Zhengxuan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
16
|
Torres-Franco AF, Leroy-Freitas D, Martinez-Fraile C, Rodríguez E, García-Encina PA, Muñoz R. Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems. WATER RESEARCH 2024; 248:120834. [PMID: 37984037 DOI: 10.1016/j.watres.2023.120834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Anaerobic and microalgae-based technologies for municipal wastewater treatment have emerged as sustainable alternatives to activated sludge systems. However, viruses are a major sanitary concern for reuse applications of liquid and solid byproducts from these technologies. To assess their capacity to reduce viruses during secondary wastewater treatment, enveloped Phi6 and nonenveloped MS2 bacteriophages, typically used as surrogates of several types of wastewater viruses, were spiked into batch bioreactors treating synthetic municipal wastewater (SMWW). The decay of Phi6 and MS2 in anaerobic and microalgae-based reactors was compared with the decay in activated sludge batch reactors for 96 h (Phi6) and 144 h (MS2). In each reactor, bacteriophages in the soluble and solids fractions were titered, allowing the assessment of virus partitioning to biomass over time. Moreover, the influence of abiotic conditions such as agitation, oxygen absence and light excess in activated sludge, anaerobic and microalgae reactors, respectively, was assessed using dedicated SMWW control reactors. All technologies showed Phi6 and MS2 reductions. Phi6 was reduced in at least 4.7 to 6.5 log10 units, with 0 h concentrations ranging from 5.0 to 6.5 log10 PFU mL-1. Similarly, reductions achieved for MS2 were of at least 3.9 to 7.2 log10 units, from starting concentrations of 8.0 to 8.6 log10 PFU mL-1. Log-logistic models adjusted to bacteriophages' decay indicated T90 values in activated sludge and microalgae reactors of 2.2 and 7.9 h for Phi6 and of 1.0 and 11.5 h for MS2, respectively, all within typical hydraulic retention times (HRT) of full-scale operation. In the case of the microalgae technology, T99 values for Phi6 and MS2 of 12.7 h and 13.6 h were also lower than typical operating HRTs (2-10 d), while activated sludge and anaerobic treatment achieved less than 99 % of Phi6 and 50 % of MS2 inactivation within 12 h of typical HRT, respectively. Thus, the microalgae-based treatment exhibited a higher potential to reduce the disinfection requirements of treated wastewater.
Collapse
Affiliation(s)
- Andrés F Torres-Franco
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| | - Deborah Leroy-Freitas
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Cristina Martinez-Fraile
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Elisa Rodríguez
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| |
Collapse
|
17
|
Hegazy N, Tian X, D'Aoust PM, Pisharody L, Towhid ST, Mercier É, Zhang Z, Wan S, Thakali O, Kabir MP, Fang W, Nguyen TB, Ramsay NT, MacKenzie AE, Graber TE, Guilherme S, Delatolla R. Impact of coagulation on SARS-CoV-2 and PMMoV viral signal in wastewater solids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5242-5253. [PMID: 38112868 DOI: 10.1007/s11356-023-31444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Wastewater surveillance (WWS) of SARS-CoV-2 has become a crucial tool for monitoring COVID-19 cases and outbreaks. Previous studies have indicated that SARS-CoV-2 RNA measurement from testing solid-rich primary sludge yields better sensitivity compared to testing wastewater influent. Furthermore, measurement of pepper mild mottle virus (PMMoV) signal in wastewater allows for precise normalization of SARS-CoV-2 viral signal based on solid content, enhancing disease prevalence tracking. However, despite the widespread adoption of WWS, a knowledge gap remains regarding the impact of ferric sulfate coagulation, commonly used in enhanced primary clarification, the initial stage of wastewater treatment where solids are sedimented and removed, on SARS-CoV-2 and PMMoV quantification in wastewater-based epidemiology. This study examines the effects of ferric sulfate addition, along with the associated pH reduction, on the measurement of SARS-CoV-2 and PMMoV viral measurements in wastewater primary clarified sludge through jar testing. Results show that the addition of Fe3+ concentrations in the conventional 0 to 60 mg/L range caused no effect on SARS-CoV-2 N1 and N2 gene region measurements in wastewater solids. However, elevated Fe3+ concentrations were shown to be associated with a statistically significant increase in PMMoV viral measurements in wastewater solids, which consequently resulted in the underestimation of PMMoV-normalized SARS-CoV-2 viral signal measurements (N1 and N2 copies/copies of PMMoV). The observed pH reduction from coagulant addition did not contribute to the increased PMMoV measurements, suggesting that this phenomenon arises from the partitioning of PMMoV viral particles into wastewater solids.
Collapse
Affiliation(s)
- Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Xin Tian
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | | | - Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Tram B Nguyen
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Nathan T Ramsay
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Ouyang L, Wang N, Irudayaraj J, Majima T. Virus on surfaces: Chemical mechanism, influence factors, disinfection strategies, and implications for virus repelling surface design. Adv Colloid Interface Sci 2023; 320:103006. [PMID: 37778249 DOI: 10.1016/j.cis.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
While SARS-CoV-2 is generally under control, the question of variants and infections still persists. Fundamental information on how the virus interacts with inanimate surfaces commonly found in our daily life and when in contact with the skin will be helpful in developing strategies to inhibit the spread of the virus. Here in, a critically important review of current understanding of the interaction between virus and surface is summarized from chemistry point-of-view. The Derjaguin-Landau-Verwey-Overbeek and extended Derjaguin-Landau-Verwey-Overbeek theories to model virus attachments on surfaces are introduced, along with the interaction type and strength, and quantification of each component. The virus survival and transfer are affected by a combination of biological, physical, and chemical parameters, as well as environmental parameters. The surface properties for virus and virus survival on typical surfaces such as metals, plastics, and glass are summarized. Attention is also paid to the transfer of virus to/from surfaces and skin. Typical virus disinfection strategies utilizing heat, light, chemicals, and ozone are discussed together with their disinfection mechanism. In the last section, design principles for virus repelling surface chemistry such as surperhydrophobic or surperhydrophilic surfaces are also introduced, to demonstrate how the integration of surface property control and advanced material fabrication can lead to the development of functional surfaces for mitigating the effect of viral infection upon contact.
Collapse
Affiliation(s)
- Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joseph Irudayaraj
- Department of Bioengineering, College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Tetsuro Majima
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
19
|
Roldan-Hernandez L, Boehm AB. Adsorption of Respiratory Syncytial Virus, Rhinovirus, SARS-CoV-2, and F+ Bacteriophage MS2 RNA onto Wastewater Solids from Raw Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13346-13355. [PMID: 37647137 PMCID: PMC10501194 DOI: 10.1021/acs.est.3c03376] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Despite the widespread adoption of wastewater surveillance, more research is needed to understand the fate and transport of viral genetic markers in wastewater. This information is essential for optimizing monitoring strategies and interpreting wastewater surveillance data. In this study, we examined the solid-liquid partitioning behavior of four viruses in wastewater: SARS-CoV-2, respiratory syncytial virus (RSV), rhinovirus (RV), and F+ coliphage/MS2. We used two approaches: (1) laboratory partitioning experiments using lab-grown viruses and (2) distribution experiments using endogenous viruses in raw wastewater. Partition experiments were conducted at 4 and 22 °C. Wastewater samples were spiked with varying concentrations of each virus, solids and liquids were separated via centrifugation, and viral RNA concentrations were quantified using reverse-transcription-digital droplet PCR (RT-ddPCR). For the distribution experiments, wastewater samples were collected from six wastewater treatment plants and processed without spiking exogenous viruses; viral RNA concentrations were measured in wastewater solids and liquids. In both experiments, RNA concentrations were higher in the solid fraction than the liquid fraction by approximately 3-4 orders of magnitude. Partition coefficients (KF) ranged from 2000-270,000 mL·g-1 across viruses and temperature conditions. Distribution coefficients (Kd) were consistent with results from partitioning experiments. Further research is needed to understand how virus and wastewater characteristics might influence the partitioning of viral genetic markers in wastewater.
Collapse
Affiliation(s)
- Laura Roldan-Hernandez
- Department of Civil &
Environmental Engineering, School of Engineering and Doerr School
of Sustainability, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Alexandria B. Boehm
- Department of Civil &
Environmental Engineering, School of Engineering and Doerr School
of Sustainability, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
20
|
Upadrasta A, Daniels S, Thompson TP, Gilmore B, Humphreys H. In situ generation of cold atmospheric plasma-activated mist and its biocidal activity against surrogate viruses for COVID-19. J Appl Microbiol 2023; 134:lxad181. [PMID: 37580171 DOI: 10.1093/jambio/lxad181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
AIMS To provide an alternative to ultra violet light and vapourized hydrogen peroxide to enhance decontamination of surfaces as part of the response to the COVID-19 pandemic. METHODS AND RESULTS We developed an indirect method for in situ delivery of cold plasma and evaluated the anti-viral activity of plasma-activated mist (PAM) using bacteriophages phi6, MS2, and phiX174, surrogates for SARS-CoV-2. Exposure to ambient air atmospheric pressure derived PAM caused a 1.71 log10 PFU ml-1 reduction in phi6 titer within 5 min and a 7.4 log10 PFU ml-1 reduction after 10 min when the the PAM source was at 5 and 10 cm. With MS2 and phiX174, a 3.1 and 1.26 log10 PFU ml-1 reduction was achieved, respectively, after 30 min. The rate of killing was increased with longer exposure times but decreased when the PAM source was further away. Trace amounts of reactive species, hydrogen peroxide and nitrite were produced in the PAM, and the anti-viral activity was probably attributable to these and their secondary reactive species. CONCLUSIONS PAM exhibits virucidal activity against surrogate viruses for COVID-19, which is time and distance from the plasma source dependent.
Collapse
Affiliation(s)
- Aditya Upadrasta
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D09 YD60, Ireland
| | - Stephen Daniels
- School of Electronic Engineering, Dublin City University, Dublin, D09 V209, Ireland
| | | | - Brendan Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland
| | - Hilary Humphreys
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D09 YD60, Ireland
| |
Collapse
|
21
|
Wang Y, Fang W, Wang X, Zhou L, Zheng G. Spatial distribution of fecal pollution indicators in sewage sludge flocs and their removal and inactivation as revealed by qPCR/viability-qPCR during potassium ferrate treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130262. [PMID: 36327846 DOI: 10.1016/j.jhazmat.2022.130262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Sludge reuse and utilization is one of important routines of disseminating fecal pollution to surface water and groundwater. However, it remains unclear the spatial distribution of fecal pollution indicators in sludge flocs and their reductions during sludge treatment processes. In this study, the abundances of fecal pollution indicators including cross-assembly phage (crAssphage), JC and BK polyomavirus (JCPyV, BKPyV), human adenovirus (HAdV), the human-specific HF183 Bacteroides (HF183) and Escherichia coli (EC) in soluble extracellular polymeric substances (S-EPS), loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS), and pellets of sludge flocs were determined, and the effect of potassium ferrate (PF) treatment on their removal and inactivation was investigated by using both qPCR and viability-qPCR. Results showed that all investigated indicators were detected in each fraction of sludge flocs. The PF treatment led to a great migration of indicators from sludge pellets to sludge EPS and some extent of their inactivation in each fraction of sludge flocs. The overall reductions of human fecal indicators in sludge determined by qPCR were 0-1.30 logs, which were 0-2 orders of magnitude lower than those of 0.69-2.39 logs detected by viability-qPCR, implying their inactivation by PF treatment to potentially alleviate the associated human health risks.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Wenhao Fang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
22
|
Guérin-Rechdaoui S, Bize A, Levesque-Ninio C, Janvier A, Lacroix C, Le Brizoual F, Barbier J, Amsaleg CR, Azimi S, Rocher V. Fate of SARS-CoV-2 coronavirus in wastewater treatment sludge during storage and thermophilic anaerobic digestion. ENVIRONMENTAL RESEARCH 2022; 214:114057. [PMID: 35995225 PMCID: PMC9391084 DOI: 10.1016/j.envres.2022.114057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Since the COVID-19 outbreak has started in late 2019, SARS-CoV-2 has been widely detected in human stools and in urban wastewater. No infectious SARS-CoV-2 particles have been detected in raw wastewater until now, but it has been reported occasionally in human stools. This has raised questions on the fate of SARS-CoV-2 during wastewater treatment and notably in its end-product, wastewater treatment sludge, which is classically valorized by land spreading for agricultural amendment. In the present work, we focused on SARS-CoV-2 stability in wastewater treatment sludge, either during storage (4 °C, room temperature) or thermophilic anaerobic digestion (50 °C). Anaerobic digestion is one of the possible processes for sludge valorization. Experiments were conducted in laboratory pilots; SARS-CoV-2 detection was based on RT-quantitative PCR or RT-digital droplet PCR. In addition to SARS-CoV-2, Bovine Coronavirus (BCoV) particles were used as surrogate virus. The RNA from SARS-CoV-2 particles, inactivated or not, was close to the detection limit but stable in wastewater treatment sludge, over the whole duration of the assays at 4 °C (55 days) and at ambient temperature (∼20 °C, 25 days). By contrast, the RNA levels of BCoV and inactivated SARS-CoV-2 particles decreased rapidly during the thermophilic anaerobic digestion of wastewater treatment sludge lasting for 5 days, with final levels that were close to the detection limit. Although the particles' infectivity was not assessed, these results suggest that thermophilic anaerobic digestion is a suitable process for sludge sanitation, consistent with previous knowledge on other coronaviruses.
Collapse
Affiliation(s)
| | - Ariane Bize
- Université Paris-Saclay, INRAE, PROSE, Antony, 92160, France
| | - Camille Levesque-Ninio
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Alice Janvier
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Carlyne Lacroix
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Florence Le Brizoual
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Jérôme Barbier
- ID Solutions, Development Department, Grabels, 34790, France
| | | | - Sam Azimi
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Vincent Rocher
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| |
Collapse
|
23
|
Wdowiak M, Paczesny J, Raza S. Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review. Pharmaceutics 2022; 14:1936. [PMID: 36145682 PMCID: PMC9502844 DOI: 10.3390/pharmaceutics14091936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Phages are efficient in diagnosing, treating, and preventing various diseases, and as sensing elements in biosensors. Phage display alone has gained attention over the past decade, especially in pharmaceuticals. Bacteriophages have also found importance in research aiming to fight viruses and in the consequent formulation of antiviral agents and vaccines. All these applications require control over the stability of virions. Phages are considered resistant to various harsh conditions. However, stability-determining parameters are usually the only additional factors in phage-related applications. Phages face instability and activity loss when preserved for extended periods. Sudden environmental changes, including exposure to UV light, temperature, pH, and salt concentration, also lead to a phage titer fall. This review describes various formulations that impart stability to phage stocks, mainly focusing on polymer-based stabilization, encapsulation, lyophilization, and nano-assisted solutions.
Collapse
|
24
|
Bivins A, Kaya D, Ahmed W, Brown J, Butler C, Greaves J, Leal R, Maas K, Rao G, Sherchan S, Sills D, Sinclair R, Wheeler RT, Mansfeldt C. Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155347. [PMID: 35460780 PMCID: PMC9020839 DOI: 10.1016/j.scitotenv.2022.155347] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 05/09/2023]
Abstract
Much of what is known and theorized concerning passive sampling techniques has been developed considering chemical analytes. Yet, historically, biological analytes, such as Salmonella typhi, have been collected from wastewater via passive sampling with Moore swabs. In response to the COVID-19 pandemic, passive sampling is re-emerging as a promising technique to monitor SARS-CoV-2 RNA in wastewater. Method comparisons and disease surveillance using composite, grab, and passive sampling for SARS-CoV-2 RNA detection have found passive sampling with a variety of materials routinely produced qualitative results superior to grab samples and useful for sub-sewershed surveillance of COVID-19. Among individual studies, SARS-CoV-2 RNA concentrations derived from passive samplers demonstrated heterogeneous correlation with concentrations from paired composite samples ranging from weak (R2 = 0.27, 0.31) to moderate (R2 = 0.59) to strong (R2 = 0.76). Among passive sampler materials, electronegative membranes have shown great promise with linear uptake of SARS-CoV-2 RNA observed for exposure durations of 24 to 48 h and in several cases RNA positivity on par with composite samples. Continuing development of passive sampling methods for the surveillance of infectious diseases via diverse forms of fecal waste should focus on optimizing sampler materials for the efficient uptake and recovery of biological analytes, kit-free extraction, and resource-efficient testing methods capable of rapidly producing qualitative or quantitative data. With such refinements passive sampling could prove to be a fundamental tool for scaling wastewater surveillance of infectious disease, especially among the 1.8 billion persons living in low-resource settings served by non-traditional wastewater collection infrastructure.
Collapse
Affiliation(s)
- Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA.
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Caitlyn Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, 130 Natural Resources Rd., Amherst, MA 01003, USA
| | - Justin Greaves
- School of Environmental Sustainability, Loyola University Chicago, 6364 N. Sheridan Rd, Chicago, IL 60660, USA
| | - Raeann Leal
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Kendra Maas
- Microbial Analyses, Resources, and Services Facility, University of Connecticut, Storrs, CT 06269, USA
| | - Gouthami Rao
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA; Center for Climate and Health, Morgan State University, Baltimore, MD 21251, USA
| | - Deborah Sills
- Bucknell University, Department of Civil and Environmental Engineering, Lewisburg, PA 17837, USA
| | - Ryan Sinclair
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA
| | - Cresten Mansfeldt
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, USA
| |
Collapse
|
25
|
Fate and Transportation of Viruses from Reclaimed Water into a Floatation System. WATER 2022. [DOI: 10.3390/w14050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The fate and transport of viruses in floatation systems is considerably important for accurate determination of the safety of reusing reclaimed water in the flotation process. Herein, simulation experiments on the floatation, adsorption and desorption were performed to examine the effect of initial virus concentration, pH and floatation reagents on the adsorption of viruses ΦΧ174 and MS2 onto copper–molybdenum ores. The transport of viruses in the flotation systems was also investigated. The viruses in the reclaimed water were rapidly adsorbed onto the ore particles, suggesting that tailing wastewater can be safely reused for floatation. However, the adsorbed viruses in the concentrates, middlings and tailings may pose health risks at certain exposure levels. The transport of viruses was dominated by their attachment to ore particles, with most being inactivated or irreversibly adsorbed. The removal and adsorption rates decreased as the initial virus concentration increased, and the removal rate decreased as pH was increased from 7.5 to 9.5. In comparison with MS2, ΦΧ174 was removed more effectively. This suggested that electrostatic repulsion is an important mechanism because MS2 has a greater negative charge. The attachment of both ΦΧ174 and MS2 onto the mineral particles increased significantly in the presence of PJ053 and CaO.
Collapse
|