1
|
Zhang N, Zhu D, Yao Z, Zhu DZ. Virus-prokaryote interactions assist pollutant removal in constructed wetlands. BIORESOURCE TECHNOLOGY 2025; 416:131791. [PMID: 39528031 DOI: 10.1016/j.biortech.2024.131791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
As a vital part of microbial communities, viruses in constructed wetlands (CWs) remain poorly explored, yet they could significantly affect pollutant removal. Here, two pilot-scale CWs were built to investigate the viral community under different hydraulic loading rates (HLRs) using in-depth metagenomic analysis. Gene-sharing networks suggested that the CWs were pools of unexplored viruses. A higher abundance of prokaryotic functional genes related to sulfur cycling and denitrification was observed in the higher HLR condition, which was associated with greater removal of total nitrogen and nitrate nitrogen compared to the lower HLR condition. Viruses also affect nitrogen pollutant removal by potentially infecting functional prokaryotes, such as denitrification bacteria and ammonia-oxidizing bacteria, and by providing auxiliary metabolic genes involved in sulfur and nitrogen cycling. These findings reveal the significance of viruses in pollutant removal in CWs and enhance the understanding of the relationship between engineering design parameters and performance from microbial perspectives.
Collapse
Affiliation(s)
- Nan Zhang
- School of Civil & Environmental Engineering and GeographyScience, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and GeographyScience, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China.
| | - David Z Zhu
- School of Civil & Environmental Engineering and GeographyScience, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Yuan Y, Zhang F, Qiu Y, Zhao Y, Rong W. Comparative life cycle assessment of traditional and emerging methods for high concentration organic wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177986. [PMID: 39647197 DOI: 10.1016/j.scitotenv.2024.177986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Two traditional methods, including incineration and the sequencing batch reactor activated sludge process (SBR), and two emerging methods, including supercritical water oxidation (SCWO), catalytic wet oxidation (CWO) combined with SBR (CWO-SBR), for high concentration organic wastewater treatment were compared from the view of environmental impact. The printing ink wastewater generated from the surface treatment of electronic products was selected as the typical wastewater and diluted to various concentrations for sensitivity analysis. Simapro 9.3 software was selected to explore the environmental impacts of the four processes with Traci impact assessment method and Ecoinvent 3.8 database. Moreover, two tools including the total environmental impact and comprehensive competitiveness were used for quantitative comparison. The total environmental impacts for the incineration and SCWO processes gradually decrease with increasing chemical oxygen demand (COD) concentration for more steam output and less fuel and electricity consumptions, but opposite trends appear for the CWO-SBR and SBR processes, indicating higher COD concentrations exhibit smaller environmental impacts for the incineration and SCWO processes. The incineration and SBR processes have the slightest and highest total environmental impacts of 0.030 and 1.117 at the base case of COD = 234,000 mg/L, respectively. The trends of the comprehensive indexes for the four processes with increasing COD concentration are similar to those of the total environmental impacts. The SCWO process has the highest comprehensive index of 0.956 at the base case, followed by the incineration, CWO-SBR, and SBR processes, with values of 0.783, 0.460, and 0.158, respectively.
Collapse
Affiliation(s)
- Yilin Yuan
- Guangzhou Institute of Advanced Technology, Guangzhou 511458, China; China University of Geosciences, Wuhan 430074, China
| | - Fengming Zhang
- Guangzhou Institute of Advanced Technology, Guangzhou 511458, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Yuxin Qiu
- Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
| | - Yuejie Zhao
- Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
| | - Weiqing Rong
- Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
| |
Collapse
|
3
|
Fan S, Ren H, Fu X, Kong X, Wu H, Lu Z. Genome streamlining of Pseudomonas putida B6-2 for bioremediation. mSystems 2024; 9:e0084524. [PMID: 39530686 DOI: 10.1128/msystems.00845-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Microbial transformation is a favored approach for environmental remediation. However, the effectiveness of microbial remediation has been limited by the lack of chassis cells with satisfactory contaminant degradation performance. Pseudomonas putida B6-2, with a wide substrate spectrum and high solvent tolerance, is a chassis strain with great potential for application in environmental remediation. Here, guided by bioinformatic analyses and genome-scale metabolic model (GEM) predictions, we successfully optimized P. putida B6-2 by rationally reducing its nonessential genetic components and generating a more robust genome-streamlined strain, P. putida BGR4. Several improvements were observed compared with the original P. putida B6-2 strain, including a 1.4 × 105-fold increase in electroporation efficiency, an 8.3-fold increase in conjugation efficiency, improved glycerol utilization capability, and increased phenol utilization after heterologous expression of the phenol monooxygenase encoded by dmpKLMNOP. Additionally, P. putida BGR4 exhibited enhanced tolerance to several stressors, including starvation, oxidative stress, and DNA damage. Transcriptomic analysis revealed that genome streamlining led to the upregulation of genes involved in the "carbon metabolism" and "tricarboxylic acid cycle" pathways in P. putida BGR4, which likely contributed to the superior phenotype of P. putida BGR4 in terms of carbon source utilization and contaminant degradation capabilities. Furthermore, the absence of four prophages was identified as a potential cause of the enhanced stress resistance observed in P. putida BGR4. Overall, we developed a combined genome-streamlining strategy involving bioinformatic analyses and GEM predictions and generated a more robust chassis strain, P. putida BGR4, which expands the repertoire of chassis cells for environmental remediation.IMPORTANCEDespite the development of many chassis cells, there is still a lack of robust chassis cells with satisfactory contaminant degradation performance. Targeted genome streamlining is an effective way to provide powerful chassis cells. However, genome streamlining does not always lead to the improved phenotypes of genome-streamlined chassis cells. In this research, a novel procedure that combined bioinformatic analyses and GEM predictions was proposed to guide genome streamlining and predict the effects of genome streamlining. This genome streamlining procedure was successfully applied to Pseudomonas putida B6-2, which was a chassis cell with great potential for application in environmental remediation and resulted in the generation of a more robust chassis cell, P. putida BGR4, thereby providing a superior chassis cell for efficient and sustainable environmental remediation and a valuable framework for guiding the genome streamlining of strains for other applications.
Collapse
Affiliation(s)
- Siqing Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xueni Fu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Bhatt P, Li Y, Xagoraraki I. Genomic mapping of wastewater bacteriophage may predict potential bacterial pathogens infecting the community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176834. [PMID: 39396796 DOI: 10.1016/j.scitotenv.2024.176834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Most existing wastewater surveillance studies that focus on viruses have identified a large fraction of bacteriophages. Identifying bacteria by considering bacteriophage-host interactions is a novel method for detecting bacterial pathogens circulating in a community, using wastewater surveillance. This study aims to identify human-related bacterial pathogens in municipal wastewater collected in metro Detroit, using high-throughput sequencing and bioinformatics. Untreated municipal wastewater samples were collected on August 11, 2020, and bacteriophages were concentrated using the VIRus ADsorption-ELution (VIRADEL) method. Bacteriophage-related contigs in samples ranged from 15.53 % to 18.91 %, with 2477 classified and 8853 unclassified contigs. Most identified bacteriophages were from Caudoviricetes and Malgrandaviricetes classes belonging to 19 families. Hosts of bacteriophages were predicted with the PhaBOX (CHERRY) tool. The results indicated that out of the 2477 classified phages, 2373 were associated with known bacterial hosts. Also, out of 8853 unclassified bacteriophages, 8421 were associated with known bacterial hosts, and the remaining 432 were with unknown bacterial hosts. Among all bacteriophage-associated hosts, 399 were identified as pathogenic bacteria at the species level. Approximately, 85 % of the identified pathogenic bacteria are reported to be associated with human diseases. Genome quality assessments showed that 15 bacteriophages had nearly complete genomes, which were further analyzed to understand bacteriophage-bacteria interactions in wastewater. Identified hosts of these complete-genome phages included human pathogens such as Salmonella enterica, Bacillus cereus, Achromobacter xylosoxidans, and Escherichia coli. The S. enterica bacteriophage (k141_1005294) genomic map was annotated, and responsible open reading frames (ORFs) were characterized to illustrate bacteriophage behavior during infection of pathogenic bacteria in untreated wastewater. To the best of our knowledge, this is the first attempt to characterize human bacterial pathogens in wastewater through bacteriophage-pathogen interactions. Novel bioinformatic approaches enhance pathogen detection and improve the understanding of community wastewater microbiomes.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| | - Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Zang B, Zhou H, Zhao Y, Sano D, Chen R. Investigating potential auxiliary anaerobic digestion activity of phage under polyvinyl chloride microplastic stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135950. [PMID: 39326145 DOI: 10.1016/j.jhazmat.2024.135950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/18/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Polyvinyl chloride (PVC) microplastics present in sewage were trapped in sludge, thereby hindering anaerobic digestion performance of waste active sludge (WAS). Phages regulate virocell metabolism by encoding auxiliary metabolic genes (AMGs) related to energy acquisition and material degradation, supporting hosts survive in harsh environments and play a crucial role in biogeochemical cycles. This study investigated the potential effects of phages on the recovery of WAS anaerobic digestion under PVC stress. We observed a significant alteration in the phage community induced by PVC microplastics. Phages encoded AMGs related to anaerobic digestion and cell growth probably alleviate PVC microplastics inhibition on WAS anaerobic digestion, and 54.2 % of hydrolysis-related GHs and 40.8 % of acidification-related AMGs were actively transcribed in the PVC-exposed group. Additionally, the degradation of chitin and peptidoglycan during hydrolysis and the conversion of glucose to pyruvate during acidification were more susceptible to phages. Prediction of phage-host relationship indicated that the phyla Pseudomonadota were predominantly targeted hosts by hydrolysis-related and acidification-related phages, and PVC toxicity had minimal impact on phage-host interaction. Our findings highlight the importance of phages in anaerobic digestion and provide a novel strategy for using phages in the functional recovery of microplastic-exposed sludge.
Collapse
Affiliation(s)
- Bei Zang
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hang Zhou
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yubin Zhao
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
6
|
Zhu D, Liu SY, Sun MM, Yi XY, Duan GL, Ye M, Gillings MR, Zhu YG. Adaptive expression of phage auxiliary metabolic genes in paddy soils and their contribution toward global carbon sequestration. Proc Natl Acad Sci U S A 2024; 121:e2419798121. [PMID: 39602267 PMCID: PMC11626168 DOI: 10.1073/pnas.2419798121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Habitats with intermittent flooding, such as paddy soils, are crucial reservoirs in the global carbon pool; however, the effect of phage-host interactions on the biogeochemical cycling of carbon in paddy soils remains unclear. Hence, this study applied multiomics and global datasets integrated with validation experiments to investigate phage-host community interactions and the potential of phages to impact carbon sequestration in paddy soils. The results demonstrated that paddy soil phages harbor a diverse and abundant repertoire of auxiliary metabolic genes (AMGs) associated with carbon fixation, comprising 23.7% of the identified AMGs. The successful annotation of protein structures and promoters further suggested an elevated expression potential of these genes within their bacterial hosts. Moreover, environmental stressors, such as heavy metal contamination, cause genetic variation in paddy phages and up-regulate the expression of carbon fixation AMGs, as demonstrated by the significant enrichment of related metabolites (P < 0.05). Notably, the findings indicate that lysogenic phages infecting carbon-fixing hosts increased by 10.7% under heavy metal stress. In addition, in situ isotopic labeling experiments induced by mitomycin-C revealed that by increasing heavy metal concentrations, 13CO2 emissions from the treatment with added lysogenic phage decreased by approximately 17.9%. In contrast, 13C-labeled microbial biomass carbon content increased by an average of 35.4% compared to the control. These results suggest that paddy soil phages prominently influence the global carbon cycle, particularly under global change conditions. This research enhances our understanding of phage-host cooperation in driving carbon sequestration in paddy soils amid evolving environmental conditions.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, People’s Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Center in Beilun, Ningbo315830, People’s Republic of China
| | - Shu-Yue Liu
- National Engineering Research Center for Soil Nutrient Management and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Ming-Ming Sun
- Soil Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, People’s Republic of China
| | - Xing-Yun Yi
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, People’s Republic of China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, People’s Republic of China
| | - Mao Ye
- National Engineering Research Center for Soil Nutrient Management and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Michael R. Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, People’s Republic of China
| |
Collapse
|
7
|
Shi K, Xu JM, Cui HL, Cheng HY, Liang B, Wang AJ. Microbiome regulation for sustainable wastewater treatment. Biotechnol Adv 2024; 77:108458. [PMID: 39343082 DOI: 10.1016/j.biotechadv.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sustainable wastewater treatment is essential for attaining clean water and sanitation, aligning with UN Sustainable Development Goals. Wastewater treatment plants (WWTPs) have utilized environmental microbiomes in biological treatment processes in this effort for over a century. However, the inherent complexity and redundancy of microbial communities, and emerging chemical and biological contaminants, challenge the biotechnology applications. Over the past decades, understanding and utilization of microbial energy metabolism and interaction relationships have revolutionized the biological system. In this review, we discuss how microbiome regulation strategies are being used to generate actionable performance for low-carbon pollutant removal and resource recovery in WWTPs. The engineering application cases also highlight the real feasibility and promising prospects of the microbiome regulation approaches. In conclusion, we recommend identifying environmental risks associated with chemical and biological contaminants transformation as a prerequisite. We propose the integration of gene editing and enzyme design to precisely regulate microbiomes for the synergistic control of both chemical and biological risks. Additionally, the development of integrated technologies and engineering equipment is crucial in addressing the ongoing water crisis. This review advocates for the innovation of conventional wastewater treatment biotechnology to ensure sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jia-Min Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Han-Lin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
8
|
Zhao GY, Furumai H, Fujita M. Supporting data-enhanced hybrid ordinary differential equation model for phosphate dynamics in municipal wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 409:131217. [PMID: 39117242 DOI: 10.1016/j.biortech.2024.131217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
A parallel hybrid ordinary differential equation (ODE) integrating the Activated Sludge Model No. 2d (ASM2d) and an artificial neural network (ANN) was developed to simulate biological phosphorus removal (BPR) with high accuracy and interpretability. Two novelties were introduced; first, the involved supporting data (i.e., phosphate-release activity) were incorporated as an input in the ANN. Second, the outputs of the ANN were selective. Three models were implemented using different ANN outputs, and all three outperformed ASM2d in phosphate estimation for anaerobic/aerobic sequencing batch reactor operation. In particular, the incorporation of four variables responsible for BPR into the ANN enabled the highest performance (R2 = 0.93) owing to the capture of increasing phosphate-accumulating organisms (PAOs). The ANN with the supporting data worked satisfactorily to compensate for ASM2d by adding proper PAOs, resulting in improvement in phosphate estimation. The novel parallel hybrid ODE can simulate BPR while maintaining physical meaning.
Collapse
Affiliation(s)
- Guang-Yao Zhao
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Hiroaki Furumai
- Research and Development Initiative, Chuo University, Bunkyo, Tokyo 112-8551, Japan
| | - Masafumi Fujita
- Global and Local Environment Co-creation Institute, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan.
| |
Collapse
|
9
|
Dashti A, Navidpour AH, Amirkhani F, Zhou JL, Altaee A. Application of machine learning models to improve the prediction of pesticide photodegradation in water by ZnO-based photocatalysts. CHEMOSPHERE 2024; 362:142792. [PMID: 38971434 DOI: 10.1016/j.chemosphere.2024.142792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/16/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Pesticide pollution has been posing a significant risk to human and ecosystems, and photocatalysis is widely applied for the degradation of pesticides. Machine learning (ML) emerges as a powerful method for modeling complex water treatment processes. For the first time, this study developed novel ML models that improved the estimation of the photocatalytic degradation of various pesticides using ZnO-based photocatalysts. The input parameters encompassed the source of light, mass proportion of dopants to Zn, initial pesticide concentration (C0), pH of the solution, catalyst dosage and irradiation time. Additionally, physicochemical properties such as the molecular weight of the dopants and pesticides, as well as the water solubility of both dopants and pesticides, were considered. Notably, the numerical data were extracted from the literature via relevant tables (directly) or graphs (indirectly) using the web-based tool WebPlotDigitizer. Four ML models including multi-layer perceptron artificial neural network (MLP-ANN), particle swarm optimization-adaptive neuro fuzzy inference system (PSO-ANFIS), radial basis function (RBF), and coupled simulated annealing-least squares support vector machine (CSA-LSSVM) were developed. In comparison, RBF showed the best accuracy of modeling among all models, with the highest determination coefficient (R2) of 0.978 and average absolute relative deviation (AARD) of 4.80%. RBF model was effective in estimating the photocatalytic degradation of pesticides except for 2-chlorophenol, triclopyr and lambda-cyhalothrin, where CSA-LSSVM model demonstrated superior performance. Dichlorvos was completely degraded by ZnO photocatalyst under visible light. The sensitivity analysis by relevancy factor exhibited that light irradiation time and initial pesticide concentration were the most important parameters influencing photocatalytic degradation of pesticides positively and negatively, respectively. The new ML models provide a powerful tool for predicting pesticide degradation in wastewater treatment, which will reduce photochemical experiments and promote sustainable development.
Collapse
Affiliation(s)
- Amir Dashti
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Amir Hossein Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Farid Amirkhani
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| |
Collapse
|
10
|
Shi Z, Long X, Zhang C, Chen Z, Usman M, Zhang Y, Zhang S, Luo G. Viral and Bacterial Community Dynamics in Food Waste and Digestate from Full-Scale Biogas Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13010-13022. [PMID: 38989650 DOI: 10.1021/acs.est.4c04109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Anaerobic digestion (AD) is commonly used in food waste treatment. Prokaryotic microbial communities in AD of food waste have been comprehensively studied. The role of viruses, known to affect microbial dynamics and metabolism, remains largely unexplored. This study employed metagenomic analysis and recovered 967 high-quality viral bins within food waste and digestate derived from 8 full-scale biogas plants. The diversity of viral communities was higher in digestate. In silico predictions linked 20.8% of viruses to microbial host populations, highlighting possible virus predators of key functional microbes. Lineage-specific virus-host ratio varied, indicating that viral infection dynamics might differentially affect microbial responses to the varying process parameters. Evidence for virus-mediated gene transfer was identified, emphasizing the potential role of viruses in controlling the microbiome. AD altered the specific process parameters, potentially promoting a shift in viral lifestyle from lysogenic to lytic. Viruses encoding auxiliary metabolic genes (AMGs) were involved in microbial carbon and nutrient cycling, and most AMGs were transcriptionally expressed in digestate, meaning that viruses with active functional states were likely actively involved in AD. These findings provided a comprehensive profile of viral and bacterial communities and expanded knowledge of the interactions between viruses and hosts in food waste and digestate.
Collapse
Affiliation(s)
- Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xinyi Long
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Yalei Zhang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| |
Collapse
|
11
|
Li L, Zhou M, Yu M, Ren X, Li L, Shen C, Deng C, Liu Y, Yang B. Correlation between the development of phage resistance and the original antibiotic resistance of host bacteria under the co-exposure of antibiotic and bacteriophage. ENVIRONMENTAL RESEARCH 2024; 252:118921. [PMID: 38631474 DOI: 10.1016/j.envres.2024.118921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Bacteriophages (phages) are viruses capable of regulating the proliferation of antibiotic resistant bacteria (ARB). However, phages that directly cause host lethality may quickly select for phage resistant bacteria, and the co-evolutionary trade-offs under varying environmental conditions, including the presence of antibiotics, remains unclear as to their impact on phage and antibiotic resistance. Here, we report the emergence of phage resistance in three distinct E. coli strains with varying resistance to β-lactam antibiotics, treated with different ampicillin (AMP) concentrations. Hosts exhibiting stronger antibiotic resistance demonstrated a higher propensity to develop and maintain stable phage resistance. When exposed to polyvalent phage KNT-1, the growth of AMP-sensitive E. coli K12 was nearly suppressed within 18 h, while the exponential growth of AMP-resistant E. coli TEM and super-resistant E. coli NDM-1 was delayed by 12 h and 8 h, respectively. The mutation frequency and mutated colony count of E. coli NDM-1 were almost unaffected by co-existing AMP, whereas for E. coli TEM and K12, these metrics significantly decreased with increasing AMP concentration from 8 to 50 μg/mL, becoming unquantifiable at 100 μg/mL. Furthermore, the fitness costs of phage resistance mutation and its impact on initial antibiotic resistance in bacteria were further examined, through analyzing AMP susceptibility, biofilm formation and EPS secretion of the isolated phage resistant mutants. The results indicated that acquiring phage resistance could decrease antibiotic resistance, particularly for hosts lacking strong antibiotic resistance. The ability of mutants to form biofilm contributes to antibiotic resistance, but the correlation is not entirely positive, while the secretion of extracellular polymeric substance (EPS), especially the protein content, plays a crucial role in protecting the bacteria from both antibiotic and phage exposure. This study explores phage resistance development in hosts with different antibiotic resistance and helps to understand the limitations and possible solutions of phage-based technologies.
Collapse
Affiliation(s)
- Lingli Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China.
| | - Mengya Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Ming Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Xu Ren
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610065, PR China
| | - Linzhi Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Chunjun Shen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Chunping Deng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Bing Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| |
Collapse
|
12
|
Zhang J, Tang A, Jin T, Sun D, Guo F, Lei H, Lin L, Shu W, Yu P, Li X, Li B. A panoramic view of the virosphere in three wastewater treatment plants by integrating viral-like particle-concentrated and traditional non-concentrated metagenomic approaches. IMETA 2024; 3:e188. [PMID: 38898980 PMCID: PMC11183165 DOI: 10.1002/imt2.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/21/2024]
Abstract
Wastewater biotreatment systems harbor a rich diversity of microorganisms, and the effectiveness of biotreatment systems largely depends on the activity of these microorganisms. Specifically, viruses play a crucial role in altering microbial behavior and metabolic processes throughout their infection phases, an aspect that has recently attracted considerable interest. Two metagenomic approaches, viral-like particle-concentrated (VPC, representing free viral-like particles) and non-concentrated (NC, representing the cellular fraction), were employed to assess their efficacy in revealing virome characteristics, including taxonomy, diversity, host interactions, lifestyle, dynamics, and functional genes across processing units of three wastewater treatment plants (WWTPs). Our findings indicate that each approach offers unique insights into the viral community and functional composition. Their combined use proved effective in elucidating WWTP viromes. We identified nearly 50,000 viral contigs, with Cressdnaviricota and Uroviricota being the predominant phyla in the VPC and NC fractions, respectively. Notably, two pathogenic viral families, Asfarviridae and Adenoviridae, were commonly found in these WWTPs. We also observed significant differences in the viromes of WWTPs processing different types of wastewater. Additionally, various phage-derived auxiliary metabolic genes (AMGs) were active at the RNA level, contributing to the metabolism of the microbial community, particularly in carbon, sulfur, and phosphorus cycling. Moreover, we identified 29 virus-carried antibiotic resistance genes (ARGs) with potential for host transfer, highlighting the role of viruses in spreading ARGs in the environment. Overall, this study provides a detailed and integrated view of the virosphere in three WWTPs through the application of VPC and NC metagenomic approaches. Our findings enhance the understanding of viral communities, offering valuable insights for optimizing the operation and regulation of wastewater treatment systems.
Collapse
Affiliation(s)
- Jiayu Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
- Research Center for Eco‐Environmental EngineeringDongguan University of TechnologyDongguanChina
| | - Aixi Tang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Tao Jin
- Guangdong Magigene Biotechnology Co., Ltd.ShenzhenChina
| | - Deshou Sun
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
- Shenzhen Tongchen Biotechnology Co., LimitedShenzhenChina
| | - Fangliang Guo
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Huaxin Lei
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Wensheng Shu
- Guangdong Magigene Biotechnology Co., Ltd.ShenzhenChina
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Pingfeng Yu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
| | - Xiaoyan Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| |
Collapse
|
13
|
Al-Faliti M, Wang P, Smith AL, Delgado Vela J. Phage phylogeny, molecular signaling, and auxiliary antimicrobial resistance in aerobic and anaerobic membrane bioreactors. WATER RESEARCH 2024; 256:121620. [PMID: 38677036 DOI: 10.1016/j.watres.2024.121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024]
Abstract
Phage emit communication signals that inform their lytic and lysogenic life cycles. However, little is known regarding the abundance and diversity of the genes associated with phage communication systems in wastewater treatment microbial communities. This study focused on phage communities within two distinct biochemical wastewater environments, specifically aerobic membrane bioreactors (AeMBRs) and anaerobic membrane bioreactors (AnMBRs) exposed to varying antibiotic concentrations. Metagenomic data from the bench-scale systems were analyzed to explore phage phylogeny, life cycles, and genetic capacity for antimicrobial resistance and quorum sensing. Two dominant phage families, Schitoviridae and Peduoviridae, exhibited redox-dependent dynamics. Schitoviridae prevailed in anaerobic conditions, while Peduoviridae dominated in aerobic conditions. Notably, the abundance of lytic and lysogenic proteins varied across conditions, suggesting the coexistence of both life cycles. Furthermore, the presence of antibiotic resistance genes (ARGs) within viral contigs highlighted the potential for phage to transfer ARGs in AeMBRs. Finally, quorum sensing genes in the virome of AeMBRs indicated possible molecular signaling between phage and bacteria. Overall, this study provides insights into the dynamics of viral communities across varied redox conditions in MBRs. These findings shed light on phage life cycles, and auxiliary genetic capacity such as antibiotic resistance and bacterial quorum sensing within wastewater treatment microbial communities.
Collapse
Affiliation(s)
- Mitham Al-Faliti
- Department of Civil and Environmental Engineering, Howard University, Washington, D.C., USA
| | - Phillip Wang
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jeseth Delgado Vela
- Department of Civil and Environmental Engineering, Howard University, Washington, D.C., USA.
| |
Collapse
|
14
|
Chen T, Mo C, Yuan Y, Li S, Wu Y, Liao X, Yang Y. Short-, long-read metagenome and virome reveal the profile of phage-mediated ARGs in anoxic-oxic processes for swine wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133789. [PMID: 38394893 DOI: 10.1016/j.jhazmat.2024.133789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Phages are among the most widely spread viruses, but their profiles and the antibiotic resistance genes (ARGs) they carry in swine wastewater remain underexplored. The present study investigated the distribution characteristics of phages and their ARG risk in anoxic/oxic (A/O) wastewater treatment processes of swine farms using short- and long-read metagenome and virome. The results demonstrated that the virome could extract more phage sequences than the total metagenome; thus, it was more suited for studying phages in wastewater settings. Intriguingly, phages had significantly lower abundance of ARG than ARGs harbored by total microorganisms (P < 0.01). Eleven ARGs co-occurred with phages and bacteria (R > 0.6 and P < 0.05), with Siphoviridae being the phage co-occurring with the most ARGs (5). Horizontal gene transfer (HGT) events were observed between Proteobacteria and the major phyla except for Bacteroidota. Furthermore, there were prophage sequences and ARGs on the same contig in bacterial MAGs. These data strongly demonstrate that phages promote horizontal transfer of ARG between bacterial hosts in A/O processes for swine wastewater treatment. Therefore, the risk of phage-mediated horizontal transfer of ARGs cannot be overlooked despite the low abundance of phage ARGs (pARG).
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Chunhao Mo
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yilin Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Yinbao Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Xindi Liao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yiwen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
15
|
Bhattarai B, Bhattacharjee AS, Coutinho FH, Goel R. Investigating the viral ecology and contribution to the microbial ecology in full-scale mesophilic anaerobic digesters. CHEMOSPHERE 2024; 349:140743. [PMID: 37984648 DOI: 10.1016/j.chemosphere.2023.140743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
In an attempt to assess the diversity of viruses and their potential to modulate the metabolism of functional microorganisms in anaerobic digesters, we collected digestate from three mesophilic anaerobic digesters in full-scale wastewater treatment plants treating real municipal wastewater. The reads were analyzed using bioinformatics algorithms to elucidate viral diversity, identify their potential role in modulating the metabolism of functional microorganisms, and provide essential genomic information for the potential use of virus-mediated treatment in controlling the anaerobic digester microbiome. We found that Siphoviridae was the dominant family in mesophilic anaerobic digesters, followed by Myoviridae and Podoviridae. Lysogeny was prevalent in mesophilic anaerobic digesters as the majority of metagenome-assembled genomes contained at least one viral genome within them. One virus within the genome of an acetoclastic methanogen (Methanothrix soehngenii) was observed with a gene (fwdE) acquired via lateral transfer from hydrogenotrophic methanogens. The virus-mediated acquisition of fwdE gene enables possibility of mixotrophic methanogenesis in Methanothrix soehngenii. This evidence highlighted that lysogeny provides fitness advantage to methanogens in anaerobic digesters by adding flexibility to changing substrates. Similarly, we found auxiliary metabolic genes, such as cellulase and alpha glucosidase, of bacterial origin responsible for sludge hydrolysis in viruses. Additionally, we discovered novel viral genomes and provided genomic information on viruses infecting acidogenic, acetogenic, and pathogenic bacteria that can potentially be used for virus-mediated treatment to deal with the souring problem in anaerobic digesters and remove pathogens from biosolids before land application. Collectively, our study provides a genome-level understanding of virome in conjunction with the microbiome in anaerobic digesters that can be used to optimize the anaerobic digestion process for efficient biogas generation.
Collapse
Affiliation(s)
- Bishav Bhattarai
- The University of Utah, Department of Civil and Environmental Engineering, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| | - Ananda Shankar Bhattacharjee
- Department of Environmental Sciences, The University of California, Riverside, Riverside, CA, United States; USDA-ARS, United States Salinity Laboratory, Riverside, CA, United States
| | - Felipe H Coutinho
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, Consejo Superior de Investigaciones Científicas (ICM-CISC), Barcelona, Spain
| | - Ramesh Goel
- The University of Utah, Department of Civil and Environmental Engineering, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| |
Collapse
|
16
|
Xiao W, Sun R, Hu S, Meng C, Xie B, Yi M, Wu Y. Recent advances and future perspective on lignocellulose-based materials as adsorbents in diverse water treatment applications. Int J Biol Macromol 2023; 253:126984. [PMID: 37734528 DOI: 10.1016/j.ijbiomac.2023.126984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
The growing shortage of non-renewable resources and the burden of toxic pollutants in water have gradually become stumbling blocks in the path of sustainable human development. To this end, there has been great interest in finding renewable and environmentally friendly materials to promote environmental sustainability and combat harmful pollutants in wastewater. Of the many options, lignocellulose, as an abundant, biocompatible and renewable material, is the most attractive candidate for water remediation due to the unique physical and chemical properties of its constituents. Herein, we review the latest research advances in lignocellulose-based adsorbents, focusing on lignocellulosic composition, material modification, application of adsorbents. The modification and preparation methods of lignin, cellulose and hemicellulose and their applications in the treatment of diverse contaminated water are systematically and comprehensively presented. Also, the detailed description of the adsorption model, the adsorption mechanism and the adsorbent regeneration technique provides an excellent reference for understanding the underlying adsorption mechanism and the adsorbent recycling. Finally, the challenges and limitations of lignocellulosic adsorbents are evaluated from a practical application perspective, and future developments in the related field are discussed. In summary, this review offers rational insights to develop lignocellulose-based environmentally-friendly reactive materials for the removal of hazardous aquatic contaminants.
Collapse
Affiliation(s)
- Weidong Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Chengzhen Meng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Bin Xie
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Mengying Yi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
17
|
Tan Y, Yu P, Huang D, Yuan MM, Yu Z, Lu H, Alvarez PJJ, Zhu L. Enhanced Bacterium-Phage Symbiosis in Attached Microbial Aggregates on a Membrane Surface Facing Elevated Hydraulic Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17324-17337. [PMID: 37930060 DOI: 10.1021/acs.est.3c05452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Phages are increasingly recognized for their importance in microbial aggregates, including their influence on microbial ecosystem services and biotechnology applications. However, the adaptive strategies and ecological functions of phages in different aggregates remain largely unexplored. Herein, we used membrane bioreactors to investigate bacterium-phage interactions and related microbial functions within suspended and attached microbial aggregates (SMA vs AMA). SMA and AMA represent distinct microbial habitats where bacterial communities display distinct patterns in terms of dominant species, keystone species, and bacterial networks. However, bacteria and phages in both aggregates exhibited high lysogenicity, with 60% lysogenic phages in the virome and 70% lysogenic metagenome-assembled genomes of bacteria. Moreover, substantial phages exhibited broad host ranges (34% in SMA and 42% in AMA) and closely interacted with habitat generalist species (43% in SMA and 49% in AMA) as adaptive strategies in stressful operation environments. Following a mutualistic pattern, phage-carried auxiliary metabolic genes (pAMGs; 238 types in total) presumably contributed to the bacterial survival and aggregate stability. The SMA-pAMGs were mainly associated with energy metabolism, while the AMA-pAMGs were mainly associated with antioxidant biosynthesis and the synthesis of extracellular polymeric substances, representing habitat-dependent patterns. Overall, this study advanced our understanding of phage adaptive strategies in microbial aggregate habitats and emphasized the importance of bacterium-phage symbiosis in the stability of microbial aggregates.
Collapse
Affiliation(s)
- Yixiao Tan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengting Maggie Yuan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Zhuodong Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pedro J J Alvarez
- Civil and Environmental Engineering Department, Rice University, Houston, Texas 77005, United States
| | - Liang Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| |
Collapse
|
18
|
Sudhakari PA, Ramisetty BCM. An Eco-evolutionary Model on Surviving Lysogeny Through Grounding and Accumulation of Prophages. MICROBIAL ECOLOGY 2023; 86:3068-3081. [PMID: 37843655 DOI: 10.1007/s00248-023-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Temperate phages integrate into the bacterial genomes propagating along with the bacterial genomes. Multiple phage elements, representing diverse prophages, are present in most bacterial genomes. The evolutionary events and the ecological dynamics underlying the accumulation of prophage elements in bacterial genomes have yet to be understood. Here, we show that the local wastewater had 7% of lysogens (hosting mitomycin C-inducible prophages), and they showed resistance to superinfection by their corresponding lysates. Genomic analysis of four lysogens and four non-lysogens revealed the presence of multiple prophages (belonging to Myoviridae and Siphoviridae) in both lysogens and non-lysogens. For large-scale comparison, 2180 Escherichia coli genomes isolated from various sources across the globe and 523 genomes specifically isolated from diverse wastewaters were analyzed. A total of 15,279 prophages were predicted among 2180 E. coli genomes and 2802 prophages among 523 global wastewater isolates, with a mean of ~ 5 prophages per genome. These observations indicate that most putative prophages are relics of past bacteria-phage conflicts; they are "grounded" prophages that cannot excise from the bacterial genome. Prophage distribution analysis based on the sequence homology suggested the random distribution of E. coli prophages within and between E. coli clades. The independent occurrence pattern of these prophages indicates extensive horizontal transfers across the genomes. We modeled the eco-evolutionary dynamics to reconstruct the events that could have resulted in the prophage accumulation accounting for infection, superinfection immunity, and grounding. In bacteria-phage conflicts, the bacteria win by grounding the prophage, which could confer superinfection immunity.
Collapse
Affiliation(s)
- Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, 312@ASK1, Thanjavur, India
| | - Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, 312@ASK1, Thanjavur, India.
| |
Collapse
|
19
|
Tang X, Zhong L, Tang L, Fan C, Zhang B, Wang M, Dong H, Zhou C, Rensing C, Zhou S, Zeng G. Lysogenic bacteriophages encoding arsenic resistance determinants promote bacterial community adaptation to arsenic toxicity. THE ISME JOURNAL 2023:10.1038/s41396-023-01425-w. [PMID: 37161002 DOI: 10.1038/s41396-023-01425-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Emerging evidence from genomics gives us a glimpse into the potential contribution of lysogenic bacteriophages (phages) to the environmental adaptability of their hosts. However, it is challenging to quantify this kind of contribution due to the lack of appropriate genetic markers and the associated controllable environmental factors. Here, based on the unique transformable nature of arsenic (the controllable environmental factor), a series of flooding microcosms was established to investigate the contribution of arsM-bearing lysogenic phages to their hosts' adaptation to trivalent arsenic [As(III)] toxicity, where arsM is the marker gene associated with microbial As(III) detoxification. In the 15-day flooding period, the concentration of As(III) was significantly increased, and this elevated As(III) toxicity visibly inhibited the bacterial population, but the latter quickly adapted to As(III) toxicity. During the flooding period, some lysogenic phages re-infected new hosts after an early burst, while others persistently followed the productive cycle (i.e., lytic cycle). The unique phage-host interplay contributed to the rapid spread of arsM among soil microbiota, enabling the quick recovery of the bacterial community. Moreover, the higher abundance of arsM imparted a greater arsenic methylation capability to soil microbiota. Collectively, this study provides experimental evidence for lysogenic phages assisting their hosts in adapting to an extreme environment, which highlights the ecological perspectives on lysogenic phage-host mutualism.
Collapse
Affiliation(s)
- Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China.
| | - Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Mier Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China.
| |
Collapse
|
20
|
Liu R, Li Z, Han G, Cun S, Hou D, Yu Z, Xue K, Liu X. Microbial density-dependent viral dynamics and low activity of temperate phages in the activated sludge process. WATER RESEARCH 2023; 232:119709. [PMID: 36764107 DOI: 10.1016/j.watres.2023.119709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The ecological behavior of bacteriophages (phages), the most abundant biological entity in wastewater treatment systems, is poorly understood, especially that of temperate phages. Here, the temporal dynamics of lytic and temperate phages in a laboratory-scale activated sludge reactor with a sludge bulking issue was investigated using coupled sludge metagenomic and viromic analyses. The lysogenic fragments (prophages) identified were widely distributed in the reconstructed metagenome-assembled genomes (61.7%, n = 227). However, only 12.3% of the identified prophages experienced lysogenic-lytic switching, and the abundance contribution of prophages to free virus communities was only 0.02-0.3%, indicating low activity of temperate phages. Although the sludge community changed dramatically during reactor operation, no massive prophage induction events were detected. Statistical analyses showed strong correlations between sludge concentration and free virus and temperate phage communities, suggesting microbial density-dependent virus dynamics in the sludge microbiota.
Collapse
Affiliation(s)
- Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, China.
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Ganghua Han
- College of Resources and Environment, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Shujuan Cun
- College of Resources and Environment, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Deyin Hou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|