1
|
Gao J, Zhang Y, Yuan S, Li L, Dong B, Xu Z. Significant role of sludge-derived organic matter in enhancing Cr (III) immobilization by jarosite: Insights from molecular selective adsorption and co-precipitation. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137743. [PMID: 40024118 DOI: 10.1016/j.jhazmat.2025.137743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The high mobility of chromium (Cr) caused by acid mine drainage (AMD) poses a serious threat to the aquatic environment. Weakly crystalline minerals can passivate Cr and modify its environmental behavior. Dissolved organic matter (DOM) plays an important role in synergizing the in-situ immobilization of Cr by minerals. However, few studies have explored the molecular-level impact of DOM on Cr immobilization by inducing weakly crystalline minerals transformation. Here, we investigated the effects and mechanisms of sludge-derived DOM (with rich molecular diversity) on Cr immobilization by jarosite (KJ, widely present in AMD). The results showed that sludge-derived DOM significantly changed the speciation distribution of Cr and Fe. The maximum enhancement of Cr immobilized via adsorption and precipitation was 63.43 % and 161.89 %, respectively. Synchronous fluorescence analysis showed that the fractionation of high-oxygenated aromatic compounds promoted Cr adsorption on KJ. FT-ICR-MS spectra suggested that low-oxygenated aromatic and aliphatic compounds promote Cr immobilization in secondary ferrihydrite by capturing free Cr, followed by coprecipitation with dissolved Fe ions. The molecular-level finding in this study will facilitate the deep understanding of the molecular selectivity of sludge organics in remediating heavy metal-contaminated environments, and is of great significance for realizing the resource utilization of enormous waste sludge.
Collapse
Affiliation(s)
- Jun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yunhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Xiao S, Wang L, Bian J, Wang N, Zhang Q, Li Y, Hao J. Dynamic formation of melanoidins and parallel competitive pathways during sludge thermal hydrolysis affected by heating temperature. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136908. [PMID: 39706016 DOI: 10.1016/j.jhazmat.2024.136908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The melanoidins formed through the Maillard reaction during thermal hydrolysis pretreatment (THP) of sludge contribute to darkening, refractoriness, and inhibition of effective wastewater and sludge treatment. However, the dynamic production and structural evolution of THP-derived melanoidins are not fully understood. This study aimed to investigate the factors influencing melanoidins production and the associated mechanisms during THP. Response surface methodology analysis revealed that temperature had the greatest impact on melanoidins production compared to heating time and initial pH. Comparing treatments at 135 °C, 165 °C, and 195 °C, melanoidins production initially increased with rising temperature and then declined. Structural changes and substance transformations during melanoidins production at different temperatures were elucidated via two-dimensional correlation Fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry, respectively. Few competitive reactions occurred at 135 °C; however, carbonization competed with the Maillard reaction for substrates at 165 °C, while carbonization and caramelization led to substrate competition and degradation of the already formed melanoidins at 195 °C. These findings shed light on the dynamic process and mechanisms underlying melanoidins production during THP, and provide fundamental insight into melanoidins regulation for future research.
Collapse
Affiliation(s)
- Siwei Xiao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Leshi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Bian
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Nan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qian Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yuanbo Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jiuxiao Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
3
|
Zou X, He J, Pan X, Cai Q, Duan S, Zhong Y, Cui X, Zhang J. Investigating enhancement of protease and lysozyme combination pretreatment on hydrolysis of sludge organics under humic acid inhibition. BIORESOURCE TECHNOLOGY 2025; 418:131928. [PMID: 39643052 DOI: 10.1016/j.biortech.2024.131928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
This study investigated the impact of humic acid (HA) on enzymatic pretreatment efficiency, focusing on sludge properties and HA molecular structure. The results showed that enzymatic pretreatment alleviates HA inhibition, improving hydrolysis efficiency. In the presence of HA, soluble proteins and polysaccharides in the enzyme-cocktail group reached 27.7 mg/L and 23.9 mg/L, 1.4 and 1.3 times higher than the blank group, respectively. The enzyme-cocktail group also had the highest soluble DNA concentration (19.4 mg/L) and the lowest viable cell proportion (69.3 %), indicating effective cell lysis. Enzyme-cocktail pretreatment reduced electrostatic repulsion, enhancing the mobility of extracellular organics. Enzyme interactions with HA released internal hydrolases and decreased amide groups on the HA surface, increasing the availability of biodegradable substrates. Overall, enzymatic pretreatment proves effective in mitigating HA-induced inhibition, thereby improving sludge biodegradation and enhancing carbon recovery in anaerobic fermentation.
Collapse
Affiliation(s)
- Xiang Zou
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, Guangdong, PR China.
| | - Xinlei Pan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Qiupeng Cai
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Shengye Duan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Yijie Zhong
- College of Water Science, Beijing Normal University, Beijing 100875, PR China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, PR China
| | - Xinxin Cui
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, Guangdong, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| |
Collapse
|
4
|
Zhang Q, Xu J, Wang J, Wang L, Wang N, Liu X, Hao J. Mechanistic insights into melanoidins-induced hydrophilicity of thermal hydrolyzed sludge and its impact on dewaterability. BIORESOURCE TECHNOLOGY 2025; 416:131766. [PMID: 39515429 DOI: 10.1016/j.biortech.2024.131766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Although thermal hydrolysis pretreatment enhances disposal efficiency of sludge, it inevitably leads to melanoidins formation, which will negatively impact the subsequent wastewater treatment processes. However, their effect on the dewaterability of thermal hydrolyzed sludge (THS) remains poorly understood. This study aimed to uncover the underlying mechanisms of how melanoidins affecting dewaterability of THS. Using resin-adsorption method to reduce melanoidins content by 50% led to 21% and 6% decreases in capillary suction time and specific resistance to filtration, respectively, and a 14% increase in sludge cake solid content. Conversely, accumulating melanoidins to 200% worsened THS dewaterability, altering surface morphology and reducing floc stability, which increased the content of bound water by 9%. Additionally, a higher melanoidins level increased the hydrophilic components in extracellular polymeric substances while reducing hydrophobic sites and structures. These findings indicate that melanoidins impair THS dewaterability by altering flocs spatial properties and increasing hydrophilic structures and components.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Junyue Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jiamian Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Liwei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Nan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xinran Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jiuxiao Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Wang SX, Yao W, Yang CX, He WL, Li J, Huang BC, Jin RC. The nexus between aeration intensity and organic carbon capture in contact-stabilization process: Insights from molecular structure transition of dissolved organic matters. WATER RESEARCH 2024; 268:122769. [PMID: 39536641 DOI: 10.1016/j.watres.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Traditional energy-intensive pollution control pattern poses great challenges to the sustainable development of urban cities, necessitating the implementation of more compact and cost-effective biological treatment technology. High-rate contact stabilization (HiCS) process can effectively capture low-concentration organic carbon matters from municipal wastewater. However, the role of dissolved oxygen (DO) concentration at stabilization phase-a critical determinant of carbon capture efficiency-remains poorly understood, thus hindering its operation optimization and application. This work investigated the impact of DO content at the stabilization phase on the effluent quality and carbon capture efficiency of HiCS process from the perspectives of sludge dissolved organic matter (DOM) composition and microbial metabolism activity changes. The results showed that optimal carbon capture efficiency (52.1 %) and the lowest effluent chemical oxygen demand concentration were achieved at a DO concentration of 1 mg/L. Elevated DO levels would increase the aromaticity of DOM in sludge, rendering it more recalcitrant to microbial degradation. In addition, higher DO concentration induced a metabolic shift towards endogenous respiration among the microbial community, leading to the increased release of DOM and microbial metabolites, which in turn deteriorated the effluent quality. The findings of this work highlight the necessity of controlling appropriate aeration intensity when applying HiCS in practical application, to both effectively minimize organic carbon mineralization and operational energy consumption while without sacrificing pollutant removal performance.
Collapse
Affiliation(s)
- Shi-Xu Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Wei Yao
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Chao-Xi Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Wen-Long He
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Jing Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Bao-Cheng Huang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|
6
|
He Y, Chen W, Xiang Y, Zhang Y, Xie L. Unveiling the effect of PFOA presence on the composting process: Roles of oxidation stress, carbon metabolism, and humification process. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135682. [PMID: 39236542 DOI: 10.1016/j.jhazmat.2024.135682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Perfluorooctanoic acid (PFOA), an emerging pollutant, has been frequently detected in organic solid waste. It becomes a major concern for compost application, but studies on its toxic effects during composting are rare. This study evaluated the impact of PFOA presence at the environmentally relevant level on the humification process and microbiology during composting. The results showed that the PFOA presence (15.5 μg/kg dry) caused 45.5 % and 40.5 % decreases in the total organic carbon and humic acid-like substances, respectively. PFOA negatively affected microbial activity during the thermophilic period, as evidenced by the increases in reactive oxygen species and lactate dehydrogenase concentration. It altered the microbial community with an enrichment of Bacteroidota, conducive to resisting press. Unexpectedly, the PFOA presence induced hormesis at the maturity period, consistent with stimulated carbon metabolism (i.e., glycolysis and oxidative phosphorylation). The modulated microbial metabolism stimulated the catabolic metabolism of small-molecule humus precursors and reduced intracellular quinone availability. Furthermore, the secretion of auxiliary activities for crude fiber degradation was suppressed, which decreased the generation of extracellular quinone, and thereby impeded the humification process. These findings deciphered the metabolic response of composting to PFOA presence and highlighted the potential carbon loss of PFOA-containing composting.
Collapse
Affiliation(s)
- Yingying He
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Weizhen Chen
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yuankun Xiang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yue Zhang
- Faculty of Engineering and Physical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| | - Li Xie
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Liu J, Wang C, Zhou J, Dong K, Elsamadony M, Xu Y, Fujii M, Wei Y, Wang D. Thermodynamics and explainable machine learning assist in interpreting biodegradability of dissolved organic matter in sludge anaerobic digestion with thermal hydrolysis. BIORESOURCE TECHNOLOGY 2024; 412:131382. [PMID: 39214181 DOI: 10.1016/j.biortech.2024.131382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Dissolved organic matter (DOM) is essential in biological treatment, yet its specific roles remain incompletely understood. This study introduces a machine learning (ML) framework to interpret DOM biodegradability in the anaerobic digestion (AD) of sludge, incorporating a thermodynamic indicator (λ). Ensemble models such as Xgboost and LightGBM achieved high accuracy (training: 0.90-0.98; testing: 0.75-0.85). The explainability of the ML models revealed that the features λ, measured m/z, nitrogen to carbon ratio (N/C), hydrogen to carbon ratio (H/C), and nominal oxidation state of carbon (NOSC) were significant formula features determining biodegradability. Shapley values further indicated that the biodegradable DOM were mostly formulas with λ lower than 0.03, measured m/z value higher than 600 Da, and N/C ratios higher than 0.2. This study suggests that a strategy based on ML and its explainability, considering formula features, particularly thermodynamic indicators, provides a novel approach for understanding and estimating the biodegradation of DOM.
Collapse
Affiliation(s)
- Jibao Liu
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1-M1-22 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Chenlu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiahui Zhou
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1-M1-22 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Kun Dong
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China
| | - Mohamed Elsamadony
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1-M1-22 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuansong Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dunqiu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
8
|
Zhang P, Wang X, Zhang Z, Wang Y, Zhu T, Liu Y. Hydrocyclone combines with alkali-thermal pretreatment to enhance short-chain fatty acids production from anaerobic fermentation of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122409. [PMID: 39236612 DOI: 10.1016/j.jenvman.2024.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
The production of short-chain fatty acids (SCFAs) through anaerobic fermentation of waste activated sludge (WAS) is commonly constrained by limited substrate availability, particularly for WAS with low organic content. Combining the hydrocyclone (HC) selection with alkali-thermal (AT) pretreatment is a promising solution to address this limitation. The results indicated that HC selection modified the sludge properties by enhancing the ratio of mixed liquid volatile suspended solids (MLVSS)/mixed liquid suspended solids (MLSS) by 19.0% and decreasing the mean particle size by 17.4%, which were beneficial for the subsequent anaerobic fermentation process. Under the optimal HC + AT condition, the peak value of SCFAs production reached 4951.9 mg COD/L, representing a 23.2% increase compared to the raw sludge with only AT pretreatment. Mechanism investigations revealed such enhancement beyond mechanical separation. It involved an increase in bound extracellular polymeric substances (EPS) through HC selection and the disruption of sludge spatial structure by AT pretreatment. Consequently, this combination pretreatment accelerated the transfer of particulate organics (i.e., bound EPS and intracellular components) to the supernatant, thus increasing the accessibility of WAS substrate to hydrolytic and acidifying bacteria. Furthermore, the microbial structure was altered with the enrichment of key functional microorganisms, probably due to the facilitation of substrate biotransformation and product output. Meanwhile, the activity of hydrolases and SCFAs-forming enzymes increased, while that of methanogenic enzymes decreased. Overall, this strategy successfully enhanced SCFAs production from WAS while reducing the environmental risks of WAS disposal.
Collapse
Affiliation(s)
- Peiyao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Beijing Enterprises Water Group Limited, Beijing, 100102, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
9
|
Ji K, Ouyang W, Lin C, He M, Liu X. Eco-hydrological processes regulate lake riparian soil organic matter under dryness stress. WATER RESEARCH 2024; 260:121938. [PMID: 38878315 DOI: 10.1016/j.watres.2024.121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
As transitional zone between terrestrial and aquatic ecosystems, the soil properties of riparian zones are deeply influenced by the eco-hydrological conditions of lakes. However, with the increasing frequent drought events caused by climate change, the response of riparian soil organic matter (SOM) dynamics to the eco-hydrological process of lakes under dryness stress is unclear. In this study, we utilized the field research, indoor experiments, ecoenzymatic stoichiometry model and data analysis to identify whether riparian SOM and enzyme activity were affected by dryness stress and determine the feedback relationship between soil biochemical properties and lake eco-hydrological processes. The results showed that lake dryness stress reduced the non-vegetated riparian soil quality (the mean Carbon Pool Management Index decreased by 18 % and 6 % for water-land interface (WL) and bare land (BL), respectively), and the humification degree and molecular weight of the riparian soil dissolved organic matter (DOM) (with E2/E3 and E3/E4 value of WL 6.1 and 1.9 times higher than main lake sediment), which was not conducive to soil carbon storage. In addition, lake dryness stress reduced the C-hydrolytic enzyme activity and soil enzyme stoichiometry. The vector and Vector-TER analysis suggested the riparian soil was C and N limitation of the microbial community (vector length of 2.05 ± 0.57 and vector angle of 30.10° ± 7.70°), and dryness had reduced the limitations to some extent. Most notably, we combined structural equation model (SEM) analysis and found that lake dryness stress affects riparian soil organic carbon (SOC) dynamics by significantly affecting microbial biomass carbon (MBC) and soil pH. Finally, the response of riparian zone to eco-hydrological condition under climate change should receive further attention, which can effectively deepen our understanding of the carbon water cycle mechanism in riparian soil under changing environments.
Collapse
Affiliation(s)
- Kaiyue Ji
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Yan Y, Chen J, Cui L, Fei Q, Wang N, Ma Y. Development of oriented multi-enzyme strengthens waste activated sludge disintegration and anaerobic digestion: Performance, components transformation and microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121614. [PMID: 38943750 DOI: 10.1016/j.jenvman.2024.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/25/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Low methane production and long retention time are the main dilemmas in current anaerobic digestion (AD) of waste activated sludge (WAS). This work used WAS as only substrate to prepare oriented multi-enzyme (ME) that directly used for WAS pretreatment. Under the optimal parameters, the highest activities of protease and amylase in ME could respectively reach 16.5 U/g and 580 U/g, and the corresponding methane production attained 197 mLCH4/g VS, which was increased by 70.4% compared to blank group. It was found that ME pretreatment could strengthen WAS disintegration and organic matters dissolution, lead to the soluble chemical oxygen demand (SCOD) was increased from the initial 486 mg/L to 2583 mg/L, and the corresponding volatile suspended solid (VSS) and extracellular polymeric substances (EPS) were reduced by 27% and 73.8%, respectively. The results of three-dimensional excitation-emission matrix (3D-EEM) and Fourier transform infrared spectroscopy (FTIR) indicated that protein disintegration may be the critical step during the process of WAS hydrolysis with ME, of which the release of tyrosine-like proteins achieved the better biodegradability of WAS, while the results of X-ray photoelectron spectroscopy (XPS) showed that the formation of protein derivatives was the main harmful factor that could extend the lag phase of AD process. Microbial communities analysis further suggested that ME pretreatment facilitated the enrichment of acetogenic bacteria and acetotrophic methanogens, which caused the transition of the methanogenesis pathway from hydrogenotrophic to acetotrophic. This study is expected to furnish valuable insight for ME pretreatment on enhancing WAS disintegration and methane production.
Collapse
Affiliation(s)
- Yiming Yan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxin Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lihui Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Nan Wang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
11
|
Wang N, Cui Y, Zhou Y, Liu P, Wang M, Sun H, Huang Y, Wang S. Changes in the Glucose Concentration Affect the Formation of Humic-like Substances in Polyphenol-Maillard Reactions Involving Gibbsite. Molecules 2024; 29:2115. [PMID: 38731606 PMCID: PMC11085651 DOI: 10.3390/molecules29092115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The polyphenol-Maillard reaction is considered one of the important pathways in the formation of humic-like substances (HLSs). Glucose serves as a microbial energy source that drives the humification process. However, the effects of changes in glucose, particularly its concentration, on abiotic pathways remain unclear. Given that the polyphenol-Maillard reaction requires high precursor concentrations and elevated temperatures (which are not present in soil), gibbsite was used as a catalyst to overcome energetic barriers. Catechol and glycine were introduced in fixed concentrations into a phosphate-buffered solution containing gibbsite using the liquid shake-flask incubation method, while the concentration of glucose was controlled in a sterile incubation system. The supernatant fluid and HLS components were dynamically extracted over a period of 360 h for analysis, thus revealing the influence of different glucose concentrations on abiotic humification pathways. The results showed the following: (1) The addition of glucose led to a higher degree of aromatic condensation in the supernatant fluid. In contrast, the supernatant fluid without glucose (Glu0) and the control group without any Maillard precursor (CK control group) exhibited lower degrees of aromatic condensation. Although the total organic C (TOC) content in the supernatant fluid decreased in all treatments during the incubation period, the addition of Maillard precursors effectively mitigated the decreasing trend of TOC content. (2) While the C content of humic-like acid (CHLA) and the CHLA/CFLA ratio (the ratio of humic-like acid to fulvic-like acid) showed varying increases after incubation, the addition of Maillard precursors resulted in a more noticeable increase in CHLA content and the CHLA/CFLA ratio compared to the CK control group. This indicated that more FLA was converted into HLA, which exhibited a higher degree of condensation and humification, thus improving the quality of HLS. The addition of glycine and catechol without glucose or with a glucose concentration of 0.06 mol/L was particularly beneficial in enhancing the degree of HLA humification. Furthermore, the presence of glycine and catechol, as well as higher concentrations of glucose, promoted the production of N-containing compounds in HLA. (3) The presence of Maillard precursors enhanced the stretching vibration of the hydroxyl group (-OH) of HLA. After the polyphenol-Maillard reaction of glycine and catechol with glucose concentrations of 0, 0.03, 0.06, 0.12, or 0.24 mol/L, the aromatic C structure in HLA products increased, while the carboxyl group decreased. The presence of Maillard precursors facilitated the accumulation of polysaccharides in HLA with higher glucose concentrations, ultimately promoting the formation of Al-O bonds. However, the quantities of phenolic groups and phenols in HLA decreased to varying extents.
Collapse
Affiliation(s)
- Nan Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Yongquan Cui
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Yanhui Zhou
- Agricultural Technology Extension Station of Jiaohe City, Jiaohe 132500, China;
| | - Pingxin Liu
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Mingshuo Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Haihang Sun
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Yubao Huang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Shuai Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| |
Collapse
|
12
|
Li Z, You Z, Zhang L, Chen H. Effect of total solids content on anaerobic digestion of waste activated sludge enhanced by high-temperature thermal hydrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120980. [PMID: 38669887 DOI: 10.1016/j.jenvman.2024.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Total solids (TS) content may provide a regulatory strategy for optimizing anaerobic digestion enhanced by high-temperature thermal hydrolysis, but the role of TS content is not yet clear. In this study, the effect of TS content on the high-temperature thermal hydrolysis and anaerobic digestion of sludge and its mechanism were investigated. The results showed that increasing the TS content from 2% to 8% increased the sludge solubility and methane production potential, reaching peak values of 26.6% and 336 ± 6 mL/g volatile solids (VS), respectively. With a further increase in TS content to 12%, the strong Maillard reaction increased the aromaticity and structural stability of extracellular polymer substances, decreasing sludge solubility to 18.6%. Furthermore, the decrease in sludge biodegradability and the formation of inhibitory by-products resulted in a reduction in methane production to 272 ± 4 mL/g VS. This article provides a new perspective to understand the role of TS content in the thermal hydrolysis of sludge and a novel approach to regulate the Maillard reaction.
Collapse
Affiliation(s)
- Zeyu Li
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Zhimin You
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Liuqing Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
13
|
Wang Y, Han Z, Liu J, Song C, Wei Z. The biotic effects of lignite on humic acid components conversion during chicken manure composting. BIORESOURCE TECHNOLOGY 2024; 398:130503. [PMID: 38442847 DOI: 10.1016/j.biortech.2024.130503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Targeted regulation of composting to convert organic matter into humic acid (HA) holds significant importance in compost quality. Owing to its low carbon content, chicken manure compost often requires carbon supplements to promote the humification progress. The addition of lignite can increase HA content through biotic pathways, however, its structure was not explored. The Parallel factor analysis revealed that lignite can significantly increase the complexity of highly humified components. The lignite addition improved phenol oxidase activity, particularly laccase, during the thermophilic and cooling phases. The abundance and transformation functions of core bacteria also indicated that lignite addition can influence the activity of microbial transformation of HA components. The structural equation model further confirmed that lignite addition had a direct and indirect impact on enhancing the complexity of HA components through core bacteria and phenol oxidase. Therefore, lignite addition can improve HA structure complexity during composting through biotic pathways.
Collapse
Affiliation(s)
- Yumeng Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ziyi Han
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Junping Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
14
|
Lin C, Xin Z, Yuan S, Sun J, Dong B, Xu Z. Effects of production temperature on the molecular composition and seed-germination-promoting properties of sludge-based hydrochar-derived dissolved organic matter. WATER RESEARCH 2024; 251:121133. [PMID: 38237463 DOI: 10.1016/j.watres.2024.121133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Sludge hydrothermal carbonization demonstrates potential for converting sludge into multifunctional carbon materials for soil remediation. However, the influence of dissolved organic matter (DOM) with unclear molecular characteristics in sludge-based hydrothermal carbon on plant growth has not been sufficiently investigated. Herein, the effects of hydrothermal temperature on the molecular transformation pathways and plant-growth-promoting properties of DOM were investigated via FT-ICR MS-based molecular network analyses and seed germination experiments. Results indicated that the highest DOM yield was achieved at 220 °C. During low-temperature (180 °C) hydrothermal treatment, the hydrolysis of biopolymers, as well as the partial condensation and cyclization of small-molecule intermediates, occurred in the sludge. This process produced unsaturated CHNO compounds containing one or two N atoms, which promoted seed germination. Further, the toxicity of DOM to plants increased with rising hydrothermal temperature. This was accompanied by S doping and aromatization reactions, which mitigated the effects of plant growth hormones. This study provides theoretical support for the optimization of sludge hydrothermal treatment and production of plant growth hormones, enhancing the ecological value of sludge-based hydrochar.
Collapse
Affiliation(s)
- Chuanjin Lin
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Zhenhua Xin
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Shijie Yuan
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Jing Sun
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Bin Dong
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China.
| | - Zuxin Xu
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| |
Collapse
|
15
|
Xing CM, He ZL, Lan T, Yan B, Zhao Q, Wu QL, Wang HZ, Wang CX, Guo WQ. Enhanced humus synthesis from Chinese medicine residues composting by lignocellulose-degrading bacteria stimulation: Upregulation of key enzyme activity and neglected indirect effects on humus formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167754. [PMID: 37879479 DOI: 10.1016/j.scitotenv.2023.167754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Chinese medicine residues (CMHRs) resource is attracting widespread attention, as it is expected to be produced into Humus-rich fertilizer for soil application. This study aimed to promote effective humus (HS) production through lignocellulose-degrading bacteria (LDB) addition and explore the biological regulation mechanism of LDB affecting lignocellulose-to-humus conversion. The results showed higher HS production was achieved, with 109.73 and 111.44 g·kg-1, and HA/FA was raised by 12.70-16.02 % in compost products by LDB addition stimulation. Significant upregulation of β-glucanase and xylanase activities catalyzed higher decomposition of lignocellulose toward more HS potential precursors supply. Furthermore, exogenous LDB intervention induced microbial community restructure and microbial network establishment via enriching synergism functional bacteria, i.e., Thermobifida, Paenibacillus, Nonomuraea, etc. Mantel test results showed that it was variation of cellulose, hemicellulose and HS that affected microbial community succession (p < 0.01, r > 0.6), which represented the positive action of LDB addition stimulation on HS synthesis upregulation. Further exploration suggested LDB had an indirect effect on HS formation by enhanced lignin and hemicellulose conversion based on the Random Forest model and Partial least-squares path modeling results. This research provides new insights into the trigger effects of LDB introduction on upregulating HS synthesis and is expected to propose new perspectives for HS efficient production in CMHRs composting.
Collapse
Affiliation(s)
- Chuan-Ming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Lin He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Cai-Xia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
16
|
Gao J, Li L, Yuan S, Sun J, Chen S, Dong B. Reconceptualization of the mechanism of thermal hydrolysis pretreatment to enhance the anaerobic conversion of sludge organic nitrogen: Decisive role of organic nitrogen occurrence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165703. [PMID: 37487905 DOI: 10.1016/j.scitotenv.2023.165703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
The occurrence state of organic nitrogen (ON) is the key to affect anaerobic biotransformation of sludge. ON in sludge was chemically classified as PA (easily accessible part), PB (moderately accessible) and PC (hardly accessible) according to the modified CNCPS method. The components of them were analyzed by PY-GCMS, and it was identified that PA was extracellular amino acids, peptides and proteins; PB was genetic material, cell wall peptidoglycans and intracellular proteins; PC was ON that cross-linked with complex macromolecules. The conversion characteristics of PA, PB and PC in sludge and their relationship with anaerobic digestion (AD) performance were investigated after thermal hydrolysis pretreatment (THP) at different temperatures (100-180 °C). With the increase of THP temperature, the hydrolysis of PA and the conversion of PB to PA were promoted. At 180-THP, part of PA was converted to PC due to thermochemical reactions. In the fast degradation stage of AD of ON (ON-fast), PA is the main component of degradation; while in the slow degradation stage (ON-slow), the degradation of ON is mainly dominated by PB. Therefore, THP can significantly increase the proportion of ON-fast and reduce the ON fraction in the digestate (ON-hard). Moreover, PA and PB, rather than PC, were identified as dominant in ON-hard with or without THP for the first time, overturning the traditional view (remaining ON after AD was that cross-linked with complex macromolecules). This is due to that PA and PB are the main ON that make up microbial cells. The findings upgraded our perspective on conversion of ON of sludge during AD and inspire the shifted focus from "degrading PC" to "PC accumulation" for later use, through targeted enhanced PA degradation.
Collapse
Affiliation(s)
- Jun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sisi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China.
| |
Collapse
|
17
|
Pavez-Jara JA, van Lier JB, de Kreuk MK. Accumulating ammoniacal nitrogen instead of melanoidins determines the anaerobic digestibility of thermally hydrolyzed waste activated sludge. CHEMOSPHERE 2023; 332:138896. [PMID: 37169092 DOI: 10.1016/j.chemosphere.2023.138896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
Full-scale thermal hydrolysis processes (THP) showed an increase in nutrients release and formation of melanoidins, which are considered to negatively impact methanogenesis during mesophilic anaerobic digestion (AD). In this research, fractionation of THP-sludge was performed to elucidate the distribution of nutrients and the formed melanoidins over the liquid and solid sludge matrix. Degradation of the different fractions in subsequent AD was assessed, and the results were compared with non-pre-treated waste activated sludge (WAS). Results showed that the THP-formed soluble melanoidins were partially biodegradable under AD, especially the fraction with molecular weight under 1.1 kDa, which was related to protein-like substances. The use of THP in WAS increased the non-biodegradable soluble chemical oxygen demand (sCOD) after AD, from 1.1% to 4.9% of the total COD. The total ammoniacal nitrogen (TAN) concentration only slightly increased during THP without AD. However, after AD, TAN released was 34% higher in the THP-treated WAS compared to non-treated WAS, i.e., 36.7 ± 0.7 compared to 27.4 ± 0.4 mgTANreleased/gCODsubstrate, respectively. Results from modified specific methanogenic activities (mSMAs) tests showed that the organics solubilised during THP, were not inhibitory for acetotrophic methanogens. However, after AD of THP-treated sludge and WAS, the mSMA showed that all analysed samples presented strong inhibition on methanogenesis due to the presence of TAN and associated free ammonia nitrogen (FAN). In specific methanogenic activities (SMAs) tests with incremental concentration of TAN/FAN and melanoidins, TAN/FAN induced strong inhibition on methanogens, halving the SMA at around 2.5 gTAN/L and 100 mgFAN/L. Conversely, melanoidins did not show inhibition on the methanogens. Our present results revealed that when applying THP-AD in full-scale, the increase in TAN/FAN remarkably had a greater impact on AD than the formation of melanoidins.
Collapse
Affiliation(s)
- Javier A Pavez-Jara
- Department of Water Management, Delft University of Technology, Building 23 Stevinweg 1, 2628, Delft, the Netherlands.
| | - Jules B van Lier
- Department of Water Management, Delft University of Technology, Building 23 Stevinweg 1, 2628, Delft, the Netherlands.
| | - Merle K de Kreuk
- Department of Water Management, Delft University of Technology, Building 23 Stevinweg 1, 2628, Delft, the Netherlands.
| |
Collapse
|