1
|
Qv M, Wu Q, Wang W, Wang H, Zhu L. Metagenomic insights into the response of microbial metabolic function and extracellular polymeric substances from microalgae-bacteria consortia to fluoroquinolone antibiotics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125283. [PMID: 40203710 DOI: 10.1016/j.jenvman.2025.125283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Microalgae-bacteria consortia (MBC) are considered a promising bioremediation technology for removing pollutants from swine wastewater. However, the overuse of antibiotics poses challenges to the effective functioning of MBC. In this study, the removal efficiency of nutrients in wastewater by MBC under different antibiotic concentrations (0, 1, 5, 10 and 50 mg/L) was evaluated. The changes of functional microbial abundance were elucidated and the response mechanism of MBC against antibiotics was investigated. Antibiotics inhibited the accumulation of MBC biomass and reduced the removal efficiency of ammonia nitrogen and total phosphorus in wastewater by 8.39 % and 8.74 % respectively. In addition, antibiotics affected the relative abundance of microorganisms (Raineyella, from 30.72 % to 15.96 %) and functional genes (glnA, gudB, NirK, NirBD, NarB, NapAB, NorBC and NosZEPS) involved in N metabolism. MBC could defend against the adverse effects of antibiotics by regulating the content of proteins in the extracellular polymeric substances.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Hanzhi Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Qv M, Dai D, Wu Q, Wang W, Li L, Zhu L. Metagenomic insight into the horizontal transfer mechanism of fluoroquinolone antibiotic resistance genes mediated by mobile genetic element in microalgae-bacteria consortia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124946. [PMID: 40081035 DOI: 10.1016/j.jenvman.2025.124946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
Antibiotics could accumulate in the environment with the discharge of wastewater from families, hospitals and livestock farms, which intensifies the spread of resistance genes around the world. Although microalgae-bacteria consortia (MBC) can efficiently remove antibiotics, the horizontal transfer mechanism of antibiotics resistance genes in MBC is still rarely reported. In this study, the removal efficiency of ofloxacin, norfloxacin and enrofloxacin by MBC under different antibiotic concentrations was investigated, while resistance genes in the MBC were identified and the mechanism of horizontal transfer was disclosed. The results showed that norfloxacin removal efficiency (up to 56.35 %) surpassed that of ofloxacin and enrofloxacin. The abundance of the fluoroquinolone resistance gene QnrS8 was the highest at 1331. The horizontal transfer of resistance gene QnrS8 and QnrS11 were mainly mediated by transposons. Fluoroquinolones increased the abundance of Brevundimonas (<0.10 % up to 9.63 %) and Bosea (0.96 % up to 17.67 %) involved in antibiotic removal. Arthrobacter and Acidovorax might be potential hosts which carried fluoroquinolone resistance genes. Structural equation model indicated that the key factor influencing the fluoroquinolone resistance genes abundance in MBC was transposons. These findings drew an insightful understanding of MBC application for fluoroquinolone antibiotics removal and the horizontal transfer mechanism of fluoroquinolone resistance genes.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Lanjing Li
- School of Biological Sciences, University of Auckland, Manaaki Whenua - Landcare Research, New Zealand
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Zhao Y, Su J, Zhou B, Li F, Mao K, Umair M, Huang G, Zhang H. Development of New Dual-Purpose Environmental Strategies for Effective Antibiotic Degradation Using Red Mud-Based Fenton Oxidation Catalysts. Molecules 2025; 30:1298. [PMID: 40142078 PMCID: PMC11945986 DOI: 10.3390/molecules30061298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Mitigating antibiotic pollution is essential to combating antibiotic resistance, safeguarding ecosystems, ensuring food and water safety, and preserving the efficacy of antibiotics. Simultaneously, the comprehensive utilization of red mud is a key approach to reducing resource waste and ecological damage. This study investigates the use of iron components from red mud to prepare RM-nZVI/Ni for Fenton-like reactions, aimed at degrading antibiotics in water. By leveraging the inherent iron content in red mud, RM-nZVI/Ni was developed to achieve a dual-purpose environmental strategy: antibiotic degradation and solid waste resource recycling. The results demonstrate that 0.02 g/L of sulfamethoxazole (SMX) can be fully degraded within 15 min using 0.1 g/L of RM-nZVI/Ni and 6 mM of H2O2. Hydroxyl radicals (·OH) and Ni were identified as key contributors to SMX removal. Moreover, this system exhibits universality in degrading common antibiotics such as LFX, NFX, CIP, and TC. LC-MS analysis and DFT theoretical calculations indicate that the degradation byproducts are of lower toxicity or are non-toxic. Additionally, cost analysis suggests that RM-nZVI/Ni is a cost-effective and efficient catalyst. This research gives valuable insights into antibiotic degradation using red mud-based catalysts and offers guidance for expanding the high-value applications of red mud.
Collapse
Affiliation(s)
- Yirong Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxia Su
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bingqi Zhou
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fujie Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Muhammad Umair
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guopei Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
4
|
He X, Liu D, Teng Y, Wang H, Wu Q, Wang W, Ren J, Zhu L. Construction of a microalgal-fungal spore co-culture system for the treatment of wastewater containing Zn(II) and estrone: Pollutant removal and microbial biochemical reactions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124221. [PMID: 39908605 DOI: 10.1016/j.jenvman.2025.124221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
The co-culture system of Chlorella sorokiniana and Aspergillus oryzae has demonstrated exceptional tolerance and efficiency in the removal of pollutants from swine manure. This study evaluates the ability of the co-culture system to remove Zn(II) and estrone, while assessing the impact of these pollutants on the system's overall functionality. Results indicated that co-cultivation achieved higher biomass accumulation, peaking at 0.88 g/L after 96 h. Increasing estrone exposure concentration reduced photosynthetic activity and chlorophyll content, whereas Zn(II) exposure initially enhanced and later inhibited chlorophyll synthesis. Co-cultivation secreted extracellular polymeric substances, including protein-like and humus-like substances, to alleviate environmental stress and form algal-fungal community. After 96 h of cultivation, the removal efficiencies reached 86.44% for 1.5 mg/L Zn(II) and 84.55% for 20 mg/L estrone. The Quantitative Structure Activity Relationship model revealed a reduction in the ecotoxicity of estrone intermediate products to varying degrees. Metabolomics analysis showed that exposure to estrone and Zn(II) significantly boosted the production of Gibberellic acid, Indole-3-acetic acid, and Zeatin riboside in Chlorella sorokiniana, while reducing Abscisic Acid levels. Furthermore, the exposure led to an increase in various metabolites in the Tricarboxylic acid cycle of the co-cultivation system, influencing the synthesis and metabolism of key biochemical components like carbohydrates, lipids, and proteins. These findings elucidate the biochemical responses of Chlorella sorokiniana-Aspergillus oryzae co-culture system to pollutants and provide insights into its potential application in the treatment of wastewater containing endocrine disrupting chemicals and heavy metals.
Collapse
Affiliation(s)
- Xiaoman He
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Dongyang Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yue Teng
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Hanzhi Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Jingzheng Ren
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
5
|
Sun Y, Li P, Huang Y, Xia A, Zhu X, Zhu X, Liao Q. Synergistic treatment of digested wastewater with high ammonia nitrogen concentration using straw and microalgae. BIORESOURCE TECHNOLOGY 2024; 412:131406. [PMID: 39222863 DOI: 10.1016/j.biortech.2024.131406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microalgae as a promising approach for wastewater treatment, has challenges in directly treating digested piggery wastewater (DPW) with high ammonia nitrogen (NH4+-N) concentration. To improve the performance of microalgae in DPW treatment, straw was employed as a substrate to form a straw-microalgae biofilm. The results demonstrated that the straw-microalgae biofilm achieved the highest NH4+-N removal rate of 193.2 mg L-1 d-1, which was 28.8 % higher than that of culture system without straw. The final NH4+-N concentration in the effluent met the discharge standard of 5 mg L-1. Furthermore, the total organic carbon (TOC) released from straw facilitated bacterial proliferation and the secretion of extracellular polymeric substances (EPS). The EPS and TOC increased the suspension viscosity and surface tension, thereby enhancing the residence time of CO2 in the liquid phase and promoting CO2 fixation. This study presented a novel method for the biological treatment of high-ammonia-nitrogen DPW.
Collapse
Affiliation(s)
- Yabo Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Peirong Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Shen L, Kang J, Wang J, Shao S, Zhou H, Yu X, Huang M, Zeng W. Dissecting the mechanism of synergistic interactions between Aspergillus fumigatus and the microalgae Synechocystis sp. PCC6803 under Cd(II) exposure: insights from untargeted metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135354. [PMID: 39126852 DOI: 10.1016/j.jhazmat.2024.135354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Co-culturing fungi and microalgae may effectively remediate wastewater containing Cd and harvest microalgae. Nevertheless, a detailed study of the mechanisms underlying the synergistic interactions between fungi and microalgae under Cd(II) exposure is lacking. In this study, Cd(II) exposure resulted in a significant enhancement of antioxidants, such as glutathione (GSH), malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide dismutase (SOD) compared to the control group, suggesting that the cellular antioxidant defense response was activated. Extracellular proteins and extracellular polysaccharides of the symbiotic system were increased by 60.61 % and ,24.29 %, respectively, after Cd(II) exposure for 72 h. The adsorption behavior of Cd(II) was investigated using three-dimensional fluorescence excitation-emission matrix (3D-EEM), fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). Metabolomics results showed that the TCA cycle provided effective material and energy supply for the symbiotic system to resist the toxicity of Cd(II); Proline, histidine, and glutamine strengthened the synergistic adsorption capacity of the fungus and microalgae. Overall, the theoretical foundation for a deep comprehension of the beneficial interactions between fungi and microalgae under Cd(II) exposure and the role of the fungal-algal symbiotic system in the management of heavy metal pollution is provided by this combined physiological and metabolomic investigation.
Collapse
Affiliation(s)
- Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Shiyu Shao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Min Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China.
| |
Collapse
|
7
|
Cao Y, Zhi S, Phyu K, Wang H, Liu J, Xu X, Zhang K. Interaction between microalgae and phycosphere bacteria in a binary cultivation system-based dairy farm wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 409:131248. [PMID: 39127364 DOI: 10.1016/j.biortech.2024.131248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The combination of microalgal culture and wastewater treatment is an emerging topic. This study investigated the use of different microalgae to treat different types of dairy farm wastewater. The results showed that the removal of ammonia nitrogen and total phosphorus by mixed microalgae was over 99% and 80%, respectively. The highest production of protein in biomass and extracellular polymeric substances was observed in high-concentration wastewater. In the phycosphere, the abundance of Proteobacteria and Cyanobacteria increased, while that of Bacteroidota decreased. Phycosphere bacteria were strongly correlated with microalgal growth and the composition of extracellular polymeric substances, especially with bound extracellular polymeric substances relative to soluble extracellular polymeric substances. Genes associated with photosynthesis and respiration in phycosphere bacteria were upregulated, contributing to the material exchange capacity in the microalgal-bacterial systems. The interaction between microalgae and phycosphere bacteria thus represents the core of the binary cultivation system-based wastewater treatment and requires further investigation.
Collapse
Affiliation(s)
- Yuang Cao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - KhinKhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaoyu Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Ai D, Wu T, Ge Z, Ying Z, Sun S, Huang D, Zhang J. The coupling effect promotes superoxide radical production in the microalgal-fungal symbiosis systems: Production, mechanisms and implication for Hg(II) reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135347. [PMID: 39084012 DOI: 10.1016/j.jhazmat.2024.135347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Redox transformation of mercury (Hg) is critical for Hg exchange at the air-water interface. However, the superoxide radicals (O2•─) contribution of microalgal-fungal symbiotic systems in lake water to Hg(II) reduction is mainly unknown. Here, we studied the enhanced potential for O2•─ production by the coupling effect between microalgae and fungi. The relationships between microenvironment, microorganisms, and O2•─ production were also investigated. Furthermore, the implication of O2•─ for Hg(II) reduction was explored. The results showed that the coupling effect of microalgae and fungi enhanced O2•─ generation in the symbiotic systems, and the O2•─ generation peaked on day 4 in the lake water at 160.51 ± 13.06-173.28 ± 18.21 μmol/kg FW (fresh weight). In addition, O2•- exhibited circadian fluctuations that correlated with changes in dissolved oxygen content and redox potential on the inter-spherical interface of microalgal-fungal consortia. Partial least squares path modeling (PLS-PM) indicates that O2•─ formation was primarily associated with microenvironmental factors and microbial metabolic processes. The experimental results suggest that O2•─ in the microalgal-fungal systems could mediate Hg(II) reduction, promoting Hg conversion and cycling. The findings highlight the importance of microalgae and fungal symbiotic systems in Hg transformation in aquatic environments.
Collapse
Affiliation(s)
- Dan Ai
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Tao Wu
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zuhan Ge
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zeguo Ying
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Shiqing Sun
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China
| | - Jibiao Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China.
| |
Collapse
|
9
|
Xiao Z, Meng H, Li S, Ning W, Song Y, Han J, Chang JS, Wang Y, Ho SH. Insights into the removal of antibiotics from livestock and aquaculture wastewater by algae-bacteria symbiosis systems. ENVIRONMENTAL RESEARCH 2024; 257:119326. [PMID: 38849002 DOI: 10.1016/j.envres.2024.119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
With the burgeoning growth of the livestock and aquaculture industries, antibiotic residues in treated wastewater have become a serious ecological threat. Traditional biological wastewater treatment technologies-while effective for removing conventional pollutants, such as organic carbon, ammonia and phosphate-struggle to eliminate emerging contaminants, notably antibiotics. Recently, the use of microalgae has emerged as a sustainable and promising approach for the removal of antibiotics due to their non-target status, rapid growth and carbon recovery capabilities. This review aims to analyse the current state of antibiotic removal from wastewater using algae-bacteria symbiosis systems and provide valuable recommendations for the development of livestock/aquaculture wastewater treatment technologies. It (1) summarises the biological removal mechanisms of typical antibiotics, including bioadsorption, bioaccumulation, biodegradation and co-metabolism; (2) discusses the roles of intracellular regulation, involving extracellular polymeric substances, pigments, antioxidant enzyme systems, signalling molecules and metabolic pathways; (3) analyses the role of treatment facilities in facilitating algae-bacteria symbiosis, such as sequencing batch reactors, stabilisation ponds, membrane bioreactors and bioelectrochemical systems; and (4) provides insights into bottlenecks and potential solutions. This review offers valuable information on the mechanisms and strategies involved in the removal of antibiotics from livestock/aquaculture wastewater through the symbiosis of microalgae and bacteria.
Collapse
Affiliation(s)
- Zhihua Xiao
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Hao Meng
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weihao Ning
- Xinrui Environmental Protection Technology Co., Ltd, Yantai, 264000, China
| | - Youliang Song
- Shaoxing Academy of Agricultural Sciences, Shaoxing, 312003, China
| | - Jinglong Han
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
10
|
Ma Y, Lin S, Guo T, Guo C, Li Y, Hou Y, Gao Y, Dong R, Liu S. Exploring the influence of sulfadiazine-induced stress on antibiotic removal and transformation pathway using microalgae Chlorella sp. ENVIRONMENTAL RESEARCH 2024; 256:119225. [PMID: 38797461 DOI: 10.1016/j.envres.2024.119225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Sulfadiazine (SDZ) is a kind of anti-degradable antibiotics that is commonly found in wastewater, but its removal mechanism and transformation pathway remain unclear in microalgal systems. This study investigated the effects of initial algae concentration and SDZ-induced stress on microalgal growth metabolism, SDZ removal efficiency, and transformation pathways during Chlorella sp. cultivation. Results showed that SDZ had an inhibitory effect on the growth of microalgae, and increasing the initial algal biomass could alleviate the inhibitory effect of SDZ. When the initial algal biomass of Chlorella sp. was increased to 0.25 g L-1, the SDZ removal rate could reach 53.27%-89.07%. The higher the initial algal biomass, the higher the SOD activity of microalgae, and the better the protective effect on microalgae, which was one of the reasons for the increase in SDZ removal efficiency. Meanwhile, SDZ stress causes changes in photosynthetic pigments, lipids, total sugars and protein content of Chlorella sp. in response to environmental changes. The main degradation mechanisms of SDZ by Chlorella sp. were biodegradation (37.82%) and photodegradation (23%). Most of the degradation products of SDZ were less toxic than the parent compound, and the green algae were highly susceptible to SDZ and its degradation products. The findings from this study offered valuable insights into the tradeoffs between accumulating microalgal biomass and antibiotic toxic risks during wastewater treatment, providing essential direction for the advancement in future research and full-scale application.
Collapse
Affiliation(s)
- Yanfang Ma
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Shupeng Lin
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Ting Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, PR China
| | - Chunchun Guo
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China
| | - Yitao Li
- Department of Civil and Environmental Engineering, Virginia Tech, Arlington, VA, 22202, USA
| | - Yahan Hou
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China
| | - Yongchang Gao
- Shandong High Speed Renewable Energy Group Limited, Jinan, 250000, PR China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Shan Liu
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China.
| |
Collapse
|
11
|
Li S, Zhang Y, Ding S, Li X, Wang W, Dong N, Nie M, Chen P. Investigation into the Synergistic Effect of the Zinc Peroxide/Peroxymonosulfate Double-Oxidation System for the Efficient Degradation of Tetracycline. Molecules 2024; 29:4120. [PMID: 39274968 PMCID: PMC11397340 DOI: 10.3390/molecules29174120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
The increasingly severe antibiotic pollution has become one of the most critical issues. In this study, a zinc peroxide/peroxymonosulfate (ZnO2/PMS) double-oxidation system was developed for tetracycline (TC) degradation. A small amount of ZnO2 (10 mg) and PMS (30 mg) could effectively degrade 82.8% of TC (100 mL, 50 mg/L), and the degradation process could be well described by the pseudo-second-order kinetic model. Meanwhile, the ZnO2/PMS double-oxidation system showed high adaptability in terms of reaction temperature (2-40 °C), initial pH value (4-12), common inorganic anions (Cl-, NO3-, SO42- and HCO3-), natural water source and organic pollutant type. The quenching experiment and electron paramagnetic resonance (EPR) characterization results confirmed that the main reactive oxygen species (ROS) was singlet oxygen (1O2). Moreover, three possible pathways of TC degradation were deduced according to the analyses of intermediates. On the basis of comparative characterization and experiment results, a synergistic activation mechanism was further proposed for the ZnO2/PMS double-oxidation system, accounting for the superior degradation performance. The released OH- and H2O2 from ZnO2 could activate PMS to produce major 1O2 and minor superoxide radicals (•O2-), respectively.
Collapse
Affiliation(s)
- Shefeng Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Yong Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Siyu Ding
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Xuli Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Wei Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ningning Dong
- Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miaomiao Nie
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Pei Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Domnin M, Aslanli A. "Stop, Little Pot" as the Motto of Suppressive Management of Various Microbial Consortia. Microorganisms 2024; 12:1650. [PMID: 39203492 PMCID: PMC11356704 DOI: 10.3390/microorganisms12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The unresolved challenges in the development of highly efficient, stable and controlled synthetic microbial consortia, as well as the use of natural consortia, are very attractive for science and technology. However, the consortia management should be done with the knowledge of how not only to accelerate but also stop the action of such "little pots". Moreover, there are a lot of microbial consortia, the activity of which should be suppressively controlled. The processes, catalyzed by various microorganisms being in complex consortia which should be slowed down or completely cancelled, are typical for the environment (biocorrosion, landfill gas accumulation, biodegradation of building materials, water sources deterioration etc.), industry (food and biotechnological production), medical practice (vaginitis, cystitis, intestinal dysbiosis, etc.). The search for ways to suppress the functioning of heterogeneous consortia in each of these areas is relevant. The purpose of this review is to summarize the general trends in these studies regarding the targets and new means of influence used. The analysis of the features of the applied approaches to solving the main problem confirms the possibility of obtaining a combined effect, as well as selective influence on individual components of the consortia. Of particular interest is the role of viruses in suppressing the functioning of microbial consortia of different compositions.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia (O.S.)
| | | | | | | | | | | | | |
Collapse
|
13
|
Dai D, Gu R, Qv M, Lv Y, Liu D, Tang C, Wang H, Huang L, Zhu L. Performance evaluation of typical flocculants for efficient harvesting of Chlorella sorokiniana under different carbon application modes. CHEMOSPHERE 2024; 361:142563. [PMID: 38851498 DOI: 10.1016/j.chemosphere.2024.142563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
In this study, the growth characteristics of microalgae cultured with different carbon sources were analyzed, and the flocculation characteristics under the influence of carbon sources were evaluated using three typical flocculants. The results showed that the organic carbon sources could significantly increase the content of extracellular proteins in microalgae. Specifically, the extracellular protein concentrations of microalgae cultured with pure BG-11, ethanol, sodium acetate and glucose were 18.2 29.2, 97.3, and 34.7 mg/g, respectively. During the flocculation process, microalgae cultured with sodium acetate exhibited a weak response to the flocculant because of excessive extracellular proteins inhibited flocculation. In addition, the flocculation efficiency was also less than 50.0% cultured with sodium acetate in all pH test ranges when alum and chitosan were used as flocculants. It could be inferred that the flocculant initially happened to charge neutralization with the negatively charged proteins in the solution and then bridged the charges with the microalgae. These findings provide insights into the effects of different carbon sources on microalgal flocculation, promising organic integration of microalgae wastewater treatment and harvesting.
Collapse
Affiliation(s)
- Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Ruoting Gu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yuanfei Lv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dongyang Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chunming Tang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Hanzhi Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
14
|
Dai D, Qv M, Wu Q, Wang W, Huang L, Zhu L. Investigating flocculation mechanisms and ecological safety of cationic guar gum for rapid harvesting of microalgal cells. BIORESOURCE TECHNOLOGY 2024; 406:130979. [PMID: 38879054 DOI: 10.1016/j.biortech.2024.130979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
Addressing the drawbacks of traditional flocculants on microalgae biomass harvesting is crucial for large-scale industrial applications of microalgae production. In this study, cationic bioflocculant was successfully prepared by introducing cationic groups into the side chain of guar gum, achieving in-situ algae flocculation efficiency of 83.5 % with the dosage of 18.0 mg/L under pH = 10.0. Through a harmonious integration of predictive modelling and practical experimentation, a superior cell flocculation capacity of 23.5 g/g was achieved. In addition, the environmental safety and biocompatibility of cationic guar gum was assessed, using the typical suspension quantitative bacteriostatic method and the fluorescent double-staining technique. The results showed that the inhibition efficiency of Staphylococcus aureus in the system containing 60.0 mg/L cationic guar gum was only 12.0 % and there was no inhibition against Escherichia coli colonies. These findings provide a safe and green flocculant for efficient microalgae harvesting and spent medium treatment.
Collapse
Affiliation(s)
- Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
15
|
Yang W, Gao P, Ye Z, Chen F, Zhu L. Micro/nano-plastics and microalgae in aquatic environment: Influence factor, interaction, and molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173218. [PMID: 38761949 DOI: 10.1016/j.scitotenv.2024.173218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Micro/nano-plastics, as emerging persistent pollutant, are frequently detected in aquatic environments together with other environmental pollutants. Microalgae are the major primary producers and bear an important responsibility for maintaining the balance of aquatic ecosystems. Numerous studies have been conducted on the influence of micro/nano-plastics on the growth, photosynthesis, oxidative stress, gene expression and metabolites of microalgae in laboratory studies. However, it is difficult to comprehensively evaluate the toxic effects of micro/nano-plastics on microalgae due to different experimental designs. Moreover, there is a lack of effective analysis of the aforementioned multi-omics data and reports on shared biological patterns. Therefore, the purpose of this review is to compare the acute, chronic, pulsed, and combined effect of micro/nano-plastics on microalgae and explore hidden rules in the molecular mechanisms of the interaction between them. Results showed that the effect of micro/nano-plastics on microalgae was related to exposure mode, exposure duration, exposure size, concentration, and type of micro/nano-plastics. Meanwhile, the phenomenon of poisoning and detoxification between micro/nano-plastics and microalgae was found. The inhibitory mechanism of micro/nano-plastics on algal growth was due to the micro/nano-plastics affected the photosynthesis, oxidative phosphorylation, and ribosome pathways of algal cells. This brought the disruption of the functions of chloroplasts, mitochondria, and ribosome, as well as impacted on energy metabolism and translation pathways, eventually leading to impairment of cell function. Besides, algae resisted this inhibitory effect by regulating the alanine, aspartate, and glutamate metabolism and purine metabolism pathways, thereby increasing the chlorophyll synthesis, inhibiting the increase of reactive oxygen species, delaying the process of lipid peroxidation, balancing the osmotic pressure of cell membrane.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, Hubei 430079, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Zongda Ye
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, Guangxi 530028, PR China; Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530029, PR China
| | - Funing Chen
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, Guangxi 530028, PR China; Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530029, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, Hubei 430079, PR China.
| |
Collapse
|
16
|
Zhou Y, Chen X, Zhu Y, Pan X, Li W, Han J. Mechanisms of hormetic effects of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172856. [PMID: 38697534 DOI: 10.1016/j.scitotenv.2024.172856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Antibiotics are frequently detected in surface water and pose potential threats to organisms in aquatic ecosystem such as microalgae. The occurrence of biphasic dose responses raised the possibility of stimulation of microalgal biomass by antibiotics at environmental-relevant concentration and caused potential ecological risk such as algal bloom. However, the underlying mechanisms of low concentration-induced hormetic effects are not well understood. In this study, we evaluated the hormesis of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. Results showed the hormetic effects of ofloxacin on cell density and carbon fixation rate (RC). The predicted maximum promotion was 17.45 % by 16.84 μg/L and 20.08 % by 15.78 μg/L at 21 d, respectively. The predicted maximum concentration of non-effect on cell density and RC at 21 d was 3.24 mg/L and 1.44 mg/L, respectively. Ofloxacin induced the mobilization of pigments and antioxidant enzymes to deal with oxidative stress. PCA analysis revealed Chl-a/Chl-b could act as a more sensitive biomarker under acute exposure while chlorophyll fluorescence parameters were in favor of monitoring long-term implication. The hormesis in increased secretion of extracellular organic matters was regarded as a defensive mechanism and accelerated indirect photodegradation of ofloxacin. Bioremoval was dominant and related to biomass accumulation in the total dissipation while abiotic removal appeared slight contributions. This study provided new insights into the understanding of hormesis of microalgae induced by antibiotics.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China
| | - Xinyang Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Xiangjie Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
17
|
Wang H, Qin L, Qi W, Elshobary M, Wang W, Feng P, Wang Z, Zhu S. Harmony in detoxification: Microalgae unleashing the potential of lignocellulosic pretreatment wastewater for resource utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171888. [PMID: 38531442 DOI: 10.1016/j.scitotenv.2024.171888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Lignocellulosic biomass is a pivotal renewable resource in biorefinery process, requiring pretreatment, primarily chemical pretreatment, for effective depolymerization and subsequent transformation. This process yields solid residue for saccharification and lignocellulosic pretreatment wastewater (LPW), which comprises sugars and inhibitors such as phenols and furans. This study explored the microalgal capacity to treat LPW, focusing on two key hydrolysate inhibitors: furfural and vanillin, which impact the growth of six green microalgae. Chlorella sorokiniana exhibited higher tolerance to furfural and vanillin. However, both inhibitors hindered the growth of C. sorokiniana and disrupted algal photosynthetic system, with vanillin displaying superior inhibition. A synergistic inhibitory effect (Q < 0.85) was observed with furfural and vanillin on algal growth. Furfural transformation to low-toxic furfuryl alcohol was rapid, yet the addition of vanillin hindered this process. Vanillin stimulated carbohydrate accumulation, with 50.48 % observed in the 0.1 g/L furfural + 0.1 g/L vanillin group. Additionally, vanillin enhanced the accumulation of C16: 0 and C18: 2, reaching 21.71 % and 40.36 %, respectively, with 0.1 g/L vanillin. This study proposed a microalgae-based detoxification and resource utilization approach for LPW, enhancing the comprehensive utilization of lignocellulosic components. The observed biomass modifications also suggested potential applications for biofuel production, contributing to the evolving landscape of sustainable biorefinery processes.
Collapse
Affiliation(s)
- Huiying Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Mostafa Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
18
|
Liu F, Feng S, Ali Nasser Mansoor Al-Haimi A, Zhu S, Chen H, Feng P, Wang Z, Qin L. Discovery of two novel bioactive algicidal substances from Brevibacillus sp. via metabolomics profiling and back-validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133985. [PMID: 38471378 DOI: 10.1016/j.jhazmat.2024.133985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Identifying potent bacterial algicidal agents is essential for the development of effective, safe, and economically viable algaecides. Challenges in isolating and purifying these substances from complex secretions have impeded progress in this field. Metabolomics profiling, an efficient strategy for identifying metabolites, was pioneered in identifying bacterial algicidal substances in this study. Extracellular secretions from different generations of the algicidal bacterium Brevibacillus sp. were isolated for comprehensive analysis. Specifically, a higher algicidal efficacy was observed in the secretion from Generation 3 (G3) of Brevibacillus sp. compared to Generation 1 (G1). Subsequent metabolomics profiling comparing G3 and 1 revealed 83 significantly up-regulated metabolites, of which 9 were identified as potential algicidal candidates. Back-validation highlighted the potency of 4-acetamidobutanoic acid (4-ABC) and 8-hydroxyquinoline (8-HQL), which exhibited robust algicidal activity with 3d-EC50 values of 6.40 mg/L and 92.90 µg/L, respectively. These substances disrupted photosynthetic activity in M. aeruginosa by ceasing electron transfer in PSⅡ, like the impact exerted by Brevibacillus sp. secretion. These findings confirmed that 4-ABC and 8-HQL were the main algicidal components derived from Brevibacillus sp.. Thus, this study presents a streamlined strategy for identifying bacterial algicidal substances and unveils two novel and highly active algicidal substances. ENVIRONMENTAL IMPLICATION: Harmful cyanobacterial blooms (HCBs) pose significant environmental problems and health effects to humans and other organisms. The increasing frequency of HCBs has emerged as a pressing global concern. Bacterial-derived algicidal substances are expected to serve as effective, safe, and economically viable algaecides against HCBs. This study presents a streamlined strategy for identifying bacterial algicidal substances and unveils two novel substances (4-ABC and 8-HQL). These two substances demonstrate remarkable algicidal activity and disrupt the photosynthetic system in M. aeruginosa. They hold potential as prospective algaecides for addressing HCBs.
Collapse
Affiliation(s)
- Fen Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Siran Feng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Akram Ali Nasser Mansoor Al-Haimi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Huanjun Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
19
|
Ge YM, Xing WC, Lu X, Hu SR, Liu JZ, Xu WF, Cheng HX, Gao F, Chen QG. Growth, nutrient removal, and lipid productivity promotion of Chlorella sorokiniana by phosphate solubilizing bacteria Bacillus megatherium in swine wastewater: Performances and mechanisms. BIORESOURCE TECHNOLOGY 2024; 400:130697. [PMID: 38614145 DOI: 10.1016/j.biortech.2024.130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Effects of a phosphorus-solubilizing bacteria (PSB) Bacillus megatherium on growth and lipid production of Chlorella sorokiniana were investigated in synthesized swine wastewater with dissolved inorganic phosphorus (DIP), insoluble inorganic phosphorus (IIP), and organic phosphorus (OP). The results showed that the PSB significantly promoted the algal growth in OP and IIP, by 1.10 and 1.78-fold, respectively. The algal lipid accumulation was also greatly triggered, respectively by 4.39, 1.68, and 1.38-fold in DIP, IIP, and OP. Moreover, compared with DIP, OP improved the oxidation stability of algal lipid by increasing the proportion of saturated fatty acids (43.8 % vs 27.9 %), while the PSB tended to adjust it to moderate ranges (30.2-41.6 %). Further, the transcriptome analysis verified the OP and/or PSB-induced up-regulated genes involving photosynthesis, lipid metabolism, signal transduction, etc. This study provided novel insights to enhance microalgae-based nutrient removal combined with biofuel production in practical wastewater, especially with complex forms of phosphorus.
Collapse
Affiliation(s)
- Ya-Ming Ge
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wan-Chuan Xing
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiu Lu
- Zhejiang Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shao-Rou Hu
- Zhejiang Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jun-Zhi Liu
- Zhejiang Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wei-Feng Xu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hai-Xiang Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Feng Gao
- Zhejiang Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing-Guo Chen
- Zhejiang Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
20
|
Long S, Hamilton PB, Wang C, Li C, Xue X, Zhao Z, Wu P, Gu E, Uddin MM, Li B, Xu F. Bioadsorption, bioaccumulation and biodegradation of antibiotics by algae and their association with algal physiological state and antibiotic physicochemical properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133787. [PMID: 38364579 DOI: 10.1016/j.jhazmat.2024.133787] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Bioadsorption, bioaccumulation and biodegradation processes in algae, play an important role in the biomagnification of antibiotics, or other organic pollutants, in aquatic food chains. In this study, the bioadsorption, bioaccumulation and biodegradation of norfloxacin [NFX], sulfamethazine [SMZ] and roxithromycin [RTM]) is investigated using a series of culture experiments. Chlorella vulgaris was exposed to these antibiotics with incubation periods of 24, 72, 120 and 168 h. Results show the bioadsorption concentration of antibiotics in extracellular matter increases with increasing alkaline phosphatase activity (AKP/ALP). The bioaccumulation concentrations of NFX, SMZ and RTM within cells significantly increase after early exposure, and subsequently decrease. There is a significant positive antibiotics correlation to superoxide dismutase (SOD), the photosynthetic electron transport rate (ETR) and maximum fluorescence after dark adaptation (Fv/Fm), while showing a negative correlation to malondialdehyde (MDA). The biodegradation percentages (Pb) of NFX, SMZ and RTM range from 39.3 - 97.2, 41.3 - 90.5, and 9.3 - 99.9, respectively, and significantly increase with increasing Fv/Fm, density and chlorophyll-a. The accumulation of antibiotics in extracellular and intracellular substances of C. vulgaris is affected by antibiotic biodegradation processes associated with cell physiological state. The results succinctly explain relationships between algal growth during antibiotics exposure and the bioadsorption and bioaccumulation of these antibiotics in cell walls and cell matter. The findings draw an insightful understanding of the accumulation of antibiotics in algae and provide a scientific basis for the better utilization of algae treatment technology in antibiotic contaminated wastewaters. Under low dose exposures, the biomagnification of antibiotics in algae is affected by bioadsorption, bioaccumulation and biodegradation.
Collapse
Affiliation(s)
- Shengxing Long
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Paul B Hamilton
- Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada
| | - Chaonan Wang
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Cunlu Li
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Xingyan Xue
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Zhiwei Zhao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Peizhao Wu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Erxue Gu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Mohammad M Uddin
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Bengang Li
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Fuliu Xu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Zhou X, Liang B, Zhang T, Xiong Q, Ma X, Chen L. Co-inoculation of fungi and desert cyanobacteria facilitates biological soil crust formation and soil fertility. Front Microbiol 2024; 15:1377732. [PMID: 38650889 PMCID: PMC11033444 DOI: 10.3389/fmicb.2024.1377732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
The inoculation of cyanobacteria for enriching soil nutrients and forming biological soil crusts (BSCs) is considered an effective means to restore degraded soil. However, there are limited studies on the application of co-inoculation of fungi and cyanobacteria for degraded soil remediation. In this study, a high exopolysaccharide-secreting fungi Zh2 was isolated from lichen BSCs in Hobq Desert, and co-inoculated with a cyanobacterial strain identified as Phormidium tenue in different proportions to form BSCs on sand during a 35 days incubation period. Results revealed significant differences in crust biomass and soil properties among crusts with different cyanobacterial/fungal inoculation ratios. Microbial biomass, soil nutrient content and enzyme activities in crusts co-inoculated with cyanobacteria and fungi were higher than those inoculated with cyanobacteria and fungi alone. The inoculation of cyanobacteria contributed to the fulvic-like accumulation, and the inoculated fungi significantly increased the humic-like content and soil humification. Redundancy analysis showed that the inoculation of cyanobacteria was positively correlated with the activities of urease and phosphatase, and the content of fulvic-like. Meanwhile, the inoculation of fungi was positively correlated with the contents of total carbon, total nitrogen and humic-like, the activities of catalase and sucrase. Cyanobacteria and fungi play distinct roles in improving soil fertility and accumulating dissolved organic matter. This study provides new insights into the effects of cyanobacteria and fungi inoculations on the formation and development of cyanobacterial-fungus complex crusts, offering a novel method for accelerating induced crust formation on the surface of sand.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| | - Bin Liang
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Tian Zhang
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Qiao Xiong
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Xiao Ma
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Lanzhou Chen
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Zhou T, Li X, Liu H, Dong S, Zhang Z, Wang Z, Li J, Nghiem LD, Khan SJ, Wang Q. Occurrence, fate, and remediation for per-and polyfluoroalkyl substances (PFAS) in sewage sludge: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133637. [PMID: 38306831 DOI: 10.1016/j.jhazmat.2024.133637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Addressing per-and polyfluoroalkyl substances (PFAS) contamination is an urgent environmental concern. While most research has focused on PFAS contamination in water matrices, comparatively little attention has been given to sludge, a significant by-product of wastewater treatment. This critical review presents the latest information on emission sources, global distribution, international regulations, analytical methods, and remediation technologies for PFAS in sludge and biosolids from wastewater treatment plants. PFAS concentrations in sludge matrices are typically in hundreds of ng/g dry weight (dw) in developed countries but are rarely reported in developing and least-developed countries due to the limited analytical capability. In comparison to water samples, efficient extraction and cleaning procedures are crucial for PFAS detection in sludge samples. While regulations on PFAS have mainly focused on soil due to biosolids reuse, only two countries have set limits on PFAS in sludge or biosolids with a maximum of 100 ng/g dw for major PFAS. Biological technologies using microbes and enzymes present in sludge are considered as having high potential for PFAS remediation, as they are eco-friendly, low-cost, and promising. By contrast, physical/chemical methods are either energy-intensive or linked to further challenges with PFAS contamination and disposal. The findings of this review deepen our comprehension of PFAS in sludge and have guided future research recommendations.
Collapse
Affiliation(s)
- Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shiman Dong
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Turin 10123, Italy
| | - Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Zhenyao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Stuart J Khan
- School of Civil Engineering, University of Sydney, NSW 2006, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
23
|
Wang H, Lv Y, Bao J, Chen Y, Zhu L. Petroleum-contaminated soil bioremediation and microbial community succession induced by application of co-pyrolysis biochar amendment: An investigation of performances and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133600. [PMID: 38316070 DOI: 10.1016/j.jhazmat.2024.133600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/01/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
This study aimed to remediate petroleum-contaminated soil using co-pyrolysis biochar derived from rice husk and cellulose. Rice husk and cellulose were mixed in various weight ratios (0:1, 1:0, 1:1, 1:3 and 3:1) and pyrolyzed under 500 °C. These biochar variants were labeled as R0C1, R1C0, R1C1, R1C3 and R3C1, respectively. Notably, the specific surface area and carbon content of the co- pyrolysis biochar increased, potentially promoting the growth and colonization of soil microorganisms. On the 60th day, the microbial control group achieved a 46.69% removal of pollutants, while the addition of R0C1, R1C0, R1C3, R1C1 and R3C1 resulted in removals of 70.56%, 67.01%, 67.62%, 68.74% and 67.30%, respectively. In contrast, the highest efficiency observed in the abiotic treatment group was only 24.12%. This suggested that the removal of petroleum pollutants was an outcome of the collaborative influence of co-pyrolysis biochar and soil microorganisms. Furthermore, the abundance of Proteobacteria, renowned for its petroleum degradation capability, obviously increased in the treatment group with the addition of co-pyrolysis biochar. This demonstrated that co-pyrolysis biochar could notably stimulate the growth of functionally associated microorganisms. This research confirmed the promising application of co-pyrolysis biochar in the remediation of petroleum-contaminated soil.
Collapse
Affiliation(s)
- Hanzhi Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Yuanfei Lv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Yiyun Chen
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
24
|
Gu Z, Yan H, Zhang Q, Wang Y, Liu C, Cui X, Liu Y, Yu Z, Wu X, Ruan R. Elimination of copper obstacle factor in anaerobic digestion effluent for value-added utilization: Performance and resistance mechanisms of indigenous bacterial consortium. WATER RESEARCH 2024; 252:121217. [PMID: 38335748 DOI: 10.1016/j.watres.2024.121217] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
The presence of excessive residual Cu(II), a high-risk heavy metal with potential toxicity and biomagnification property, substantially impede the value-added utilization of anaerobic digestion effluent (ADE). This study adapted indigenous bacterial consortium (IBCs) to eliminate Cu(II) from ADE, and their performances and resistance mechanisms against Cu(II) were analyzed. Results demonstrated that when the Cu(II) exposure concentration exceeded 7.5 mg/L, the biomass of IBCs decreased significantly, cells produced a substantial amount of ROS and EPS, at which time the intracellular Cu(II) content gradually decreased, while Cu(II) accumulation within the EPS substantially increased. The combined features of a high PN/PS ratio, a reversed Zeta potential gradient, and abundant functional groups within EPS collectively render EPS a primary diffusion barrier against Cu(II) toxicity. Mutual physiological and metagenomics analyses reveal that EPS synthesis and secretion, efflux, DNA repair along with coordination between each other were the primary resistance mechanisms of IBCs against Cu(II) toxicity. Furthermore, IBCs exhibited enhanced resistance by enriching bacteria carrying relevant resistance genes. Continuous pretreatment of actual ADE with IBCs at a 10-day hydraulic retention time (HRT) efficiently eliminated Cu(II) concentration from 5.01 mg/L to ∼0.68 mg/L by day 2. This elimination remained stable for the following 8 days of operation, further validated their good Cu(II) elimination stability. Notably, supplementing IBCs with 200 mg/L polymerized ferrous sulfate significantly enhanced their settling performance. By elucidating the intricate interplay of Cu(II) toxicity and IBC resistance mechanisms, this study provides a theoretical foundation for eliminating heavy metal barriers in ADE treatment.
Collapse
Affiliation(s)
- Zhiqiang Gu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Hongbin Yan
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Cuixia Liu
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaodan Wu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul 55108, USA
| |
Collapse
|
25
|
Efremenko E, Stepanov N, Senko O, Aslanli A, Maslova O, Lyagin I. Using Fungi in Artificial Microbial Consortia to Solve Bioremediation Problems. Microorganisms 2024; 12:470. [PMID: 38543521 PMCID: PMC10974216 DOI: 10.3390/microorganisms12030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 11/12/2024] Open
Abstract
There is currently growing interest in the creation of artificial microbial consortia, especially in the field of developing and applying various bioremediation processes. Heavy metals, dyes, synthetic polymers (microplastics), pesticides, polycyclic aromatic hydrocarbons and pharmaceutical agents are among the pollutants that have been mainly targeted by bioremediation based on various consortia containing fungi (mycelial types and yeasts). Such consortia can be designed both for the treatment of soil and water. This review is aimed at analyzing the recent achievements in the research of the artificial microbial consortia that are useful for environmental and bioremediation technologies, where various fungal cells are applied. The main tendencies in the formation of certain microbial combinations, and preferences in their forms for usage (suspended or immobilized), are evaluated using current publications, and the place of genetically modified cells in artificial consortia with fungi is assessed. The effect of multicomponence of the artificial consortia containing various fungal cells is estimated, as well as the influence of this factor on the functioning efficiency of the consortia and the pollutant removal efficacy. The conclusions of the review can be useful for the development of new mixed microbial biocatalysts and eco-compatible remediation processes that implement fungal cells.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia; (N.S.)
| | | | | | | | | | | |
Collapse
|
26
|
Li M, Chen Z, Zhou D, Xu S, Qiu S, Ge S. Coagulation pretreatment coupled with indigenous microalgal-bacterial consortium system for on-site treatment of rural black wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169728. [PMID: 38160812 DOI: 10.1016/j.scitotenv.2023.169728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Improper treatment of rural black wastewater (RBW) presents substantial challenges, including the wastage of resource, environmental contamination, and economic consequences. This study proposed an integrated process for RBW treatment, consisting of coagulation/flocculation (C/F) pretreatment and subsequent inoculation of indigenous microalgal-bacterial consortium (IMBC) for nitrogen recovery, namely C/F-IMBC process. Specifically, the optimal C/F conditions (polyaluminium chloride of 4 g/l, polyacrylamide of 50 mg/l, and pH of 6) were determined through a series of single-factor experiments, considering CN, turbidity, and dissolved organic matter (DOM) removal, economic cost, and potential influence on the water environment. Compared to the sole IMBC system for RBW treatment, the proposed C/F-IMBC process exhibited a remarkable 1.23-fold increase in microalgal growth and a substantial 17.6-22.6 % boost in nitrogen recovery. The altered RBW characteristic induced by C/F pretreatment was supposed to be responsible for the improved system performance. In particular, the abundance of DOM was decreased and its composition was simplified after C/F pretreatment, based on the analysis for excitation-emission matrices with parallel factor and gas chromatography-mass spectrometry, thus eliminating the potential impacts of toxic DOM components (e.g., Bis(2-ethylhexyl) phthalate) on IMBC activity. It should also be noted that C/F pretreatment modified microbial community structure as well, thereby regulating the expression of nitrogen-related genes and enhancing the system nitrogen recovery capacity. For instance, the functional Cyanobacteria responsible for nutrient recovery was enriched by 1.95-fold and genes involved in the assimilatory nitrate reduction to ammonia pathway were increased by 1.52-fold. These fundamental findings are expected to offer insights into the improvement of DOM removal and nitrogen recovery for IMBC-based wastewater treatment system, and provide valuable guidance for the development of sustainable on-site RBW treatment technologies.
Collapse
Affiliation(s)
- Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Di Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
27
|
Bao J, Li S, Qv M, Wang W, Wu Q, Kristianto Nugroho Y, Huang L, Zhu L. Urea addition as an enhanced strategy for degradation of petroleum contaminants during co-composting of straw and pig manure: Evidences from microbial community and enzyme activity evaluation. BIORESOURCE TECHNOLOGY 2024; 393:130135. [PMID: 38043688 DOI: 10.1016/j.biortech.2023.130135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Alterations in microbial community succession patterns and enzyme activities by petroleum pollutants during co-composting of straw and swine manure with the supplementary nitrogen source are unclear. In this study, urea was added into co-composting systems, and the removal performance of petroleum, microbial enzyme activity and community changes were investigated. Results showed that the polyphenol oxidase and catalase activities which were both related to the degradation of petroleum contaminants were accordingly increased from 20.65 to 30.31 U/g and from 171.87 to 231.86 U/g due to urea addition. The removal efficiency of petroleum contaminants in composting with urea increased from 45.06% to 82.29%. The addition of urea increased the diversity and abundance of petroleum-degrading microorganisms, and enhanced microbial linkages. This study provides a novel strategy for the degradation of petroleum hydrocarbon as well as a new insight into the effect of urea on both microbial processes and composting phases.
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Wei Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Qirui Wu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | | | - Lizhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
28
|
Gao X, Wu Q, Tang C, Li S, Li Z, Chen C, Zhu L. Microalgae cultivation with recycled harvesting water achieved economic and sustainable production of biomass and lipid: Feasibility assessment and inhibitory factors analysis. BIORESOURCE TECHNOLOGY 2024; 394:130276. [PMID: 38176595 DOI: 10.1016/j.biortech.2023.130276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
This study was conducted to achieve economic and sustainable production of biomass and lipids from Chlorella sorokiniana by recirculating cultivation with recycled harvesting water, to identify the major inhibitory factors in recirculating culture, and to analyze accordingly economic benefits. The results showed that recirculating microalgae cultivation (RMC) could obtain 0.20-0.32 g/L biomass and lipid content increased by 23.1 %-38.5 %. Correlation analysis showed that the extracellular polysaccharide (PSext), chemical oxygen demand (COD) and chromaticity of recirculating water inhibited photosynthesis and induced oxidative stress, thus inhibiting the growth of C. sorokiniana. In addition, the economic benefits analysis found that circulating the medium twice could save about 30 % of production cost, which is the most economical RMC solution. In conclusion, this study verified the feasibility and economy of RMC, and provided a better understanding of inhibitory factors identification in culture.
Collapse
Affiliation(s)
- Xinxin Gao
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chunming Tang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Zhuo Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chaoqi Chen
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|