1
|
Tang P, Hou L, Yin M, Huang F, Pan Z, Shi T, Li J, Zhu Y, Zhang X, Gao P. Towards robust partial nitrification in low-ammonia wastewater: Electrospinning nanofiber composite-enhanced hydrogel beads immobilized comammox Nitrospira. BIORESOURCE TECHNOLOGY 2025; 429:132541. [PMID: 40233879 DOI: 10.1016/j.biortech.2025.132541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/17/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Stable partial nitrification (PN) in low-ammonia wastewater has been a critical challenge, but comammox Nitrospira shows great potential in PN systems due to unique physiological characteristics. Polyvinyl alcohol/sodium alginate electrospinning nanofiber (PVA/SA-EN) and polyvinylidene fluoride EN (PVDF-EN) were used to construct EN hydrogel beads (ENHB) with sandwich and core-shell structures, respectively. Comammox HB (cHB) and three types of comammox ENHB (cENHB) were assembled by immobilizing comammox sludge and operated for 60 days in low-ammonia wastewater. Results showed a significant correlation between PN performance, HB pore structure, and comammox Nitrospira abundance. With superior pore structure and mechanical strength, PVA/SA-PVDF-cENHB achieved a nitrite accumulation rate of 55.08 %, indicating enhanced PN performance. The contribution of comammox Nitrospira to PN was 73.19 %. Its abundance in PVA/SA-PVDF-cENHB was 5.56 × 10⁶ copies/(g sludge), 1.16-1.95-fold higher than the other three HB. Nanofiber composite-enhanced hydrogel immobilizes comammox Nitrospira provides new ideas for achieving robust PN in low-ammonia wastewater.
Collapse
Affiliation(s)
- Peng Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Liangang Hou
- China Construction First Group Construction & Development Co., LTD, Beijing 100102, China
| | - Meiling Yin
- Yantai Center of Coastal Zone Geological Survey, China Geological Survey, Yantai 264000, China
| | - Feng Huang
- China Construction First Group Construction & Development Co., LTD, Beijing 100102, China
| | - Zhengwei Pan
- China Construction First Group Construction & Development Co., LTD, Beijing 100102, China
| | - Tianhao Shi
- China Construction First Group Construction & Development Co., LTD, Beijing 100102, China; China Construction First Group Corporation Limited, Beijing 100089, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Yuhan Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Xin Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Peng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Lee H, Min S, Chae D, Kim C, Oh HS, Lee K, Lee J, Choo KH, Lee CH, Park PK. Effect of the type and concentration of multivalent cations on the durability of polymeric media for degrading quorum sensing signaling molecules in membrane bioreactors. WATER RESEARCH 2025; 282:123637. [PMID: 40273696 DOI: 10.1016/j.watres.2025.123637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Quorum quenching (QQ) techniques have been applied to membrane bioreactors (MBRs) to inhibit biofouling in the form of polymeric media entrapping QQ bacteria, called QQ media. However, concerns about the durability of QQ media during long-term operation have been raised. To address this, the degree of cross-linking in QQ media was enhanced by either increasing the Ca²⁺ concentration in the 1st cross-linking solution or changing the type of multivalent metal cation in the 2nd cross-linking solution. The QQ beads fabricated under these conditions were compared to those of previously developed conditions in terms of physical durability and biological QQ efficiency. The improved QQ beads demonstrated greater durability, as confirmed by measurements of hardness, swelling ratio, and alginate leakage. In addition, they showed higher QQ efficiency, which was verified through bioassay and analysis of internal microorganisms. The results indicated optimal performance when the 1st cross-linking solution had 16 % w/v CaCl2, or when the 2nd cross-linking solution contained Al3+ as the metal cation, with 0.1 M Al2(SO4)3. Finally, the lifespan of the improved QQ beads was estimated using an experimentally derived formula, suggesting that the lifespan of 16 % w/v CaCl2 and 0.1 M Al2(SO4)3 QQ beads indicated an increase by factors of 2.71 and 3.35, respectively, when compared with the conventional QQ beads.
Collapse
Affiliation(s)
- Hosung Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Gangwon-do 26493, Republic of Korea
| | - Sojin Min
- Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34144, Republic of Korea
| | - Dowon Chae
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Gangwon-do 26493, Republic of Korea
| | - Chanyoung Kim
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Gangwon-do 26493, Republic of Korea
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science and Technology, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Kibaek Lee
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jaewoo Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Pyung-Kyu Park
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Gangwon-do 26493, Republic of Korea.
| |
Collapse
|
3
|
Huang Y, Zheng X, Feng Y, Feng X, Xu F. Combining quorum quenching by Rhodococcus sp. BH4 and Acinetobacter sp. DKY-1 to control biofouling in membrane bioreactors. BIORESOURCE TECHNOLOGY 2025; 418:131981. [PMID: 39681273 DOI: 10.1016/j.biortech.2024.131981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
This study investigates a novel approach to mitigate biofouling in membrane bioreactors (MBRs) using a combinational quorum quenching (QQ) strategy. Rhodococcus sp. BH4 and Acinetobacter sp. DKY-1 were employed to disrupt intraspecies N-acyl-homoserine lactones (AHL) and interspecies autoinducer-2 (AI-2) quorum sensing, respectively. BH4 and DKY-1 were immobilized independently and the antibiofouling effects of single QQ beads and 1: 1 mixed QQ beads, both with the same final doses, were compared. While both bead types exhibited high QQ activity, the mixed QQ beads more effectively inhibited microbial biofilm formation, delaying biofouling by two times compared to 1.5 and 1.7 times for the single species beads. Additionally, the mixed QQ MBR demonstrated significantly lower extracellular polymeric substances and a notable reduction in the genus Nitrospira. This combined QQ strategy presents a promising method for enhancing antibiofouling performance in MBRs through targeted disruption of microbial communication.
Collapse
Affiliation(s)
- Yanyao Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xueman Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yunshi Feng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xingtong Feng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Fangfang Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Shi K, Xu JM, Cui HL, Cheng HY, Liang B, Wang AJ. Microbiome regulation for sustainable wastewater treatment. Biotechnol Adv 2024; 77:108458. [PMID: 39343082 DOI: 10.1016/j.biotechadv.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sustainable wastewater treatment is essential for attaining clean water and sanitation, aligning with UN Sustainable Development Goals. Wastewater treatment plants (WWTPs) have utilized environmental microbiomes in biological treatment processes in this effort for over a century. However, the inherent complexity and redundancy of microbial communities, and emerging chemical and biological contaminants, challenge the biotechnology applications. Over the past decades, understanding and utilization of microbial energy metabolism and interaction relationships have revolutionized the biological system. In this review, we discuss how microbiome regulation strategies are being used to generate actionable performance for low-carbon pollutant removal and resource recovery in WWTPs. The engineering application cases also highlight the real feasibility and promising prospects of the microbiome regulation approaches. In conclusion, we recommend identifying environmental risks associated with chemical and biological contaminants transformation as a prerequisite. We propose the integration of gene editing and enzyme design to precisely regulate microbiomes for the synergistic control of both chemical and biological risks. Additionally, the development of integrated technologies and engineering equipment is crucial in addressing the ongoing water crisis. This review advocates for the innovation of conventional wastewater treatment biotechnology to ensure sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jia-Min Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Han-Lin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Li E, Huang J, Yu H, Liu S, He W, Zhang W, Pang H, Zhang C. Photoaged tire wear particles hinder the transport of Pb(II) in urban soils under acid rain: Experimental and numerical investigations. WATER RESEARCH 2024; 266:122410. [PMID: 39260196 DOI: 10.1016/j.watres.2024.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Rapid urbanization brought lots of serious environmental contamination, including the accumulation of heavy metals, acid rain, and the emission of tire wear particles (TWPs), with detrimental effects for terrestrial ecosystems. Nevertheless, how naturally aged TWPs affect the mobilization of heavy metals in soils under acid rain is still unclear. Here, we investigate the adsorption and transport mechanisms of Pb(II) co-existing with acid rainwater in soil-TWP mixtures via batch experiments, column experiments and modeling. Results showed that photoaged TWP significantly prolonged the Pb(II) adsorption equilibrium time (1 to 16 h) and enhanced the Pb(II) adsorption capacity of soils. Soil column profiles confirmed that TWP effectively boosted the initial accumulation of lead in the topsoil and thus impeded the downward transport of lead. The retardation factor (R) estimated by the linear two-site sorption model (TSM) fitting the Pb(II) breakthrough curves gradually increased from 1.098 to 16.38 in soils with TWP (0-10 %). Comparative results of linear or nonlinear TSM suggested nonlinear sorption replacing linear sorption as the main Pb(II) sorption mechanism under 1 % and 10 % TWP. This research provides significant insights into the implications of TWP on the Pb(II) retention behaviors and highlights the severer potential remobilization risks of Pb(II) in urban soils under different acid rain environments.
Collapse
Affiliation(s)
- Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
6
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
7
|
Mannina G, Alliet M, Brepols C, Comas J, Heran M, Robles A, Rodriguez-Roda I, Ruano MV, Garcia VS, Smets I, Harmand J. Optimization of MBRs through integrated modelling: A state of the art. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122720. [PMID: 39369530 DOI: 10.1016/j.jenvman.2024.122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
The optimization of integrated membrane bioreactors (MBRs) models is of paramount importance in view of reducing the costs, greenhouse gas emissions or enhancing the water quality. On this behalf, this paper, produced by the International Water Association (IWA) Task Group on Membrane modelling and control, reviews the current state-of-the-art regarding the control and optimization of integrated MBR models. Whether aerobic or anaerobic, such modelling allows the consideration of specific functioning conditions and optimization problems together with the estimation and monitoring of Performance Index (PIs). This paper reviews the diversity of those problems criteria used in performance assessment. Dividing issues that can be addressed either off-line or online, it is shown that integrated models have attained an important degree of maturity. Several recommendations for mainstreaming the optimization of MBRs using such integrated models. The key findings of this work show that there is room for improving and optimizing the functioning of MBRs using integrated modelling and that this integrated modelling approach is necessary to link functioning conditions together with PI estimation and monitoring.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128, Palermo, Italy
| | - Marion Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Joaquim Comas
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Marc Heran
- IEM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Angel Robles
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de Valencia, Avinguda de la Universitat s/n, 46100, Burjassot, Valencia, Spain
| | - Ignasi Rodriguez-Roda
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - María Victoria Ruano
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de Valencia, Avinguda de la Universitat s/n, 46100, Burjassot, Valencia, Spain
| | - Valeria Sandoval Garcia
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de Valencia, Avinguda de la Universitat s/n, 46100, Burjassot, Valencia, Spain
| | - Ilse Smets
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F Box 2424, 3001, Heverlee, Belgium
| | | |
Collapse
|
8
|
Han J, Xie N, Ju J, Zhang Y, Wang Y, Kang W. Developments of electrospinning technology in membrane bioreactor: A review. CHEMOSPHERE 2024; 364:143091. [PMID: 39151583 DOI: 10.1016/j.chemosphere.2024.143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The necessity for effective wastewater treatment and purification has grown as a result of the increasing pollution issues brought on by industrial and municipal wastewater. Membrane bioreactor (MBR) technology stands out when compared to other treatment methods because of its high efficiency, environmental friendliness, small footprint, and ease of maintenance. However, the development and application of membrane bioreactors has been severely constrained by the higher cost and shorter service life of these devices brought on by membrane biofouling issues resulting from contaminants and bacteria in the water. The nanoscale size of the electrospinning products provides unique microstructure, and the technology facilitates the production of structurally different membranes, or the modification and functionalization of membranes, which makes it possible to solve the membrane fouling problem. Therefore, many current studies have attempted to use electrospinning in MBRs to address membrane fouling and ultimately improve treatment efficacy. Meanwhile, in addition to solving the problem of membrane fouling, the fabrication technology of electrospinning also shows great advantages in constructing thin porous fiber membrane materials with controllable surface wettability and layered structure, which is helpful for the performance enhancement of MBR and expanding innovation. This paper systematically reviews the application and research progress of electrospinning in MBRs. Firstly, the current status of the application of electrospinning technology in various MBRs is introduced, and the relevant measures to solve the membrane fouling based on electrospinning technology are analyzed. Subsequently, some new types of MBRs and new application areas developed with the help of electrospinning technology are introduced. Finally, the limitations and challenges of merging the two technologies are presented, and pertinent recommendations are provided for future research on the use of electrospinning technology in membrane bioreactors.
Collapse
Affiliation(s)
- Jiacheng Han
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Nan Xie
- ChinaTianjin Research Institute of Construction Machinery, No.91 Huashi Road, Beichen Technology Park, Tianjin, 300409, PR China
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Yongcheng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| |
Collapse
|
9
|
Xu B, Su Q, Yang Y, Huang S, Yang Y, Shi X, Choo KH, Ng HY, Lee CH. Quorum Quenching in Membrane Bioreactors for Fouling Retardation: Complexity Provides Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39012227 DOI: 10.1021/acs.est.4c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The occurrence of biofouling restricts the widespread application of membrane bioreactors (MBRs) in wastewater treatment. Regulation of quorum sensing (QS) is a promising approach to control biofouling in MBRs, yet the underlying mechanisms are complex and remain to be illustrated. A fundamental understanding of the relationship between QS and membrane biofouling in MBRs is lacking, which hampers the development and application of quorum quenching (QQ) techniques in MBRs (QQMBRs). While many QQ microorganisms have been isolated thus far, critical criteria for selecting desirable QQ microorganisms are still missing. Furthermore, there are inconsistent results regarding the QQ lifecycle and the effects of QQ on the physicochemical characteristics and microbial communities of the mixed liquor and biofouling assemblages in QQMBRs, which might result in unreliable and inefficient QQ applications. This review aims to comprehensively summarize timely QQ research and highlight the important yet often ignored perspectives of QQ for biofouling control in MBRs. We consider what this "information" can and cannot tell us and explore its values in addressing specific and important questions in QQMBRs. Herein, we first examine current analytical methods of QS signals and discuss the critical roles of QS in fouling-forming microorganisms in MBRs, which are the cornerstones for the development of QQ technologies. To achieve targeting QQ strategies in MBRs, we propose the substrate specificity and degradation capability of isolated QQ microorganisms and the surface area and pore structures of QQ media as the critical criteria to select desirable functional microbes and media, respectively. To validate the biofouling retardation efficiency, we further specify the QQ effects on the physicochemical properties, microbial community composition, and succession of mixed liquor and biofouling assemblages in MBRs. Finally, we provide scale-up considerations of QQMBRs in terms of the debated QQ lifecycle, practical synergistic strategies, and the potential cost savings of MBRs. This review presents the limitations of classic QS/QQ hypotheses in MBRs, advances the understanding of the role of QS/QQ in biofouling development/retardation in MBRs, and builds a bridge between the fundamental understandings and practical applications of QQ technology.
Collapse
Affiliation(s)
- Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
- Department of Environmental Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Yuxin Yang
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Yue Yang
- Corporate Sustainability Office, TÜV SÜD, Westendstr. 199, 80686 München, Germany
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
10
|
Wang X, Yi K, Pang H, Liu Z, Li X, Zhang W, Zhang C, Liu S, Huang J, Zhang C. An overview of quorum sensing in shaping activated sludge forms: Mechanisms, applications and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171886. [PMID: 38531459 DOI: 10.1016/j.scitotenv.2024.171886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Activated sludge method is an effective method for the wastewater treatment and has been widely applied. Activated sludge usually exists in various forms such as activated sludge floc, biofilm and granule. Due to the different character and function for each sludge type, the role and mechanism in the wastewater treatment process are also different, but all were crucial. The quorum sensing (QS) /quorum quenching (QQ) have been demonstrated and proved to regulate the group behavior by secreting signaling molecules among microorganisms and thus affect the manifestation of sludge. However, the complex mechanisms and regulatory strategies of QS/QQ in sludge forms have not been systematically summarized. This review provided an overview on the mechanism of QS/QQ shaping sludge forms from macro to micro (Explore it through signaling molecules, extracellular polymeric substances and microorganisms). In addition, the application and challenges of QS/QQ regulating sludge forms in various wastewater treatment processes including biofilm batch reactor, granule sludge and membrane bioreactor were discussed. Finally, some suggestions for further research and development of effective and economical QS/QQ strategies are put forward.
Collapse
Affiliation(s)
- Xia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Kaixin Yi
- College of Materials and Environmental Engineering, Changsha University, Changsha 410003, China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhexi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xue Li
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
11
|
Liu S, Huang J, He W, Shi L, Zhang W, Li E, Hu J, Zhang C, Pang H. Effects of microplastics on microbial community structure and wheatgrass traits in Pb-contaminated riparian sediments under flood-drainage-planting conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134283. [PMID: 38613956 DOI: 10.1016/j.jhazmat.2024.134283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The coexistence of microplastics (MPs) and heavy metals in sediments has caused a potential threat to sediment biota. However, differences in the effects of MPs and heavy metals on microbes and plants in sediments under different sediment conditions remain unclear. Hence, we investigated the influence of polyethylene (PE) and polylactic acid (PLA) MPs on microbial community structure, Pb bioavailability, and wheatgrass traits under sequential incubation of sediments (i.e., flood, drainage, and planting stages). Results showed that the sediment enzyme activities presented a dose-dependent effect of MPs. Besides, 10 % PLA MPs significantly increased the F1 fractions in three stages by 11.13 %, 30.10 %, and 17.26 %, respectively, thus resulting in higher Pb mobility and biotoxicity. MPs altered sediment bacterial composition and structures, and bacterial community differences were evident in different incubation stages. Moreover, the co-exposure of PLA MPs and Pb significantly decreased the shoot length and total biomass of wheatgrass and correspondingly activated the antioxidant enzyme activity. Further correlation analysis demonstrated that community structure induced by MPs was mainly driven by sediment enzyme activity. This study contributes to elucidating the combined effects of MPs and heavy metals on sediment ecosystems under different sediment conditions.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lixiu Shi
- College of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinying Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
12
|
Li Y, Dai J, Ma Y, Yao Y, Yu D, Shen J, Wu L. The mitigation potential of synergistic quorum quenching and antibacterial properties for biofilm proliferation and membrane biofouling. WATER RESEARCH 2024; 255:121462. [PMID: 38493743 DOI: 10.1016/j.watres.2024.121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Biofouling has been a persistent problem hindering the application of membranes in water treatment, and quorum quenching has been identified as an effective method for mitigating biofouling, but surface accumulation of live bacteria still induces biofilm secretion, which poses a significant challenge for sustained prevention of membrane biofouling. In this study, we utilized quercetin, a typical flavonoid with the dual functions of quorum quenching and bacterial inactivation, to evaluate its role in preventing biofilm proliferation and against biofouling. Quercetin exhibited excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the decreased bioactivity was positively correlated with the quercetin concentration, with inhibition rates of 53.1 % and 57.4 %, respectively, at the experimental concentrations. The RT-qPCR results demonstrated that quercetin inhibited AI-2 of E. coli and AGR of S. aureus mediated quorum sensing system, and reduced the expression of genes such as adhesion, virulence, biofilm secretion, and key regulatory proteases. As a result, the bacterial growth cycle was retarded and the biomass and biofilm maturation cycles were alleviated with the synergistic effect of quorum quenching and antibacterial activity. In addition, membrane biofouling was significantly declined in the dynamic operation experiments, dead cells in the biofilm overwhelmingly dominated, and the final normalized water fluxes were increased by more than 49.9 % and 34.5 % for E. coli and S. aureus, respectively. This work demonstrates the potential for mitigating biofouling using protocols that quorum quenching and inactivate bacteria, also provides a unique and long-lasting strategy to alleviate membrane fouling.
Collapse
Affiliation(s)
- Yuan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Jixiang Dai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yanjing Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dayang Yu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
13
|
He W, Huang J, Liu S, Yu H, Li E, Zhang W, Yi K, Zhang C, Pang H, Tan X. Effects of microplastics on sedimentary geochemical properties and microbial ecosystems combined with hydraulic disturbance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171350. [PMID: 38432377 DOI: 10.1016/j.scitotenv.2024.171350] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Microplastics (MPs) pollution is widely investigated owing to its potential threats to river ecosystems. However, it remains unclear whether hydraulic disturbance deepens or mitigates the effects of MPs-contaminated sediments on the river environment. Herein, we studied the impact of sediment aggregates, organic matter, and enzyme activity, with emphasis on microbial community structure and function in sediments exposed to MPs (1 %, 5 %, and 10 % w/w) in conjunction with hydraulic disturbance. The experimental results showed that the influence of MPs on the sediment under hydraulic disturbance is more significant than that of static culture, especially for various environmental factors (MWD, MBC, and sucrase activity etc.). The proportions of the >0.05 mm-fraction aggregates increased from 74-76 % to 82-88 % in the sediment throughout the entire disturbance process. It has been found that the disturbance generally promotes the interaction between MPs and sediments. FAPROTAX analysis demonstrated that the disturbance reduced the difference in effects on microbial functional genes between the control group and the MPs-added groups by up to 10 times, suggesting that the effects of disturbance on MPs-contaminated sediments are relatively complex. This work provides new insights into the effects of hydraulic disturbance on physicochemical properties and microbial communities of MPs-contaminated sediment.
Collapse
Affiliation(s)
- Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic EcoEnvironmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
14
|
Rui D, Liu K, Ma Y, Huang K, Chen M, Wu F, Zhang X, Ye L. Pilot-scale investigation of performance and microbial community in a novel system combining fixed and suspended activated sludge. ENVIRONMENTAL RESEARCH 2024; 246:118141. [PMID: 38191046 DOI: 10.1016/j.envres.2024.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
The conventional activated sludge (CAS) process is a widely used method for wastewater treatment due to its effectiveness and affordability. However, it can be prone to sludge abnormalities such as sludge bulking/foaming and sludge loss, which can lead to a decrease in treatment efficiency. To address these issues, a novel bag-based fixed activated sludge (BBFAS) system utilizing mesh bags to contain the sludge was developed for low carbon/nitrogen ratio wastewater treatment. Pilot-scale experiments demonstrated that the BBFAS system could successfully avoid the sludge abnormalities. Moreover, it was not affected by mass transfer resistance and exhibited significantly higher nitrogen removal efficiency, surpassing that of the CAS system by up to 78%. Additionally, the BBFAS system demonstrated comparable organic matter removal efficiency to CAS system. 16S rRNA gene high-throughput sequencing revealed that the bacterial community structure within the BBFAS system was significantly different from that of the CAS system. The bacteria associated with ammonium removal were more abundant in the BBFAS system than in the CAS system. The abundance of Nitrospira in the BBFAS could reach up to 6% and significantly higher than that in the CAS system, and they were likely responsible for both ammonia-oxidizing and nitrite-oxidizing functions. Clear stratification of microbial communities was observed from the outer to inner layers of the bag components due to the gradients of dissolved oxygen and other substrates. Overall, this study presents a promising approach for avoiding activated sludge abnormalities while maintaining high pollutant removal performance.
Collapse
Affiliation(s)
- Dongni Rui
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Kunlong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yanyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Nanjing Jiangdao Institute of Environmental Research, Nanjing, 210019, China
| | - Mengxue Chen
- Nanjing Gaoke Environmental Technology Co., Ltd., Nanjing, 210038, China
| | - Fei Wu
- Nanjing Gaoke Environmental Technology Co., Ltd., Nanjing, 210038, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
15
|
Yoshino H, Van Phan H, Mori N, Ohkuma N, Kawakami M, Nihei M, Hashimoto S, Wakabayashi K, Hori T, Terada A. Anti-biofouling performance and microbial communities of an integrated fixed-film activated sludge membrane bioreactor with a fibrous carrier material: Pilot-scale demonstration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170291. [PMID: 38272073 DOI: 10.1016/j.scitotenv.2024.170291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Widespread use of membrane bioreactors for high-performance wastewater treatment depends on the prevention of biofouling during membrane filtration, which can reduce operating costs. Biofouling is usually prevented using mechanical and chemical membrane treatment methods, which can be time-consuming and expensive. In this study, we developed bio-capsules as a fluidizing carrier material in an integrated fixed-film activated sludge membrane bioreactor (IFAS-MBR). The bio-capsules were prepared from moniliform polyvinylidene chloride fibrous balls enclosed in a spherical plastic basket, and could harbor protozoa and metazoa. A pilot-scale anoxic-oxic IFAS-MBR system with a total volume of 132 m3 was operated to remove organic carbon and nitrogen from municipal wastewater at a high permeate flux (0.84 m3/m2/day). The efficacy of the bio-capsules and the prokaryotic/eukaryotic community structures in the system were investigated. After operation for 1 year, the system demonstrated stable removal of organic carbon (76.0 % ± 15.5 % as total organic carbon, 93.1 ± 5.3 % as BOD, and 88.5 ± 5.2 % as CODMn) and nitrogen (71.3 % ± 9.3 %) despite fluctuations in the influent concentrations. Increases in transmembrane pressure (TMP) were retarded from its increase rates from 0.56 kPa/day to 0.149-0.224 kPa/day by the bio-capsules, and the TMP was kept constant at around 20 kPa throughout the operational period. High-throughput sequencing of 16S rRNA gene amplicons showed that the prokaryotic family Pirellulaceae was metabolically active and correlated with the TMP. According to the 18S rRNA gene sequencing, the eukaryotic metazoan Bdelloidea was more abundant in the bio-capsules than in activated sludge, which was supported by microscopic observations. These results suggest that the application of bio-capsules prevents increases in the TMP by harboring the procaryotes and eukaryotes responsible for biofouling mitigation in the IFAS-MBR system.
Collapse
Affiliation(s)
- Hiroyuki Yoshino
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Hop Van Phan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Naomichi Mori
- Water Reuse Promotion Center, 4-5 Nihonbashi Yokoyamacho, Chuo-ku, Tokyo 103-0003, Japan.
| | - Naoki Ohkuma
- Water Reuse Promotion Center, 4-5 Nihonbashi Yokoyamacho, Chuo-ku, Tokyo 103-0003, Japan.
| | - Masaki Kawakami
- Asahi Kasei Home Products Co., Hibiya Mitsui Tower, 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan.
| | - Masahiko Nihei
- Asahi Kasei Home Products Co., Hibiya Mitsui Tower, 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Satoshi Hashimoto
- Asahi Kasei Home Products Co., Hibiya Mitsui Tower, 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan.
| | - Ken Wakabayashi
- Asahi Kasei Home Products Co., Hibiya Mitsui Tower, 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan.
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
16
|
Liu Z, Pang H, Yi K, Wang X, Zhang W, Zhang C, Liu S, Gu Y, Huang J, Shi L. Isolation and application of Bacillus thuringiensis LZX01: Efficient membrane biofouling mitigation function and anti-toxicity potential. BIORESOURCE TECHNOLOGY 2024; 394:130272. [PMID: 38185444 DOI: 10.1016/j.biortech.2023.130272] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Significant progress has been made in mitigating membrane biofouling by microbial quorum quenching (QQ). More efficient and survivable QQ strains need to be discovered. A new strain named Bacillus thuringiensis LZX01 was isolated in this study using a low carbon source concentration "starving" method from a membrane bioreactor (MBR). LZX01 secreted intracellular lactonase to enable QQ behavior and was capable of degrading 90 % of C8-HSL (200 ng/mL) within 30 min, which effectively delayed biofouling by inhibiting the growth of bacteria associated with biofouling and improving the hydrophilicity of bound extracellular polymeric substances. As a result, the membrane biofouling rate of MBR adding LZX01 was four times slower than that of the control MBR. Importantly, LZX01 maintains its QQ activity even in environments contaminated with typical toxic pollutants. Therefore, with high efficiency, toxicity resistance, and easy culture, LZX01 holds great potential and significant promise for biofouling control applications.
Collapse
Affiliation(s)
- Zhexi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Xia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China.
| | - Lixiu Shi
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114,China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
17
|
Wang R, An Z, Fan L, Zhou Y, Su X, Zhu J, Zhang Q, Chen C, Lin H, Sun F. Effect of quorum quenching on biofouling control and microbial community in membrane bioreactors by Brucella sp. ZJ1. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117961. [PMID: 37075636 DOI: 10.1016/j.jenvman.2023.117961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Quorum quenching (QQ) has been demonstrated to be a novel technique for controlling biofouling in membrane bioreactors (MBRs), as it can significantly inhibit biofilm formation by disrupting quorum sensing (QS). The exploration of new QQ bacterial strains and the evaluation of their performance in mitigating membrane fouling in MBR systems is significant. In this study, an efficient QQ strain, Brucella sp. ZJ1 was encapsulated in alginate beads and evaluated for its ability to mitigate biofouling. The findings revealed that MBR with QQ beads extended the operation time by 2-3 times without affecting pollutant degradation. QQ beads maintained approximately 50% QQ activity after more than 50 days operation, indicating a long-lasting and endurable QQ effect. The QQ effect reduced extracellular polymeric substance (EPS) production especially in terms of polysaccharide and protein by more than 40%. QQ beads in the MBR also reduced the cake resistance and the irreversible resistance of membrane biofouling. Metagenomic sequencing suggests that QQ beads suppressed the QS effect and increased the abundance of QQ enzyme genes, ultimately inducing efficient membrane biofouling control.
Collapse
Affiliation(s)
- Rui Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zijing An
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu Fan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Junjie Zhu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Qian Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chongjun Chen
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
18
|
Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023; 9:523. [PMID: 37504402 PMCID: PMC10379988 DOI: 10.3390/gels9070523] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Polymer-based hydrogels are hydrophilic polymer networks with crosslinks widely applied for drug delivery applications because of their ability to hold large amounts of water and biological fluids and control drug release based on their unique physicochemical properties and biocompatibility. Current trends in the development of hydrogel drug delivery systems involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. In addition, developing injectable hydrogel formulations that are easily used and sustain drug release during this extended time is a growing interest. Another emerging trend in hydrogel drug delivery is the synthesis of nano hydrogels and other functional substances for improving targeted drug loading and release efficacy. Following these development trends, advanced hydrogels possessing mechanically improved properties, controlled release rates, and biocompatibility is developing as a focus of the field. More complex drug delivery systems such as multi-drug delivery and combination therapies will be developed based on these advancements. In addition, polymer-based hydrogels are gaining increasing attention in personalized medicine because of their ability to be tailored to a specific patient, for example, drug release rates, drug combinations, target-specific drug delivery, improvement of disease treatment effectiveness, and healthcare cost reduction. Overall, hydrogel application is advancing rapidly, towards more efficient and effective drug delivery systems in the future.
Collapse
Affiliation(s)
- Nguyen Hoc Thang
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Truong Bach Chien
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|