1
|
Yang A, Pei H, Zhang M, Jin Y, Xu H. Molecular mechanisms by which polyethylene terephthalate (PET) microplastic and PET leachate promote the growth of benthic cyanobacteria. WATER RESEARCH 2025; 280:123476. [PMID: 40088856 DOI: 10.1016/j.watres.2025.123476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Toxic blooms of benthic cyanobacteria greatly threaten freshwater ecological health and drinking water safety. Meanwhile, microplastic pollution is becoming increasingly severe and microplastics accumulate in large quantities at the bottom of lakes and rivers, widely coexisting with algae. However, impacts of microplastics on benthic cyanobacteria are still unknown. This study investigated effects of microplastic polyethylene terephthalate (PET) - which is commonly found at the bottom of lakes and rivers - and its leachate at environmentally relevant concentration (0.3 mg/L) and high exposure concentration (3.0 mg/L) on typical benthic cyanobacteria (Oscillatoria sp. and Pseudanabaena sp.), and clarified the related molecular mechanisms through transcriptomic analysis. Results show that PET or PET leachate (PET-L) can promote benthic cyanobacterial growth and promotive effect of PET-L is more obvious than that of PET system. Promotion effect of PET or PET-L is more significant at environmentally relevant concentration (39-63 % increase compared with the control) compared with high exposure concentration (21-58 % increase compared with the control). In the presence of PET or PET-L, due to an increase in the number of cyanobacterial cells, concentrations of harmful metabolites (cylindrospermopsin, geosmin, and 2-methylisoborneol) in water also increased. Although PET particles may not be conducive to benthic cyanobacterial growth due to shading effect and mechanical damage, photosynthetic efficiency of algae was improved and dysregulated genes related to photosynthesis and extracellular transport of glycolipid were upregulated according to transcriptome analysis. Moreover, PET decomposition components, such as terephthalic acid and ethylene glycol, may be able to serve as carbon sources for cyanobacterial growth. Upregulation of genes associated with glycolysis, oxidative phosphorylation, and translation revealed that PET can promote the growth of benthic cyanobacteria. This study has important value in evaluating the impact of benthic cyanobacteria on aquatic ecological health and drinking water safety with the coexistence of microplastics.
Collapse
Affiliation(s)
- Aonan Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Ming Zhang
- Gaomi Municipal Public Utilities Service Center, Weifang 261041, China
| | - Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China.
| |
Collapse
|
2
|
Wu R, Qiu J, Tang X, Li A, Yang Y, Zhu X, Zheng X, Yang W, Wu G, Wang G. Effects of okadaic acid on Pyropia yezoensis: Evidence from growth, photosynthesis, oxidative stress and transcriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137902. [PMID: 40088667 DOI: 10.1016/j.jhazmat.2025.137902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
The frequent occurrences of harmful algal blooms potentially threaten marine organisms. The phycotoxin okadaic acid (OA) has been globally detected in seawater, however, the knowledge of effects of OA on macroalgae is limited. This study investigated the effects of OA (0.01, 0.1 μM) on the growth, physiological and biochemical properties, and transcriptional expression of Pyropia yezoensis. Exposure to 0.1 μM OA for 48 h led to decreased growth, oxidative stress, and lipid peroxidation in P. yezoensis. Levels of reactive oxygen species, glutathione and malondialdehyde, and activity of catalase enzyme were increased, but activity of superoxide dismutase was decreased in P. yezoensis exposed to OA. Even at the low concentration of 0.01 μM, OA influenced the photosynthetic efficiency and stimulated the pigment levels, including phycoerythrin, phycocyanin, allophycocyanin and chlorophyll a. Analytical results of amino acids indicated that OA reduced the nutritional quality of P. yezoensis. The expression of genes involved in nitrogen metabolism was up-regulated, but the genes associated with ABC transporters and photosynthesis was down-regulated by the OA exposure, suggesting that OA may affect photosynthesis and enhance nitrogen uptake and assimilation processes. This study provides a new perspective on the chemical ecology risk of phycotoxins to marine macroalgae.
Collapse
Affiliation(s)
- Ruolin Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyu Zhu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenke Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangyao Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Huang K, Zeng H, Zhou Q. Heatwave enhance the adaptability of Chlorella pyrenoidosa to zinc oxide nanoparticles: Regulation of interfacial interactions and metabolic mechanisms. WATER RESEARCH 2025; 279:123466. [PMID: 40081176 DOI: 10.1016/j.watres.2025.123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Wide application of zinc oxide nanoparticles (ZnO NPs) and increasing frequency of heatwaves (HWs) have posed a great threat to freshwater ecosystems, while phytotoxicity of ZnO NPs mediated by HWs remains unclear. This study aims to link the physiological responses, bio-nano interactions, and metabolic mechanisms of Chlorella pyrenoidosa with ZnO NPs under heat stress. Results demonstrated a temperature-dependent growth inhibition against ZnO NPs, with a higher reduction of growth rate at 24 °C than 28 °C. Accompanied with lower reactive oxidative stress and cell damage at 28 °C, our results indicated that HW could enhance the adaptability of C. pyrenoidosa to ZnO NPs stress. Furthermore, HW induced the variation of algal surface properties, altered interfacial interactions in the bio-nano system, and decreased cellular Zn uptake. Metabolomics analysis supported the temperature-dependent influences of ZnO NPs on C. pyrenoidosa. The phytotoxicity of ZnO NPs was associated with the disturbance of amino acids, fatty acids, and energy metabolic processes, which were mitigated under HW condition, enhancing the responsiveness of algae to the adverse effects. These results emphasize the importance of taking the impacts of HWs into account when evaluating the environmental risks of ZnO NPs.
Collapse
Affiliation(s)
- Keyi Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center / College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hui Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center / College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center / College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Bao M, Sheng F, Zhang Q, Liu J, Xin R, Yan F, Zang S, Xu Z, Wu H. Toxicity of microplastics and nanoplastics to benthic Sargassum horneri: The role of nitrogen availability in modulating stress responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107366. [PMID: 40252308 DOI: 10.1016/j.aquatox.2025.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
Over the past few decades, the accumulation of micro- and nanoplastics (MNPs) have identified as enduring contaminants, posing significant risks to aquatic organisms. However, the interplay of MNPs and environmental stressors (e.g. nutrient etc.) is not well understood. In this study, Sargassum horneri, a typical benthic macroalgae, was cultured with two sizes of plastic particles (MPs (5 μm), NPs (0.05 μm) and nitrogen concentrations (LN (30 μM), HN (120 μM)) for 20 days to investigate the interactive effects between MNPs and nitrogen levels by measuring different physiological and biochemical parameters. The results demonstrated that both MPs and NPs decrease growth rate, non-photochemical quenching (NPQ), and catalase (CAT) activity, but increased the chlorophyll a and c, carotenoid, and soluble protein contents at low nitrogen level. Notably, the inhibitory effect on growth rate was more pronounced in the NPs conditions. Compared to low nitrogen groups, high nitrogen concentration increased the growth rate, NPQ, the ratio of carotenoids to chlorophyll a, the energy absorbed by each reaction center (ABS/RC), the energy dissipated by each reaction center (DI0/RC), superoxide dismutase (SOD), and CAT levels at same MPs or NPs treatment, respectively. Meanwhile, there was no significant difference among different sizes of plastic particle treatment groups in high nitrogen conditions. These results imply that NPs may exhibit potentially greater detrimental effects than MPs, when the algae were cultured under low nitrogen conditions. However, increased nitrogen availability appears to alleviate the toxic effects of MNPs by enhancing the algal photoprotective and antioxidant capacities. These findings highlight the potential for nutrient enrichment to mitigate the toxic impacts of micro- and nanoplastics on benthic macroalgae, providing valuable insights into future ecosystem response to increasing MNPs pollution in nutrient-variable coastal environments.
Collapse
Affiliation(s)
- Menglin Bao
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Fei Sheng
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Qi Zhang
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Jichen Liu
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Rongyu Xin
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Fang Yan
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Shasha Zang
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Zhiguang Xu
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Hongyan Wu
- School of Life Science, Ludong University, Yantai, 264025, China.
| |
Collapse
|
5
|
Liu H, Zhou Z, Long C, Qing T, Feng B, Zhang P, Chen YP. Light/dark synergy enhances cyanophycin accumulation in algal-bacterial consortia: Boosted strategy for nitrogen recovery from wastewater. BIORESOURCE TECHNOLOGY 2025; 425:132309. [PMID: 40023333 DOI: 10.1016/j.biortech.2025.132309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Recovering the nitrogen-rich biopolymer cyanophycin [(β-Asp-Arg)n] from algal-bacterial consortia enhances the reclamation of value-added chemicals from wastewater. However, the modulation of light/dark conditions on cyanophycin accumulation remain unknown. In this study, the trends and mechanisms of cyanophycin synthesis in algal-bacterial consortia under light/dark conditions were investigated. The results showed that cyanophycin production during the dark periods ranged from 137-150 mg/g MLSS (mixed liquid suspended solids), which was 32 %-38 % higher than those during the light period (p < 0.001). Metatranscriptomics results demonstrated that 50 metagenome-assembled genomes contribute to cyanophycin production, with the Planktothrix genus being the dominant contributor. Metabolomics findings suggested that algal-bacterial consortia produce higher level of arginine for cyanophycin synthesis under light conditions. This study demonstrates the feasibility of increasing cyanophycin production by merging light/dark cycles, and offers a novel strategy for high yield of valuable biopolymers from wastewater substrate.
Collapse
Affiliation(s)
- Hongyuan Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zirui Zhou
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Caicheng Long
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Taiping Qing
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Bo Feng
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Peng Zhang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - You-Peng Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400000, China
| |
Collapse
|
6
|
Wang Y, Zhao Z, Song X, Jiang X, Xiong J, Ru S, Yang L. Responses of coastal phytoplankton communities to herbicide exposure: enhanced resistance coupled with reduced resilience. ENVIRONMENTAL RESEARCH 2025; 279:121734. [PMID: 40324622 DOI: 10.1016/j.envres.2025.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Coastal ecosystems face increasing anthropogenic disturbances, making the survival strategies of phytoplankton communities under stress a critical issue in marine ecology. The community rescue theory suggests that exposure history can enhance phytoplankton's ability to withstand lethal stress, though the mechanisms remain unclear. This study utilized two-phase mesocosm experiments to simulate exposure history and lethal pressures. By combining tolerance and heritability tests, the mechanisms by which exposure history enhanced phytoplankton tolerance were investigated. The results demonstrated that: (1) Exposure history enhanced the community tolerance threshold to atrazine through ecological (the relative abundance of dinoflagellates increased by 13.6-66.4 %) and plastic processes (the EC50 of sensitive populations increased by 12.3-114.9 %). And this enhancement was positively correlated with exposure intensity but accompanied by suppression of community biomass. (2) Rescue was more likely to occur in large-scale communities, suggesting that high biomass was a prerequisite for populations/communities to survive the period of biomass collapse. Our findings aligned with the observation in in situ marine environments: long-term exposure to herbicides enhanced community tolerance (EC50 from 97.19 ± 6.8 nmol L-1 to 115.5 ± 7.8 nmol L-1) and delayed the collapse of communities under lethal pressure. However, this acquired tolerance was not heritable, and rescue still led to the loss of nearly half of rare taxa, potentially hindering the community's ability to withstand other environmental stressors. Our findings elucidate how phytoplankton communities achieve rescue through structural reorganization, providing crucial theoretical underpinnings for disturbance assessment in coastal ecosystems.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, 266101, Qingdao, China
| | - Ziang Zhao
- College of Marine Life Sciences, Ocean University of China, 266101, Qingdao, China
| | - Xiukai Song
- Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, 264000, Yantai, China
| | - Xiangyang Jiang
- Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, 264000, Yantai, China
| | - Jiuqiang Xiong
- College of Marine Life Sciences, Ocean University of China, 266101, Qingdao, China.
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 266101, Qingdao, China.
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, 266101, Qingdao, China.
| |
Collapse
|
7
|
Lyu K, Li J, Wu Y, Asselman J, Yang Z. Changes in population fitness and gene co-expression networks reveal the boosted impact of toxic cyanobacteria on Daphnia magna through microplastic exposure. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137225. [PMID: 39823883 DOI: 10.1016/j.jhazmat.2025.137225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
The concomitant prevalence of toxic cyanobacteria blooms and plastic pollution in aquatic ecosystems is emerging as a pressing global water pollution dilemma. While toxic cyanobacteria and microplastics (MPs) can each independently exert significant impacts on aquatic biota, the magnitude and trajectory of the combined interactions remains rudimentary. In this study, we evaluated how MPs influences cyanobacterial stress on keystone grazer Daphnia, focusing on population, individual, biochemical and toxicogenomic signatures. We found that toxic Microcystis (TM) adversely affected the fitness of Daphnia populations (intrinsic rate of population increase), and these adverse effects were amplified in the presence of MPs. Through detailed observation, it was ascertained that MPs promoted the ingestion of TM, culminating in enhanced microcystin bioaccumulation. Using the Eco-Evo model, we found that there was potential absence of correlation between the MPs toxicity and the effect size of MPs on the TM. Utilizing gene set enrichment analysis (GSEA), we further identified a marked suppression of molecular pathways and entities crucial to individual growth and development in the TM-MPs consortium compared to exposure to TM alone. The present study provides important insights about the influence of MPs on cyanobacteria toxicity and the prediction the risk of harmful algal blooms in aquatic ecosystems.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiameng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuting Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, Ostend 8400, Belgium
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
8
|
Nava V, Dar JY, De Santis V, Fehlinger L, Pasqualini J, Adekolurejo OA, Burri B, Cabrerizo MJ, Chonova T, Cour M, Dory F, Drost AM, Figler A, Gionchetta G, Halabowski D, Harvey DR, Manzanares‐Vázquez V, Misteli B, Mori‐Bazzano L, Moser V, Rotta F, Schmid‐Paech B, Touchet CM, Gostyńska J. Zooming in the plastisphere: the ecological interface for phytoplankton-plastic interactions in aquatic ecosystems. Biol Rev Camb Philos Soc 2025; 100:834-854. [PMID: 39542439 PMCID: PMC11885710 DOI: 10.1111/brv.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Phytoplankton is an essential resource in aquatic ecosystems, situated at the base of aquatic food webs. Plastic pollution can impact these organisms, potentially affecting the functioning of aquatic ecosystems. The interaction between plastics and phytoplankton is multifaceted: while microplastics can exert toxic effects on phytoplankton, plastics can also act as a substrate for colonisation. By reviewing the existing literature, this study aims to address pivotal questions concerning the intricate interplay among plastics and phytoplankton/phytobenthos and analyse impacts on fundamental ecosystem processes (e.g. primary production, nutrient cycling). This investigation spans both marine and freshwater ecosystems, examining diverse organisational levels from subcellular processes to entire ecosystems. The diverse chemical composition of plastics, along with their variable properties and role in forming the "plastisphere", underscores the complexity of their influences on aquatic environments. Morphological changes, alterations in metabolic processes, defence and stress responses, including homoaggregation and extracellular polysaccharide biosynthesis, represent adaptive strategies employed by phytoplankton to cope with plastic-induced stress. Plastics also serve as potential habitats for harmful algae and invasive species, thereby influencing biodiversity and environmental conditions. Processes affected by phytoplankton-plastic interaction can have cascading effects throughout the aquatic food web via altered bottom-up and top-down processes. This review emphasises that our understanding of how these multiple interactions compare in impact on natural processes is far from complete, and uncertainty persists regarding whether they drive significant alterations in ecological variables. A lack of comprehensive investigation poses a risk of overlooking fundamental aspects in addressing the environmental challenges associated with widespread plastic pollution.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Jaffer Y. Dar
- ICAR‐Central Soil Salinity Research InstituteKarnal132001India
- Department of Experimental LimnologyLeibniz Institute of Freshwater Ecology and Inland FisheriesMüggelseedamm 310Berlin12587Germany
| | - Vanessa De Santis
- Water Research Institute, National Research CouncilCorso Tonolli 50Verbania‐PallanzaVerbania28922Italy
| | - Lena Fehlinger
- GEA Aquatic Ecology GroupUniversity of Vic ‐ Central University of CataloniaCarrer de la Laura 13Catalonia08500 VicSpain
| | - Julia Pasqualini
- Department of River EcologyHelmholtz Centre for Environmental Research‐UFZBrückstr. 3aMagdeburg39114Germany
| | - Oloyede A. Adekolurejo
- Ecology and Evolution, School of BiologyUniversity of LeedsLeedsLS2 9JTUK
- Department of BiologyAdeyemi Federal University of EducationOndo CityOndoPMB 520Nigeria
| | - Bryan Burri
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Marco J. Cabrerizo
- Department of Ecology & Institute of Water ResearchUniversity of GranadaCampus Fuentenueva s/nGranada18071Spain
- Estación de Fotobiología Playa Unióncasilla de correos 15RawsonChubut9103Argentina
| | - Teofana Chonova
- Department Environmental ChemistryEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstr. 133DübendorfCH‐8600Switzerland
| | | | - Flavia Dory
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Annemieke M. Drost
- Department of Aquatic EcologyNetherlands Institute of EcologyDroevendaalsesteeg 10Wageningen6708 PBThe Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamP.O. Box 94240Amsterdam1090 GEThe Netherlands
| | - Aida Figler
- Department of BioinformaticsSemmelweis UniversityTűzoltó utca 7‐9Budapest1094Hungary
| | - Giulia Gionchetta
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA)Spanish Council of Scientific Research (CSIC)Barcelona0803Spain
| | - Dariusz Halabowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental ProtectionUniversity of LodzBanacha 12/16Lodz90‐237Poland
| | - Daniel R. Harvey
- Lake Ecosystems Group, UK Centre for Ecology & HydrologyLancaster Environment CentreLibrary Avenue, BailriggLancasterLA1 4APUK
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Víctor Manzanares‐Vázquez
- Department of Research and DevelopmentCoccosphere Environmental AnalysisC/Cruz 39, 29120 Alhaurín el GrandeMálagaSpain
| | - Benjamin Misteli
- WasserCluster Lunz ‐ Biologische StationDr Carl Kupelwieser Promenade 5Lunz am See3293Austria
| | - Laureen Mori‐Bazzano
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Valentin Moser
- Community Ecology, Swiss Federal Institute for ForestSnow and Landscape Research WSLZürcherstrasse 111BirmensdorfCH‐8903Switzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 133DübendorfCH‐8600Switzerland
| | - Federica Rotta
- Department of Earth and Environmental SciencesUniversity of PaviaVia Ferrata 1Pavia27100Italy
- Institute of Earth ScienceUniversity of Applied Science and Arts of Southern SwitzerlandVia Flora Ruchat‐Roncati 15MendrisioCH‐6850Switzerland
| | - Bianca Schmid‐Paech
- University Weihenstephan‐Triesdorf of Applied ScienceAm Hofgarten 4Freising85354Germany
| | - Camille M. Touchet
- Université Claude Bernard ‐ Lyon 1, “LEHNA UMR 5023, CNRS, ENTPE3‐6, rue Raphaël DuboisVilleurbanneF‐69622France
| | - Julia Gostyńska
- Department of Hydrobiology, Faculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznanskiego 6Poznan61‐614Poland
| |
Collapse
|
9
|
Hu X, Dong X, Wang Z. Common issues of data science on the eco-environmental risks of emerging contaminants. ENVIRONMENT INTERNATIONAL 2025; 196:109301. [PMID: 39884250 DOI: 10.1016/j.envint.2025.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Data-driven approaches (e.g., machine learning) are increasingly used to replace or assist laboratory studies in the study of emerging contaminants (ECs). In the past ten years, an increasing number of models or approaches have been applied to ECs, and the datasets used are continuously enriched. However, there are large knowledge gaps between what we have found and the natural eco-environmental meaning. For most published reviews, the contents are organized by the types of ECs, but the common issues of data science, regardless of the type of pollutant, are not sufficiently addressed. To close or narrow the knowledge gaps, we highlight the following issues ignored in the field of data-driven EC research. Complicated biological and ecological data and ensemble models revealing mechanisms and spatiotemporal trends with strong causal relationships and without data leakage deserve more attention in the future. In addition, the matrix influence, trace concentration, and complex scenario have often been ignored in previous works. Therefore, an integrated research framework related to natural fields, ecological systems, and large-scale environmental problems, rather than relying solely on laboratory data-related analysis, is urgently needed. Beyond the current prediction purposes, data science can inspire the discovery of scientific questions, and mutual inspiration among data science, process and mechanism models, and laboratory and field research is a critical direction. Focusing on the above urgent and common issues related to data, frameworks, and purposes, regardless of the type of pollutant, data science is expected to achieve great advancements in addressing the eco-environmental risks of ECs.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xu Dong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhangjia Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Li L, Huang W, Qiao D, Zhong Z, Shang Y, Khan FU, Wei S, Wang Y. Marine Heatwaves Exacerbate the Toxic Effects of Tire Particle Leachate on Microalgae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:177-187. [PMID: 39727297 DOI: 10.1021/acs.est.4c08986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Additives leached from tire particles (TPs) after entering the marine environment inevitably interact with marine life. Marine heatwaves (MHWs) would play a more destructive role than ocean warming during the interaction of pollutants and marine life. To evaluate the potential risks of TPs leachate under MHWs, the physiological and nutrient metabolic endpoints of microalgae Isochrysis galbana were observed for 7 days while being exposed to TPs leachate at current or predicted concentrations under MHWs. TPs leachate mainly contained Zn and 6-PPD, which could be absorbed by microalgae mostly, especially under MHWs. Additionally, TPs leachate increased the reactive oxygen species content, activated the antioxidant system, impaired photosynthesis and glycolysis, and decreased sugar and protein content. 10 mg/L TPs leachate increased the lipid content and saturation. Meanwhile, microalgae under such TPs leachate were biased toward the synthesis of long-chain fatty acids and Δ8 desaturation pathway. MHWs promoted the positive effects of TPs leachate on microalgae growth at the current concentration but exacerbated the negative effects at the predicted concentration. Our study emphasizes the potential risks of TPs leachate to marine primary production systems, especially if accompanied by the increasing intensity and frequency of extreme climate events.
Collapse
Affiliation(s)
- Li'ang Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China
| | - Dan Qiao
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhen Zhong
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shuaishuai Wei
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
11
|
Bao S, Xian B, Yi J, Rao C, Xiang D, Wu Y, Chu F, Tang W, Fang T. Aging process potentially aggravates microplastic toxicity in aquatic organisms: Evidence from a comprehensive synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177992. [PMID: 39662410 DOI: 10.1016/j.scitotenv.2024.177992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Microplastics (MPs; <5 mm) will inevitably encounter aging processes after being released into the environment. However, the effect of aging on MPs toxicity in aquatic environment is still unclear despite that aging plays a critical role in changing MPs characteristics and behavior. Here, we conducted a meta-analysis to assess the effects of aging on MPs biotoxicity in aquatic environment. We found that aging displayed an overall aggravating effect (Hedges' g = -0.595, P < 0.05) on MPs toxicity in aquatic organisms, while the effects varied across different taxa; namely, aging potentially alleviates MPs biotoxicity to hydrophytes (Hedges' g = 0.383, P > 0.05) while significantly exacerbates MPs toxicity to other organisms, such as algae (Hedges' g = -0.784, P < 0.05), zooplanktons (Hedges' g = -0.366, P < 0.05), and fish (Hedges' g = -0.560, P < 0.05). Moreover, the aggravating effects of aging on MPs biotoxicity were closely related to biological traits (e.g., Hedges' g = -0.378 for growth and development, Hedges' g = -0.957 for metabolism, and Hedges' g = 0.054 for immune system). We further found that aging methods, MPs characteristics, and environmental designs were also crucial regulators for the aging impacts on MPs toxicity. Taken together, our findings demonstrated that aging process appears to boost MPs biotoxicity, and there are complex factors determining aging impacts on MPs biotoxicity. Given the persistent release of MPs and the aggravating effects of aging in aquatic environments, the risk posed by MPs should be carefully considered in the future.
Collapse
Affiliation(s)
- Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Xian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yi
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Chenyang Rao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongfang Xiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yundong Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fuhao Chu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Li M, Xu X, Wang J, Deng L, Wu Z, Yang D, Qian X, Fan Y. Complex microplastics significantly influence the assembly process of lake bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135867. [PMID: 39298943 DOI: 10.1016/j.jhazmat.2024.135867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Environmental microplastics (MPs) vary in abundance, shape, size, color, and polymer type in freshwater ecosystems, yet their impact on bacterial community assembly in natural lakes is unclear. Here, we examined MPs and bacterial compositions in water and sediments of Taihu Lake, China, to reveal the influence of complex MPs on the bacterial community assembly. The results showed that the complexity index of MPs significantly influenced the turnover and nestedness components of bacterial communities. In the colder season, MP complexity was significantly correlated with the turnover componentin sediments (R2 = 0.19, P < 0.0001), with turnover increasing as MP complexity increased. Conversely, under warmer season, MP complexity was significantly correlated with turnover and nestedness components. Additionally, the interaction effect of environmental and MP factors affected almost all components of beta diversity, particularly in cold water and sediment, with impacts on nestedness of 0.17 and 0.12, respectively, and should thus not be ignored. Our findings indicate for the first time that complex MPs significantly influence the assembly of bacterial communities in lake systems. The impact varies across seasons and future warming may exacerbate this effect, rendering it more uncertain and complex.
Collapse
Affiliation(s)
- Mingjia Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaohan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ligang Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zeqiang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Daojun Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
13
|
Lv M, Chen H, Liang Z, Sun A, Lu S, Ren S, Zhu D, Wei S, Chen L, Ding J. Stress of soil moisture and temperature exacerbates the toxicity of tire wear particles to soil fauna: Tracking the role of additives through host microbiota. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135995. [PMID: 39357354 DOI: 10.1016/j.jhazmat.2024.135995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Tire wear particles (TWPs) are considered as an emerging threat to soil fauna. However, how TWP toxicity to soil fauna responds to the stress of soil moisture and temperature remains unclear. We assessed the toxicity of environmentally relevant TWPs to the soil model species Enchytraeus crypticus under three soil moisture and two temperature gradients. Typical thermoplastic polypropylene (PP) was selected for comparison. Results showed that compared with PP, TWPs exerted stronger toxicity, including decreasing the worm growth, survival and reproduction rates, disturbing the soil and worm gut microbiota, and leaching more diverse and higher contents of additives. Stress of soil moisture and temperature exacerbated TWP toxicity mainly through affecting the leaching and transformation of additives. Fourteen mediated additives significantly contributed to the shift of the gut microbiota under soil moisture and temperature stress, among which 1,3-diphenylguanidine, N,N'-bis(methylphenyl)-1,4-benzenediamine quinone, N-tert-butyl-2-benzothiazolesulfenamide, and 2-aminobenzothiazole were identified as the main drivers. In addition, this study provided the first clear evidence that increased soil moisture and temperature promoted the transformation of additives in the soil. Our study revealed the non-negligible aggravated toxicity of TWPs to soil fauna under stress of soil moisture and temperature, providing novel insights into the environmental behavior of additives.
Collapse
Affiliation(s)
- Min Lv
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
| | - Han Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Zhaoqin Liang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Suyu Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China.
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
14
|
Zhang WP, Wei H, Zhang SY, Zhang SF, Zhou Y, Sun WJ, Lee JS, Wang M, Wang DZ. Elevated temperature as the dominant stressor on the harmful algal bloom-causing dinoflagellate Prorocentrum obtusidens in a future ocean scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175946. [PMID: 39218111 DOI: 10.1016/j.scitotenv.2024.175946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Marine dinoflagellates are increasingly affected by ongoing global climate changes. While understanding of their physiological and molecular responses to individual stressors anticipated in the future ocean has improved, their responses to multiple concurrent stressors remain poorly understood. Here, we investigated the individual and combined effects of elevated temperature (26 °C relative to 22 °C), increased pCO2 (1000 μatm relative to 400 μatm), and high nitrogen: phosphorus ratio (180:1 relative to 40:1) on a harmful algal bloom-causing dinoflagellate Prorocentrum obtusidens under short-term (28 days) exposure. Elevated temperature was the most dominant stressor affecting P. obtusidens at physiological and transcriptomic levels. It significantly increased cell growth rate and maximum photosynthetic efficiency (Fv/Fm), but reduced chlorophyll a, particulate organic carbon, particulate organic nitrogen, and particulate organic phosphorus. Elevated temperature also interacted with other stressors to produce synergistic positive effects on cell growth and Fv/Fm. Transcriptomic analysis indicated that elevated temperature promoted energy production by enhancing glycolysis, tricarboxylic acid cycle, and nitrogen and carbon assimilation, which supported rapid cell growth but reduced material storage. Increased pCO2 enhanced the expression of genes involved in ionic acid-base regulation and oxidative stress resistance, whereas a high N:P ratio inhibited photosynthesis, compromising cell viability, although the effect was alleviated by elevated temperature. The combined effect of these multiple stressors resulted in increased energy metabolism and up-regulation of material-synthesis pathways compared to the effect caused by elevated temperature alone. Our results underscore ocean warming as the predominant stressor for dinoflagellates and highlight the complex, synergistic effects of multi-stressors on dinoflagellates.
Collapse
Affiliation(s)
- Wei-Ping Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Shuo-Yu Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yang Zhou
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wen-Jing Sun
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
15
|
Liu S, Han J, Yao L, Li H, Xin G, Ho SH, Huang X. Integrated multilevel investigation of photosynthesis revealed the algal response distinction to differentially charged nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134815. [PMID: 38885582 DOI: 10.1016/j.jhazmat.2024.134815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Nanoplastics (NPs), especially those with different charges, as one of emerging contaminants pose a threat to aquatic ecosystems. Although differentially charged NPs could induce distinct biological effects, mechanistic understanding of the critical physiological processes of aquatic organisms from an integrated multilevel perspective on aquatic organisms is still uncertain. Herein, multi-effects of differentially charged nanosized polystyrene (nPS) including neutral nPS, nPS-COOH, and nPS-NH2 on the photosynthesis-related physiological processes of algae were explored at the population, individual, subcellular, protein, and transcriptional levels. Results demonstrated that both nPS and nPS-COOH exhibited hormesis to algal photosynthesis but nPS-NH2 triggered severe inhibition. As for nPS-NH2, the integrity of algal subcellular structure, chlorophyll biosynthesis, and expression of photosynthesis-related proteins and genes were interfered. Intracellular NPs' content in nPS treatment was 25.64 % higher than in nPS-COOH treatment, and the content of chloroplasts in PS and nPS-COOH treatment were 3.09 % and 4.56 % higher than control, respectively. Furthermore, at the molecular levels, more photosynthesis-related proteins and genes were regulated under nPS-COOH exposure than those exposed to nPS. Light-harvesting complex II could be recognized as an underlying explanation for different effects between nPS and nPS-COOH. This study first provides a novel approach to assess the ecological risks of NPs at an integrated multilevel.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jingheng Han
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Linjie Yao
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Huijun Li
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, PR China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China.
| |
Collapse
|
16
|
Xu Y, Peng BY, Zhang X, Xu Q, Yang L, Chen J, Zhou X, Zhang Y. The aging of microplastics exacerbates the damage to photosynthetic performance and bioenergy production in microalgae (Chlorella pyrenoidosa). WATER RESEARCH 2024; 259:121841. [PMID: 38820734 DOI: 10.1016/j.watres.2024.121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The toxicity of microplastics (MPs) on freshwater plants has been widely studied, yet the influence of aged MPs remains largely unexplored. Herein, we investigated the influence of polyvinyl chloride (PVC) MPs, both before and after aging, at different environmentally relevant concentrations on Chlorella pyrenoidosa, a freshwater microalgae species widely recognized as a valuable biomass resource. During a 96-h period, both virgin and aged MPs hindered the growth of C. pyrenoidosa. The maximum growth inhibition rates were 32.40 % for virgin PVC at 250 mg/L and 44.72 % for aged PVC at 100 mg/L, respectively. Microalgae intracellular materials, i.e., protein and carbohydrate contents, consistently decreased after MP exposure, with more pronounced inhibition observed with aged PVC. Meanwhile, the MP aging significantly promoted the nitrogen uptake of C. pyrenoidosa, i.e., 1693.45 ± 42.29 mg/L (p < 0.01), contributing to the production of humic acid-like substances. Additionally, aged PVC induced lower chlorophyll a and Fv/Fm when compared to virgin PVC, suggesting a more serious inhibition of the photosynthesis process of microalgae. The toxicity of MPs to C. pyrenoidosa was strongly associated with intercellular oxidative stress levels. The results indicate that MP aging exacerbates the damage to photosynthetic performance and bioenergy production in microalgae, providing critical insights into the toxicity analysis of micro(nano)plastics on freshwater plants.
Collapse
Affiliation(s)
- Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Qianfeng Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China.
| |
Collapse
|
17
|
Alothman A, Emwas AH, Singh U, Jaremko M, Agusti S. Metabolomics-based analysis of the diatom Cheatoceros tenuissimus combining NMR and GC-MS techniques. MethodsX 2024; 12:102695. [PMID: 38595808 PMCID: PMC11001764 DOI: 10.1016/j.mex.2024.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Metabolomics, a recent addition to omics sciences, studies small molecules across plants, animals, humans, and marine organisms. Nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) are widely used in those studies, including microalgae metabolomics. NMR is non-destructive and highly reproducible but has limited sensitivity, which could be supplemented by joining GC-MS analysis. Extracting metabolites from macromolecules requires optimization for trustworthy results. Different extraction methods yield distinct profiles, emphasizing the need for optimization. The results indicated that the optimized extraction procedure successfully identified NMR and GC-MS-based metabolites in MeOH, CHCl3, and H2O extraction solvents. The findings represented the spectral information related to carbohydrates, organic molecules, and amino acids from the water-soluble metabolites fraction and a series of fatty acid chains, lipids, and sterols from the lipid fraction. Our study underscores the benefit of combining NMR and GC-MS techniques to comprehensively understand microalgae metabolomes, including high and low metabolite concentrations and abundances.•In this study, we focused on optimizing the extraction procedure and combining NMR and GC-MS techniques to overcome the low NMR sensitivity and the different detected range limits of NMR and GC-MS.•We explored metabolome diversity in a tropical strain of the small cells' diatom Cheatoceros tenuissimus.
Collapse
Affiliation(s)
- Afrah Alothman
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental and Science and Engineering, Marine Science Program, Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Upendra Singh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental and Science and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental and Science and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Susana Agusti
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental and Science and Engineering, Marine Science Program, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Hu X, Wang S, Feng R, Hu K. Natural organic small molecules promote the aging of plastic wastes and refractory carbon decomposition in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134043. [PMID: 38492386 DOI: 10.1016/j.jhazmat.2024.134043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Microplastics and nanoplastics are ubiquitous in rivers and undergo environmental aging. However, the molecular mechanisms of plastic aging and the in-depth effects of aging on ecological functions remain unclear in waters. The synergies of microplastics and nanoplastics (polystyrene as an example) with natural organic small molecules (e.g., natural hyaluronic acid and vitamin C related to biological tissue decomposition) are the key to producing radicals (•OH and •C). The radicals promote the formation of bubbles on plastic surfaces and generate derivatives of plastics such as monomer and dimer styrene. Nanoplastics are easier to age than microplastics. Pristine plastics inhibit the microbial Shannon diversity index and evenness, but the opposite results are observed for aging plastics. Pristine plastics curb pectin decomposition (an indicator of plant-originated refractory carbon), but aging plastics promote pectin decomposition. Microplastics and nanoplastics undergoing aging processes enhance the carbon biogeochemical cycle. For example, the increased carbohydrate active enzyme diversity, especially the related glycoside hydrolase and functional species Pseudomonas and Clostridium, contributes to refractory carbon decomposition. Different from the well-studied toxicity and aging of plastic pollutants, this study connects plastic pollutants with biological tissue decomposition, biodiversity and climate change together in rivers.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kai Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
19
|
Wu H, Gao T, Hu A, Wang J. Network Complexity and Stability of Microbes Enhanced by Microplastic Diversity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4334-4345. [PMID: 38382548 DOI: 10.1021/acs.est.3c08704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Microplastic mixtures are ubiquitously distributed in global ecosystems and include varying types. However, it remains unknown how microplastic diversity affects the biotic interactions of microbes. Here, we developed novel experiments of 600 microcosms with microplastic diversity ranging from 1 to 6 types and examined ecological networks for microbial communities in lake sediments after 2 months of incubation at 15 and 20 °C. We found that microplastic diversity generally enhanced the complexity of microbial networks at both temperatures, such as increasing network connectance and reducing average path length. This phenomenon was further confirmed by strengthened species interactions toward high microplastic diversity except for the negative interactions at 15 °C. Interestingly, increasing temperatures further exaggerated the effects of microplastic diversity on network structures, resulting in higher network connectivity and species interactions. Consistently, using species extinction simulations, we found that higher microplastic diversity and temperature led to more robust networks, and their effects were additionally and positively mediated by the presence of biodegradable microplastics. Our findings provide the first evidence that increasing microplastic diversity could unexpectedly promote the complexity and stability of microbial networks and that future warming could amplify this effect.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Oceanography, Hohai University, Nanjing 210098, China
| | - Tianheng Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Ang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
20
|
Wang S, Ma Y, Khan FU, Dupont S, Huang W, Tu Z, Shang Y, Wang Y, Hu M. Size-dependent effects of plastic particles on antioxidant and immune responses of the thick-shelled mussel Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169961. [PMID: 38211852 DOI: 10.1016/j.scitotenv.2024.169961] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Micro-/nano-plastic particles (MNPs) are present in the ocean with potential detrimental impacts on marine ecosystems. Bivalves are often used as marine bioindicators and are ideal to evaluate the threat posed by various-sized MNPs. We exposed the mussel Mytilus coruscus to MNPs with different particle sizes (70 and 500 nm, 5, 10 and 100 μm) for 3, 72 h and 30 days. The antioxidant responses in digestive gland and the hemolymph were then evaluated. The time of exposure played a strong modulating role in the biological response. A 3-hour exposure had no significant impact on the digestive gland. After 72 h, an increase in oxidative stress was observed in the digestive gland, including increased hydrogen peroxide (H2O2) level, catalase (CAT), glutathione peroxidase (GPx) activities and malondialdehyde (MDA) production. After a 30-day exposure, the oxidative stress decreased while lipid peroxidation increased. A 30-day exposure increased hemocyte mortality (HM) and reactive oxygen species (ROS) levels in the hemolymph, while phagocytosis (PA), lysosome content (LC), mitochondrial number (MN) and mitochondrial membrane potential (MMP) significantly decreased. Longer-term exposure to MNPs caused oxidative stress in the digestive gland as well as impaired viability and immunity of hemocytes. Particle size also influenced the response with smaller particles having more severe effects. A depuration for 7 days was enough to reverse the negative effects observed on the digestive gland and hemolymph. This study provides new insights on the effects of small-sized MNPs, especially nanoplastic particles (NPs), on aquatic organisms, and provides a solid theoretical knowledge background for future studies on toxic effects of MNPs.
Collapse
Affiliation(s)
- Shixiu Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Yichi Ma
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Sam Dupont
- Department for Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil 45178, Sweden
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| |
Collapse
|
21
|
Liao J, Sun B, Wang C, Cao Z, Wu Z, An X, Liang Z, Huang X, Lu Y. Uptake and cellular responses of Microcystis aeruginosa to PFOS in various environmental conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116041. [PMID: 38350213 DOI: 10.1016/j.ecoenv.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/15/2024]
Abstract
Although PFOS has been banned as a persistent organic pollutant, it still exists in large quantities within the environment, thus impacting the health of aquatic ecosystems. Previous studies focused solely on high PFOS concentrations, disregarding the connection with environmental factors. To gain a more comprehensive understanding of the PFOS effects on aquatic ecosystems amidst changing environmental conditions, this study investigated the cellular responses of Microcystis aeruginosa to varying PFOS concentrations under heatwave and nutrient stress conditions. The results showed that PFOS concentrations exceeding 5.0 µg/L had obvious effects on multiple physiological responses of M. aeruginosa, resulting in the suppression of algal cell growth and the induction of oxidative damage. However, PFOS concentration at levels below 20.0 µg/L has been found to enhance the growth of algal cells and trigger significant oxidative damage under heatwave conditions. Heatwave conditions could enhance the uptake of PFOS in algal cells, potentially leading to heightened algal growth when PFOS concentration was equal to or less than 5.0 µg/L. Conversely, deficiency or limitation of nitrogen and phosphorus significantly decreased algal abundance and chlorophyll content, inducing severe oxidative stress that could be mitigated by exposure to PFOS. This study holds significance in managing the impact of PFOS on algal growth across diverse environmental conditions.
Collapse
Affiliation(s)
- Jieming Liao
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academic of Sciences, Beijing 100049, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academic of Sciences, Beijing 100049, China
| | - Zhiwei Cao
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zhaoyang Wu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xupeng An
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zi'an Liang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xinyi Huang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academic of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Zhao Y, Tao S, Liu S, Hu T, Zheng K, Shen M, Meng G. Research advances on impacts micro/nanoplastics and their carried pollutants on algae in aquatic ecosystems: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106725. [PMID: 37806023 DOI: 10.1016/j.aquatox.2023.106725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The widespread presence of micro/nanoplastics in aquatic ecosystems has certainly affected ecosystem functions and food chains/webs. The impact is worsened by the accumulation of different pollutants and microorganisms on the surface of microplastics. At the tissue, cellular, and molecular levels, micro/nanoplastics and the contaminants they carry can cause damage to aquatic organisms. Problematically, the toxic mechanism of micro/nanoplastics and contaminants on aquatic organisms is still not fully understood. Algae are key organisms in the aquatic ecosystem, serving as primary producers. The investigation of the toxic effects and mechanisms of micro/nanoparticles and pollutants on algae can contribute to understanding the impact on the aquatic ecosystem. Micro/nanoplastics inhibit algal growth, reduce chlorophyll and photosynthesis, induce ultrastructural changes, and affect gene expression in algae. The effects of energy flow can alter the productivity of aquatic organisms. The type, particle size, and concentration of micro/nanoparticles can influence their toxic effects on algae. Although there has been some research on the toxic effects of algae, the limited information has led to a significant lack of understanding of the underlying mechanisms. This paper provides a comprehensive review of the interactions between micro/nanoplastics, pollutants, and algae. The effects of various factors on algal toxicity are also analyzed. In addition, this article discusses the combined effects of microplastics, global warming, and oil pollution on algae and aquatic ecosystems in the context of global change. This research is of great importance for predicting future environmental changes. This review offers a more comprehensive understanding of the interactions between microplastics/nanoplastics and algae, as well as their impact on the carbon cycle.
Collapse
Affiliation(s)
- Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tong Hu
- Department of Environment Science, Zhejiang University, Hangzhou 310058, PR China
| | - Kaixuan Zheng
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Guanhua Meng
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| |
Collapse
|