1
|
We ACE, Stickland AD, Clarke BO, Freguia S. PFAS removal through foam harvesting during wastewater aeration. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137936. [PMID: 40112432 DOI: 10.1016/j.jhazmat.2025.137936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Aeration in wastewater treatment plants (WWTPs) is used for removal of organic matter and nutrients. Here we show that aeration can also lead to removal of per- and polyfluoroalkyl substances (PFAS), by foam fractionation. Rising air bubbles facilitate air-liquid interfacial adsorption of PFAS and spontaneous foaming occurrence. This suggests that some modifications to conventional treatment processes that enable foam removal may be sufficient to achieve PFAS removal at WWTPs. However, high suspended solids concentrations in the mixed liquor suspension within the aerated bioreactors may complicate PFAS removal in foam fractionation, as both air bubbles and suspended biomass retain PFAS. This study explored the feasibility of foam fractionation for PFAS removal and enrichment using actual mixed liquor suspensions with typical total suspended solids concentrations and WWTP-relevant PFAS concentrations. The mechanisms involved in PFAS removal and enrichment in both aqueous and solid phases were suggested, and a mass balance analysis was performed to show PFAS distribution between the two phases. Overall, PFAS removal from the aqueous phase ranged from 70 % to 100 % for PFAS with perfluorinated carbon numbers ≥ 6, while PFAS with perfluorinated carbon numbers < 6 showed low removal of < 20 %. PFAS removal from the solid phase ranged from 20 % to 60 %, depending on the PFAS species. This study represents an ongoing effort to advance the potential implementation of foam fractionation in aerated bioreactors at WWTPs.
Collapse
Affiliation(s)
- Angel Chyi En We
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia; Australian Laboratory of Emerging Contaminants, School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Anthony D Stickland
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory of Emerging Contaminants, School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Lu L, Yan X, Kang G, Qi D, Tang N, Zhu R, Lv C, Bu Y, Zhang H, Zhang S. Unraveling drivers of per- and polyfluoroalkyl substances (PFASs) occurrence and removal in leachate: Insights from disposal methods, geo-climate, and biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176444. [PMID: 39341254 DOI: 10.1016/j.scitotenv.2024.176444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Leachate is a substantial reservoir of per- and polyfluoroalkyl substances (PFASs) within the environment. However, comprehensive information on the occurrence and fate of PFASs in leachate, particularly in semi-arid and moderate-elevation regions where PFASs may aggregate, is lacking. Here, 13 legacy PFASs were investigated in leachate from landfills and an incineration plant in such area. PFASs concentrations ranged from 6063 to 43,161 ng·L-1 in raw leachate, influenced by leachate origin, climate, wastewater disposal, and especially bacterial communities. Bacteroidetes and Firmicutes were enriched in raw leachate, while Proteobacteria dominated during leachate treatment processes, possibly due to PFASs selection pressure. In addition, top 20 biomarkers indicated the potential of these bacterial indicators for PFASs detection. Tracing analysis also suggested that PFASs in groundwater may have originated from leachate and effluent from wastewater treatment plants. PFASs levels in groundwater showed a significant correlation with the presence of Brevundimonas, Leptothrix, Malikia, and Sphaerotilus. The pathogenic bacterium Brevundimonas suggested potential human health risks, while Leptothrix, Malikia, and Sphaerotilus may serve as indicators of groundwater contamination. This study is believed to provide insights into how to prevent and control PFASs-related environmental pollution.
Collapse
Affiliation(s)
- Leilei Lu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaofei Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guodong Kang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dan Qi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Na Tang
- Hohhot Environmental Information Automatic Monitoring Center, Hohhot 010000, China
| | - Rui Zhu
- Inner Mongolia Autonomous Region Ecological Environment Comprehensive Administrative Law Enforcement Corps, Hohhot 010000, China
| | - Changwei Lv
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010000, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
3
|
Krlovic N, Saracevic E, Derx J, Gundacker C, Krampe J, Zessner M, Zoboli O. A source-based framework to estimate the annual load of PFAS in municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170997. [PMID: 38365022 DOI: 10.1016/j.scitotenv.2024.170997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) are a class of persistent chemicals, whose impact has been observed in various environmental compartments. Wastewater treatment plants (WWTPs) are considered a major emission pathway of PFAS, specifically in the context of the aquatic environment. The goal of this study was to develop a compartmentalized, source-based load estimation model of 7 PFAS within the municipal wastewater influent. Consumer statistics, data from literature on PFAS concentrations and release during use, and specific sampling activities for environmental flows in the related city were used to estimate per capita emission loads. Model results were compared with loads obtained through the monitoring campaign at the municipal WWTP influent. A wide range of discrepancies (≈5 % to ≈90 %) between loads observed in the WWTP influent and source based model estimates was noticed. The loads less accounted by the model were associated with sulfonic acids (PFSAs), whereas for carboxylic acids (PFCAs) most of the observed loads could be reasonably explained by the model, with even an overestimation of nearly 5 % noted for PFNA. Higher heterogeneity in sources was observed in the PFCA group, with a noticeable dominance in the share of consumer products. PFSAs had less of a consumer product input (<20 %), with the rest of the modelled load being attributed to environmental inputs. A large gap of unknown loads of PFSAs indicates a need for examination of other, not yet quantified activities that can potentially explain the remainder of the observed load. Especially commercial activities are considered as potential additional sources for PFSAs. These findings signify the importance of PFAS that originate from both consumer products, as well as environmental inputs in the overall load contribution into the sewage, while identifying the need for further investigation into commercial sources of PFAS emitted into the municipal wastewater.
Collapse
Affiliation(s)
- N Krlovic
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria.
| | - E Saracevic
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - J Derx
- Interuniversity Cooperation Centre for Water and Health (ICC Water & Health), Vienna, Austria; TU Wien, Institute of Hydraulic Engineering and Water Resources Management, Vienna, Austria
| | - C Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - J Krampe
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - M Zessner
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - O Zoboli
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| |
Collapse
|
4
|
Kang P, Zhao Y, Wei T, Cai Y, Ji B, Addo-Bankas O. Interactions between MPs and PFASs in aquatic environments: A dual-character situation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119907. [PMID: 38157575 DOI: 10.1016/j.jenvman.2023.119907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) have drawn great attention as emerging threats to aquatic ecosystems. Although the literature to study the MPs and PFASs alone has grown significantly, our knowledge of the overlap and interactions between the two contaminations is scarce due to the unawareness of it. Actually, numerous human activities can simultaneously release MPs and PFASs, and the co-sources of the two are common, meaning that they have a greater potential for interactions. The direct interaction lies in the PFASs adsorption by MPs in water with integrated mechanisms including electrostatic and hydrophobic interactions, plus many influence factors. In addition, the existence and transportation of MPs and PFASs in the aquatic environment have been identified. MPs and PFASs can be ingested by aquatic organisms and cause more serious combined toxicity than exposure alone. Finally, curbing strategies of MPs and PFASs are overviewed. Wastewater treatment plants (WWTPs) can be an effective place to remove MPs from wastewater, while they are also an important point source of MPs pollution in water bodies. Although adsorption has proven to be a successful curbing method for PFASs, more technological advancements are required for field application. It is expected that this review can help revealing the unheeded relationship and interaction between MPs and PFASs in aquatic environments, thus assisting the further investigations of both MPs and PFASs as a whole.
Collapse
Affiliation(s)
- Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Civil, Structural and Environmental Engineering, Trinity College, Dublin, Ireland.
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Bin Ji
- School of Civil Engineering, Yantai University, Yantai, 264005, PR China
| | - Olivia Addo-Bankas
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| |
Collapse
|
5
|
Ojha S, Thompson PT, Powell CD, Moseley HNB, Pennell KG. Identifying and sharing per-and polyfluoroalkyl substances hot-spot areas and exposures in drinking water. Sci Data 2023; 10:388. [PMID: 37328532 PMCID: PMC10275912 DOI: 10.1038/s41597-023-02277-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) in drinking water is widely recognized as a public health concern. Decision-makers who are responsible for managing PFAS drinking water risks lack the tools to acquire the information they need. In response to this need, we provide a detailed description of a Kentucky dataset that allows decision-makers to visualize potential hot-spot areas and evaluate drinking water systems that may be susceptible to PFAS contamination. The dataset includes information extracted from publicly available sources to create five different maps in ArcGIS Online and highlights potential sources of PFAS contamination in the environment in relation to drinking water systems. As datasets of PFAS drinking water sampling continue to grow as part of evolving regulatory requirements, we used this Kentucky dataset as an example to promote the reuse of this dataset and others like it. We incorporated the FAIR (Findable, Accessible, Interoperable, and Reusable) principles by creating a Figshare item that includes all data and associated metadata with these five ArcGIS maps.
Collapse
Affiliation(s)
- Sweta Ojha
- University of Kentucky, College of Engineering, Department of Civil Engineering, Lexington, Kentucky, USA
- University of Kentucky Superfund Research Center (UKSRC), Lexington, Kentucky, USA
| | - P Travis Thompson
- University of Kentucky Superfund Research Center (UKSRC), Lexington, Kentucky, USA
| | - Christian D Powell
- University of Kentucky Superfund Research Center (UKSRC), Lexington, Kentucky, USA
- University of Kentucky, Department of Computer Science (Data Science Program), Lexington, Kentucky, USA
| | - Hunter N B Moseley
- University of Kentucky Superfund Research Center (UKSRC), Lexington, Kentucky, USA
- University of Kentucky, Department of Molecular and Cellular Biochemistry, Lexington, Kentucky, USA
| | - Kelly G Pennell
- University of Kentucky, College of Engineering, Department of Civil Engineering, Lexington, Kentucky, USA.
- University of Kentucky Superfund Research Center (UKSRC), Lexington, Kentucky, USA.
| |
Collapse
|