1
|
Wang H, Liu S, Li Y, Li X, Li L, Yuan S, Dai X. Enhancing simultaneous nitrogen and phosphorus removal from municipal wastewater using micron zeolite powder carrier and hydrocyclone separator: Microbial distribution and correlation analysis. BIORESOURCE TECHNOLOGY 2025; 431:132598. [PMID: 40306343 DOI: 10.1016/j.biortech.2025.132598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
This study developed a novel wastewater treatment process for efficient nitrogen and phosphorus removal using micron zeolite powder carriers and hydrocyclone separator. Under anaerobic/intermittent aeration, the total nitrogen and phosphorus removal efficiencies reached 85.2 ± 1.9 % and 78.9 ± 3.4 %, respectively, significantly outperforming conventional activated sludge system. High specific surface area and porosity of zeolite powder facilitated microbial aggregation and biofilm formation, resulting in an average sludge size of 125.3 ± 5.3 μm. The combination of powder carriers and hydrocyclone separators resulted in the differentiated distribution of functional microorganisms. Denitrifying bacteria, such as norank_Comamonadaceae (4.34 %), norank_AKYH767 (1.90 %), and Candidatus_Microthrix (2.61 %), were enriched in biofilm, while nitrifying bacteria and polyphosphate-accumulating organisms predominated in floc. Functional gene abundance related to denitrification and phosphorus removal was significantly upregulated. Correlation network analysis revealed enhanced microbial cooperation, improving the functionality and stability of community. This study offers the potential pathway for efficient nitrogen and phosphorus removal from municipal wastewater.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shiyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanzeng Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xinyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 Singapore.
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
2
|
Chen B, Liang H, Li A, Ji B, Zhang X, Liu Y. Impact of ibuprofen on microalgal-bacterial granular sludge: Metabolic pathways, functional gene responses and biodegradation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138180. [PMID: 40215934 DOI: 10.1016/j.jhazmat.2025.138180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/02/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025]
Abstract
Ibuprofen (IBU), a persistent and toxic emerging pollutant widely used as a nonsteroidal anti-inflammatory drug, poses significant challenges for wastewater treatment. This study investigates the effects of IBU on the microalgal-bacterial granular sludge (MBGS) process, a promising approach for wastewater treatment. Results indicate that MBGS can enhance its resilience by secreting more extracellular polymeric substances for effective adsorption. Proteobacteria displayed high adaptability to IBU, while the abundance of Cyanobacteria exhibited considerable fluctuations, leading to cellular structural deformation and a decrease in abundance under 1 mg/L IBU stress. The abundance of functional genes involved in nitrogen and organic matter metabolism, including GDH2, ACSS1_2, and mqo, was significantly influenced by IBU stress, thereby affecting overall system performance. Additionally, several degradation by-products of IBU which have lower toxicity were identified, suggesting the effective biodegradation within the MBGS system. Structural equation modeling indicated that IBU exerted a greater negative impact on microalgae than on bacteria. This study confirms the adaptability of the MBGS system to wastewater containing IBU, highlighting its promising application in treating wastewater with emerging contaminants.
Collapse
Affiliation(s)
- Bingheng Chen
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hua Liang
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiaoyuan Zhang
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Liu
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Wang P, Wu B, Lu B, Chai X. Metal-organic framework material-derived Fe-Si micro-nuclei drive a robust anammox process via multiple pathways: "Shelter" provision, "barrier" reinforcement, and biological "inducer" modulation. WATER RESEARCH 2025; 284:123906. [PMID: 40449330 DOI: 10.1016/j.watres.2025.123906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/13/2025] [Accepted: 05/25/2025] [Indexed: 06/03/2025]
Abstract
Anaerobic ammonium oxidation (anammox) has emerged as a pivotal biotechnology for sustainable nitrogen removal owing to its energy efficiency and low carbon footprint. However, persistent challenges in microbial growth rate, process stability, and nitrate byproduct accumulation constrain its full-scale implementation. This study addresses these limitations through the innovative synthesis of a metal-organic framework (MOF)-derived Fe-Si micro-nucleus (PFMS), engineered to drive a robust anammox system at lower micro-nuclei doses and mitigate potential risks of excessive iron inhibition. Its coral reef-like mosaic structure provides "habitat" and "shelter" for anammox bacteria. Multivalence-Fe in PFMS was identified with X-ray adsorption fine structure spectra and facilitated the growth and nitrogen metabolism of anammox bacteria. Density functional theory calculations provided unprecedented atomic-level insights into substrate-material-microbe interfacial interactions. Meanwhile, PFMS drives the optimization of extracellular polymeric substances for enhancing aggregation and resistance of anammox sludge. Microbial community and metabolic in PFMS-mediated anammox system were investigated by multi-omics analysis, and the results showed that a novel Fe-N coupling metabolic mode was established in the system. Furthermore, the mechanism underlying the enhancement of anammox system by PFMS was summarized. This study constitutes the inaugural application of MOF-derived materials in anammox biotechnology and provides a novel strategy for operating a robust anammox process in practical engineering applications.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
4
|
Zhao L, Chen H, Sun Y, Wei H. A novel strategy to promote sludge solubilization and short-chain fatty acid production by coupling thermal hydrolysis and sodium thiosulfate pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125930. [PMID: 40408854 DOI: 10.1016/j.jenvman.2025.125930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/15/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Thermal hydrolysis (TH) technology is promising for sludge pretreatment, but the high cost and the generation of refractory substances limit its application. In this study, sodium thiosulfate (STS) was innovatively combined with TH pretreatment to improve the anaerobic fermentation efficiency of sludge. TH-STS pretreatment (140 °C, 0.132 g/g TSS) increased sludge solubility by 33.4 % and increased short-chain fatty acid (SCFA) production to 1.86 times that of the control group. TH effectively stripped the extracellular polymeric substances, and STS subsequently lysed the cells through its reducing power. TH-STS pretreatment promoted SCFA accumulation by increasing the activity of key enzymes and enriching hydrolyzing and acidifying bacteria. In addition, TH-STS pretreatment increased the activity of the electron transport system, which positively promoted the biotransformation of SCFAs. This study reveals that STS and TH pretreatment have a synergistic effect, providing an effective method for improving sludge pretreatment and resource recycling.
Collapse
Affiliation(s)
- Lina Zhao
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Yihu Sun
- Hunan Diya Environmental Engineering Co., Ltd., Changsha, 410007, China
| | - Huibin Wei
- Hunan Diya Environmental Engineering Co., Ltd., Changsha, 410007, China.
| |
Collapse
|
5
|
Yang P, Wang Z, Zhang C, Zhu J, Peng Y. Engineering application on the combination of simultaneous partial nitrification and denitrification and anammox for advanced nitrogen removal from landfill leachate. BIORESOURCE TECHNOLOGY 2025; 423:132257. [PMID: 39971102 DOI: 10.1016/j.biortech.2025.132257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
The engineering application of continuous-flow process for advanced nitrogen removal from landfill leachate via anammox is at the forefront of landfill leachate treatment field. For the full-scale engineering renovation, the anaerobic + pre-aeration + anammox + MBR process was constructed for advanced nitrogen removal from landfill leachate of 150 m3/d. Under the strategy of aeration control and low reflux ratio, a stable operation of simultaneous partial nitrification and denitrification (SPND) and anammox was achieved. Without carbon sources addition, the nitrogen removal efficiency reached 94.07 ± 1.26 %, of which the nitrogen removal contribution of the SPND and anammox process reached 64.12 ± 0.92 % and 26.46 ± 1.10 %, respectively. The anammox bacteria mainly enriched in sponge biofilm and floc sludge with abundant reached 2.57 % and 2.17 %, respectively. Compared with the original process, the renovated process could significantly save 18.51 % of the treatment consumption. This study provided a practical and feasible approach for the renovation of the existing treatment process.
Collapse
Affiliation(s)
- Pei Yang
- Harbin Institute of Technology, Harbin 150090, PR China; Beijing Environmental Engineering Technology Co, Ltd, Beijing 100101, PR China
| | - Zhaozhi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chenguang Zhang
- Beijing Environmental Engineering Technology Co, Ltd, Beijing 100101, PR China
| | - Jinxing Zhu
- Beijing Environmental Engineering Technology Co, Ltd, Beijing 100101, PR China
| | - Yongzhen Peng
- Harbin Institute of Technology, Harbin 150090, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
6
|
Mohapatra RK, Jeong Y, Choi Y. Exogenous magnetite (Fe 3O 4) nanoparticles for rapid start-up of anammox bioreactor under high nitrogen-loading conditions: Instant boost to anammox activity. BIORESOURCE TECHNOLOGY 2025; 422:132237. [PMID: 39956525 DOI: 10.1016/j.biortech.2025.132237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/26/2024] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
This study examines the impact of integrating exogenous magnetite particles (Fe3O4) on the performance of anaerobic ammonium oxidation (anammox).Two sequencing batch bioreactors were operated as magnetite-anammox (M-AMX) and control-anammox (C-AMX) systems at nitrogen loading rates (NLR) of 0.4 and 0.7 kgN.m-3.d-1. The research revealed that magnetite significantly influences granulation and the efficacy of nitrogen removal. The M-AMX system removed 80 % of nitrogen in 30 days, whereas the C-AMX system removed 50 %. The M-AMX system exhibited superior performance at elevated NLR (0.7 kgN.m-3.d-1), achieving 90 % nitrogen removal after 100 days. The M-AMX system produced increased levels of ATP, heme c, and hydrazine synthase, signifying a direct correlation with nitrogen removal. The phylum Planctomycetes and the genus Ca. Brocadia predominantly inhabit both C-AMX and M-AMX systems, with minimal shifts in abundance. Therefore, the incorporation of Fe3O4 can be advantageous in achieving swift and improved nitrogen removal within a short time frame.
Collapse
Affiliation(s)
- Ranjan Kumar Mohapatra
- Department of Environmental and IT Convergence Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Yutae Jeong
- Department of Environmental and IT Convergence Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Younggyun Choi
- Department of Environmental and IT Convergence Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
7
|
Zhang Z, Zhang C, Yang Y, Zhang Z, Guo K, Zhang X, Qin Z, Huang J, Li Y. Roles of nitrite in facilitating nitrogen and sulfur conversion in the hybrid bioreactor of Sulfate-reduced ammonium oxidation and anaerobic ammonium oxidation. BIORESOURCE TECHNOLOGY 2025; 419:132085. [PMID: 39826760 DOI: 10.1016/j.biortech.2025.132085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The hybrid bioreactor combining sulfate-reducing ammonium oxidation (Sulfammox) and Anammox offered potential for simultaneous nitrogen and sulfur removal, but the removal efficiency and microbial mechanism remain unclear. This study demonstrated that in the hybrid bioreactor, the ammonium utilization rate (AUR) of Sulfammox increased by 5.42 times. The promotion of NO2- on nitrogen and sulfur conversion in Sulfammox could be attributed to: 1) Increasing extracellular polymers substance (EPS) accelerated the stratification of granule sludge; 2) Increasing the relative abundance of Candidatus Brocadia by 29.55 times and Candidatus Anammoxoglobus by 3.17 times; 3) Upregulating the expression of nitrification (amo, hao and nxr) and sulfur metabolism (sat, aprAB dsr and sox) genes, associated with the pathways NH4+→NH2OH → NO2-→NO3- and SO42-→S2-→SO42-. Moreover, Candida Brocadia sapporoensis emerged as a potential specie of Sulfammox, mediating nitrification by hao and nxr, and sulfate reduction by sat and aprAB, thereby enabling electron transfer between nitrogen and sulfur.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China
| | - Chunhui Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China.
| | - Yang Yang
- The Institute of Seawater Desalination and Multipurpose Utilization, MNR (Tianjin), Tianjin 300192, PR China
| | - Zhuowei Zhang
- Hebei Technology Innovation Center of Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, PR China
| | - Kehuan Guo
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, PR China
| | - Xinxin Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China
| | - Zhaowei Qin
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China
| | - Jianming Huang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China
| | - Yanxin Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China
| |
Collapse
|
8
|
Zhang Y, Dong ZH, Lu J, Lu CJ, Zhang ZZ, Jin RC. Recent advances in isolation and physiological characterization of planktonic anaerobic ammonia-oxidizing bacteria. BIORESOURCE TECHNOLOGY 2025; 418:131919. [PMID: 39626808 DOI: 10.1016/j.biortech.2024.131919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Anaerobic ammonia oxidation (anammox) is widely regarded as an efficient biological nitrogen removal technology and is increasingly applied in wastewater treatment processes. However, the long doubling time and sensitivity to environmental pressures of anaerobic ammonia-oxidizing bacteria (AnAOB) often lead to unstable nitrogen removal performance. Various combined processes are being explored to overcome these limitations, providing insights into the ecological, physiological, and biochemical characteristics of AnAOB. Nevertheless, due to the lack of AnAOB pure cultures, the mechanisms of nitrogen metabolism, growth regulation, and cell communication remain unclear. This review highlights the unique physiological structures of AnAOB, current techniques for isolating and enriching planktonic AnAOB, and the associated challenges. A deeper understanding of these aspects offers guidance for improving planktonic AnAOB enrichment and incubation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Zhi-Hui Dong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Lu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng-Jun Lu
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Zheng-Zhe Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| |
Collapse
|
9
|
Hu R, Chen X, Han Y, Li W, Zhang S, Liu Z, Wang J, Lu X, Luo G, Zhang S, Zhen G. KOH-modified biochar enhances nitrogen metabolism of the chloroquine phosphate-disturbed anammox: Physical binding, EPS modulation and versatile metabolic hierarchy. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136467. [PMID: 39579692 DOI: 10.1016/j.jhazmat.2024.136467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
Chloroquine phosphate (CQ) poses strong biotoxicity on anammox process, and thus detoxifying is essential for the stable operation of anammox in treating CQ-bearing wastewater. Biochar has been proven to simultaneously detoxify pollutant and modulate nitrogen cycle in anammox by its shelter effect and electron exchange capacity (EEC) ability. To further improve the ability of biochar to promote the nitrogen metabolism of anammox, a KOH modification strategy was used to tailor a high-EEC biochar in this work. KOH modified biochar can bind CQ for detoxification driven by hydrogen bond, π-π interaction, and electrostatic interaction. Meanwhile, the EEC of modified biochar increased by 70 % than that of pristine biochar, thus improving nitrogen removal efficiency by 55.6 % and 9.5 % than CQ and BC group, respectively. Besides, the microorganism regulated by modified biochar produced more α-helix configuration, improving EPS barrier ability to CQ and sludge granulation. Lastly, metagenomic analysis revealed that modified biochar can stimulate the Wood-Ljungdahl pathway, increased the relative abundance of CODH from 0.74 % in CQ to 1.00 % in modified BC group. It favored the proliferation of autotrophic microorganisms, especially increased the relative abundance of anammox bacteria by 86.8 % than CQ group. This work will shed the light on integrating high-EEC biochar into anammox to cope with the micropollutants stress.
Collapse
Affiliation(s)
- Rui Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xue Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Shuting Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhaobin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jiandong Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China
| | - Gang Luo
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
10
|
Gao D, Xu A, Zhou Q, Gong X, Liang H. New insights into biofilm formation and microbial communities in hybrid constructed wetlands with functional substrates for treating contaminated surface water. BIORESOURCE TECHNOLOGY 2025; 416:131741. [PMID: 39491739 DOI: 10.1016/j.biortech.2024.131741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
In this study, hybrid constructed wetlands (HCW) with functional substrates (vermiculite-tourmaline modified polyurethane) were constructed to investigate nitrogen removal efficiency and metabolic cooperation mechanisms for treating rural contaminated surface water with natural temperature fluctuations. The results show that within a natural temperature fluctuation range of 9-25 °C, the HCW achieved an average nitrate nitrogen removal efficiency of 98 % and a total nitrogen removal efficiency of 76 %, with effluent total nitrogen less than 5 mg/L. The rational secretion of extracellular polymeric substance and the analysis of microbial community structure revealed that functional substrate favors biofilm formation, increases the activity of Candidatus_Brocadia and Thauera, and enhances ammonia and nitrate reduction. These findings elucidate the ecological patterns exhibited by microorganisms during the process of functional substrate intensification. Overall, this study offers valuable guidance for constructing HCW to treat contaminated surface water.
Collapse
Affiliation(s)
- Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
11
|
Zhao W, Ma H, Gao Z, Li D, Lin Y, Wu C, Wei L. Uncovering the toxic effects and adaptive mechanisms of aminated polystyrene nanoplastics on microbes in sludge anaerobic digestion system: Insight from extracellular to intracellular. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136163. [PMID: 39418906 DOI: 10.1016/j.jhazmat.2024.136163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The impacts of polystyrene nanoplastics (PS NPs) with amino functional groups on sludge anaerobic digestion process and the underlying microbial feedbacks remains unclear. Herein, PS NPs coated with and without amino functional groups were employed to explore their impacts on the sludge digestion performance. Experimental results showed that aminated PS NPs (PS-NH2) deteriorated the methane yield and hydrolysis rate. The Derjaguin-Landau-Verwey-Overbeek theory analysis suggested that the PS-NH2 decreased the interaction energy barrier, making it easier to contact with sludge and disrupting the structure of extracellular polymeric substances. Metagenomic analysis showed that the abundance of functional microbes (e.g., Longilinea, Leptolinea, and Methanosarcina) decreased, accompanied with lower network complexity and fewer keystone taxa. Molecular docking revealed that PS-NH2 occupy the antioxidant enzyme active binding sites through hydrogen bonding and hydrophobic interactions, impairing degradation of reactive oxygen species. The severe intracellular oxidative stress up-regulated genes associated with quorum sensing (e.g., luxI and luxR) and protein biosynthesis (e.g., algA, trpG and trpE), and further inducing compact tryptophan-like proteins as a defense against NPs. These findings provide new understanding of the toxic effects from PS-NH2 in biological systems and offer valuable insights into the regulation strategies aimed at alleviating NPs inhibition.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment (Ministry of Education), Jilin Jianzhu University, Changchun 130118, China
| | - Chuandong Wu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Guo H, Yao Y, Gao M, Huang W, Liu Y. Starvation resilience in anammox-based bioreactors: A stable nitrogen removal route on partial denitrification/anammox (PD/A). BIORESOURCE TECHNOLOGY 2024; 413:131366. [PMID: 39216702 DOI: 10.1016/j.biortech.2024.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This study investigates the performance, resilience and microbial community dynamics of two anaerobic processes, i.e. pure anammox (R1) and partial denitrification/anammox (PD/A) (R2), following a 30-day starvation period. The tolerance to starvation was assessed by comparing nitrogen removal efficiency and microbial activity across both reactors. Results show that the PD/A process recovery to pre-starvation performance levels within just one day, as compared to the pure anammox process. Notably, although the activity of anammox bacteria decreased in both processes during starvation, the decay rate in R1 was 69.59 % higher than in R2, potentially explaining the quicker recovery of R2. Furthermore, enhanced secretion of extracellular polymeric substance (EPS) during starvation served as a protective mechanism. The potential functions and genes in microorganisms, as well as the pathway of nitrogen cycling, were demonstrated through analyses using the KEGG database. This research reveals essential mechanistic insights and strategic guidance for the effective implementation of anammox-based biological nitrogen removal processes.
Collapse
Affiliation(s)
- Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mengjiao Gao
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Wendy Huang
- Department of Civil Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, 4000, Australia.
| |
Collapse
|
13
|
He S, Zhao L, Liu Y, Feng L, Hu T, Gao Z, Zhao Q, Wei L, You S. Multiple drivers and mechanisms of solid-water interfacial interactions in sludge dewatering: Roles of polarity and molecular structure of extracellular polymeric substances. WATER RESEARCH 2024; 263:122180. [PMID: 39106620 DOI: 10.1016/j.watres.2024.122180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Water occurrence states in sewage sludge, influenced by sludge physicochemical properties, are crucial for sludge dewaterability and have recently been regarded as a research hotspot. Here, the multifold characteristics of sludge flocs during hydrothermal treatment, including rheological properties, solid-water interfacial interactions, and the polarity distribution and molecular structure of extracellular polymeric substances (EPS), were systematically investigated, and the impact of these characteristics on sludge dewaterability was explored in depth. Hydrothermal treatment at 80 °C and 100 °C induced the conversion of free water into bound water, while an increase in temperature to 180 °C resulted in a significant decrease in bound water content, approximately 4-fold lower than at 100 °C. In addition to the conventional view of decreased sludge surface hydrophilicity at high temperatures, the decline in bound water was associated with the reduction in sludge apparent viscosity. XAD resin fractionation identified the hydrophobic/hydrophilic EPS (HPO-/HPI) ratio as an important factor determining water occurrence states. Especially, hydrolysis of HPI-related hydrophilic proteins and subsequent increase in HPO-related tryptophan-like substances played a dominant role in reducing sludge viscosity and facilitating the release of bound water. Protein conformational analysis revealed that the disruption of α-helix structures and disulfide bonds significantly reduced EPS water-holding capacity, providing strong evidence for the potential of targeting these dense structure units to enhance sludge dewaterability. These findings provide a holistic understanding of multidimensional drivers of water occurrence states in sludge, and guide directions for optimizing sludge treatment efficiency through EPS modification.
Collapse
Affiliation(s)
- Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingxin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Wang H, Hua Y, Xu H, Liu H, Yang D, Dai X. Illuminating the role of powder carrier materials in shaping sludge aggregation in wastewater treatment: Insights from extended operation performance to microbial response mechanism. BIORESOURCE TECHNOLOGY 2024; 410:131268. [PMID: 39142416 DOI: 10.1016/j.biortech.2024.131268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
This study uncovered the response of novel micro-granule wastewater treatment technology to different powder carrier materials. Characteristics and distinctions among different systems were assessed based on process performance, sludge aggregation capacity, and microbial metabolism. Zeolite carrier system exhibited remarkable nitrogen removal efficiency of 89.6 ± 0.9 %, while diatomite carriers, in conjunction with intermittent aeration, enhanced simultaneous nitrification and denitrification from 2.6 % to 27.1 %. Iron-based carriers demonstrated efficient phosphorus removal (94.7 ± 1.2 %) through both chemical and microbial pathways. Specific surface area, pore structure and biocompatibility of powder carriers determined the formation and size of micro-granules. Tryptophan-like substances, C-(C/H), and Npr in extracellular polymeric substances strongly correlated with sludge hydrophobicity and granulation. Significant enrichment in norank_Comamonadaceae and Nitrosomonas in zeolite powder carrier system promoted partial nitrification and endogenous denitrification. Differences in metabolic pathways elucidated the up-regulation of amino acid synthesis, energy metabolism, and membrane transport as potential mechanisms driving micro-granule formation and efficient treatment performance.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yu Hua
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Haolian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
15
|
Ju T, Zhang X, Jin D, Ji X, Wu P. A review of microplastics on anammox: Influences and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121801. [PMID: 39013314 DOI: 10.1016/j.jenvman.2024.121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Microplastics (MPs) are prevalent in diverse environmental settings, posing a threat to plants and animals in the water and soil and even human health, and eventually converged in wastewater treatment plants (WWTPs), threatening the stable operation of anaerobic ammonium oxidation (anammox). Consequently, a comprehensive summary of their impacts on anammox and the underlying mechanisms must be provided. This article reviews the sources and removal efficiency of MPs in WWTPs, as well as the influencing factors and mechanisms on anammox systems. Numerous studies have demonstrated that MPs in the environment can enter WWTPs via domestic wastewater, rainwater, and industrial wastewater discharges. More than 90% of these MPs are found to accumulate in the sludge following their passage through the treatment units of the WWTPs, affecting the characteristics of the sludge and the efficiency of the microorganisms treating the wastewater. The key parameters of MPs, encompassing concentration, particle size, and type, exert a notable influence on the nitrogen removal efficiency, physicochemical characteristics of sludge, and microbial community structure in anammox systems. It is noteworthy that extracellular polymer secretion (EPS) and reactive oxygen stress (ROS) are important impact mechanisms by which MPs exposure affects anammox systems. In addition, the influence of MPs exposure on the microbial community structure of anammox cells represents a crucial mechanism that demands attention. Future research endeavors will delve into additional crucial parameters of MPs, such as shape and aging, to investigate their effects and mechanisms on anammox. Furthermore, the effective mitigation strategies will also be developed. The paper provides a fresh insight to reveal the influences of MPs exposure on the anammox process and its influence mechanisms, and lays the groundwork for further exploration into the influence of MPs on anammox and potential mitigation strategies.
Collapse
Affiliation(s)
- Ting Ju
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xu Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
16
|
Hu R, Chen X, Xia M, Chen B, Lu X, Luo G, Zhang S, Zhen G. Identification of extracellular polymeric substances layer barrier in chloroquine phosphate-disturbed anammox consortia and mechanism dissection on cytotoxic behavior by computational chemistry. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134335. [PMID: 38657504 DOI: 10.1016/j.jhazmat.2024.134335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
The over-dosing use of chloroquine phosphate (CQ) poses severe threats to human beings and ecosystem due to the high persistence and biotoxicity. The discharge of CQ into wastewater would affect the biomass activity and process stability during the biological processes, e.g., anammox. However, the response mechanism of anammox consortia to CQ remain unknown. In this study, the accurate role of extracellular polymeric substances barrier in attenuating the negative effects of CQ, and the mechanism on cytotoxic behavior were dissected by molecular spectroscopy and computational chemistry. Low concentrations (≤6.0 mg/L) of CQ hardly affected the nitrogen removal performance due to the adaptive evolution of EPS barrier and anammox bacteria. Compact protein of EPS barrier can bind more CQ (0.24 mg) by hydrogen bond and van der Waals force, among which O-H and amide II region respond CQ binding preferentially. Importantly, EPS contributes to the microbiota reshape with selectively enriching Candidatus_Kuenenia for self-protection. Furthermore, the macroscopical cytotoxic behavior was dissected at a molecular level by CQ fate/distribution and computational chemistry, suggesting that the toxicity was ascribed to attack of CQ on functional proteins of anammox bacteria with atom N17 (f-=0.1209) and C2 (f+=0.1034) as the most active electrophilic and nucleophilic sites. This work would shed the light on the fate and risk of non-antibiotics in anammox process.
Collapse
Affiliation(s)
- Rui Hu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xue Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Mengting Xia
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bin Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China
| | - Gang Luo
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|