1
|
Boucher ML, Conley G, Morriss NJ, Ospina-Mora S, Qiu J, Mannix R, Meehan WP. Time-Dependent Long-Term Effect of Memantine following Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2024; 41:e1736-e1758. [PMID: 38666723 DOI: 10.1089/neu.2023.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI, e.g., sports concussions) may be associated with both acute and chronic symptoms and neurological changes. Despite the common occurrence of these injuries, therapeutic strategies are limited. One potentially promising approach is N-methyl-D-aspartate receptor (NMDAR) blockade to alleviate the effects of post-injury glutamatergic excitotoxicity. Initial pre-clinical work using the NMDAR antagonist, memantine, suggests that immediate treatment following rmTBI improves a variety of acute outcomes. It remains unclear (1) whether acute memantine treatment has long-term benefits and (2) whether delayed treatment following rmTBI is beneficial, which are both clinically relevant concerns. To test this, animals were subjected to rmTBI via a weight drop model with rotational acceleration (five hits in 5 days) and randomized to memantine treatment immediately, 3 months, or 6 months post-injury, with a treatment duration of one month. Behavioral outcomes were assessed at 1, 4, and 7 months post-injury. Neuropathological outcomes were characterized at 7 months post-injury. We observed chronic changes in behavior (anxiety-like behavior, motor coordination, spatial learning, and memory), as well as neuroinflammation (microglia, astrocytes) and tau phosphorylation (T231). Memantine treatment, either immediately or 6 months post-injury, appears to confer greater rescue of neuroinflammatory changes (microglia) than vehicle or treatment at the 3-month time point. Although memantine is already being prescribed chronically to address persistent symptoms associated with rmTBI, this study represents the first evidence of which we are aware to suggest a small but durable effect of memantine treatment in mild, concussive injuries. This effect suggests that memantine, although potentially beneficial, is insufficient to treat all aspects of rmTBI alone and should be combined with other therapeutic agents in a multi-therapy approach, with attention given to the timing of treatment.
Collapse
Affiliation(s)
- Masen L Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Nicholas J Morriss
- University of Rochester School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jianhua Qiu
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - William P Meehan
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
| |
Collapse
|
2
|
Ali HT, Sula I, AbuHamdia A, Elejla SA, Elrefaey A, Hamdar H, Elfil M. Nervous System Response to Neurotrauma: A Narrative Review of Cerebrovascular and Cellular Changes After Neurotrauma. J Mol Neurosci 2024; 74:22. [PMID: 38367075 PMCID: PMC10874332 DOI: 10.1007/s12031-024-02193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/19/2024]
Abstract
Neurotrauma is a significant cause of morbidity and mortality worldwide. For instance, traumatic brain injury (TBI) causes more than 30% of all injury-related deaths in the USA annually. The underlying cause and clinical sequela vary among cases. Patients are liable to both acute and chronic changes in the nervous system after such a type of injury. Cerebrovascular disruption has the most common and serious effect in such cases because cerebrovascular autoregulation, which is one of the main determinants of cerebral perfusion pressure, can be effaced in brain injuries even in the absence of evident vascular injury. Disruption of the blood-brain barrier regulatory function may also ensue whether due to direct injury to its structure or metabolic changes. Furthermore, the autonomic nervous system (ANS) can be affected leading to sympathetic hyperactivity in many patients. On a cellular scale, the neuroinflammatory cascade medicated by the glial cells gets triggered in response to TBI. Nevertheless, cellular and molecular reactions involved in cerebrovascular repair are not fully understood yet. Most studies were done on animals with many drawbacks in interpreting results. Therefore, future studies including human subjects are necessarily needed. This review will be of relevance to clinicians and researchers interested in understanding the underlying mechanisms in neurotrauma cases and the development of proper therapies as well as those with a general interest in the neurotrauma field.
Collapse
Affiliation(s)
| | - Idris Sula
- College of Medicine, Sulaiman Al Rajhi University, Al Bukayriyah, Al Qassim, Saudi Arabia
| | - Abrar AbuHamdia
- Department of Medical Laboratory Science, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | | | - Hiba Hamdar
- Medical Learning Skills Academy, Beirut, Lebanon
- Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Mohamed Elfil
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Aghili-Mehrizi S, Williams E, Yan S, Willman M, Willman J, Lucke-Wold B. Secondary Mechanisms of Neurotrauma: A Closer Look at the Evidence. Diseases 2022; 10:30. [PMID: 35645251 PMCID: PMC9149951 DOI: 10.3390/diseases10020030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic central nervous system injury is a leading cause of neurological injury worldwide. While initial neuroresuscitative efforts are focused on ameliorating the effects of primary injury through patient stabilization, secondary injury in neurotrauma is a potential cause of cell death, oxidative stress, and neuroinflammation. These secondary injuries lack defined therapy. The major causes of secondary injury in neurotrauma include endoplasmic reticular stress, mitochondrial dysfunction, and the buildup of reactive oxygen or nitrogenous species. Stress to the endoplasmic reticulum in neurotrauma results in the overactivation of the unfolded protein response with subsequent cell apoptosis. Mitochondrial dysfunction can lead to the release of caspases and the buildup of reactive oxygen species; several characteristics make the central nervous system particularly susceptible to oxidative damage. Together, endoplasmic reticulum, mitochondrial, and oxidative stress can have detrimental consequences, beginning moments and lasting days to months after the primary injury. Understanding these causative pathways has led to the proposal of various potential treatment options.
Collapse
Affiliation(s)
- Sina Aghili-Mehrizi
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.W.); (S.Y.); (M.W.); (J.W.)
| | | | | | | | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.W.); (S.Y.); (M.W.); (J.W.)
| |
Collapse
|
4
|
2, 3, 5, 4'-tetrahydroxystilbene-2-O-beta-D-glucoside protects against neuronal cell death and traumatic brain injury-induced pathophysiology. Aging (Albany NY) 2022; 14:2607-2627. [PMID: 35314517 PMCID: PMC9004580 DOI: 10.18632/aging.203958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a global health issue that affects at least 10 million people per year. Neuronal cell death and brain injury after TBI, including apoptosis, inflammation, and excitotoxicity, have led to detrimental effects in TBI. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG), a water-soluble compound extracted from the Chinese herb Polygonum multiflorum, has been shown to exert various biological functions. However, the effects of THSG on TBI is still poorly understood. THSG reduced L-glutamate-induced DNA fragmentation and protected glial and neuronal cell death after L-glutamate stimulation. Our results also showed that TBI caused significant behavioral deficits in the performance of beam walking, mNSS, and Morris water maze tasks in a mouse model. Importantly, daily administration of THSG (60 mg/kg/day) after TBI for 21 days attenuated the injury severity score, promoted motor coordination, and improved cognitive performance post-TBI. Moreover, administration of THSG also dramatically decreased the brain lesion volume. THSG reduced TBI-induced neuronal apoptosis in the brain cortex 24 h after TBI. Furthermore, THSG increased the number of immature neurons in the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. Our results demonstrate that THSG exerts neuroprotective effects on glutamate-induced excitotoxicity and glial and neuronal cell death. The present study also demonstrated that THSG effectively protects against TBI-associated motor and cognitive impairment, at least in part, by inhibiting TBI-induced apoptosis and promoting neurogenesis.
Collapse
|
5
|
Ikram M, Park HY, Ali T, Kim MO. Melatonin as a Potential Regulator of Oxidative Stress, and Neuroinflammation: Mechanisms and Implications for the Management of Brain Injury-Induced Neurodegeneration. J Inflamm Res 2021; 14:6251-6264. [PMID: 34866924 PMCID: PMC8637421 DOI: 10.2147/jir.s334423] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
This review covers the preclinical and clinical literature supporting the role of melatonin in the management of brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration, and reviews the past and current therapeutic strategies. Traumatic brain injury (TBI) is a neurodegenerative condition, unpredictably and potentially progressing into chronic neurodegeneration, with permanent cognitive, neurologic, and motor dysfunction, having no standard therapies. Due to its complex and multi-faceted nature, the TBI has highly heterogeneous pathophysiology, characterized by the highest mortality and disability worldwide. Mounting evidence suggests that the TBI induces oxidative and nitrosative stress, which is involved in the progression of chronic and acute neurodegenerative diseases. Defenses against such conditions are mostly dependent on the usage of antioxidant compounds, the majority of whom are ingested as nutraceuticals or as dietary supplements. A large amount of literature is available regarding the efficacy of antioxidant compounds to counteract the TBI-associated damage in animal and cellular models of the TBI and several clinical studies. Collectively, the studies have suggested that TBI induces oxidative stress, by suppressing the endogenous antioxidant system, such as nuclear factor erythroid 2–related factor-2 (Nrf-2) increasing the lipid peroxidation and elevation of oxidative damage. Moreover, elevated oxidative stress may induce neuroinflammation by activating the microglial cells, releasing and activating the inflammatory cytokines and inflammatory mediators, and energy dyshomeostasis. Thus, melatonin has shown regulatory effects against the TBI-induced autophagic dysfunction, regulation of mitogen-activated protein kinases, such as ERK, activation of the NLRP-3 inflammasome, and release of the inflammatory cytokines. The collective findings strongly suggest that melatonin may regulate TBI-induced neurodegeneration, although further studies should be conducted to better facilitate future therapeutic windows.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Young Park
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, 6202 AZ, the Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht Medical Center, Maastricht, 6229 ER, the Netherlands
| | - Tahir Ali
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Alz-Dementia Korea Co., Jinju, 52828, Republic of Korea
| |
Collapse
|
6
|
Lu CC, Nyam TTE, Kuo JR, Lee YL, Chio CC, Wang CC. The neuroprotective effects of AMN082 on neuronal apoptosis in rats after traumatic brain injury. BMC Neurosci 2021; 22:44. [PMID: 34171999 PMCID: PMC8228939 DOI: 10.1186/s12868-021-00649-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate whether AMN082 exerts its neuroprotective effect by attenuating glutamate receptor-associated neuronal apoptosis and improving functional outcomes after traumatic brain injury (TBI). METHODS Anesthetized male Sprague-Dawley rats were divided into the sham-operated, TBI + vehicle, and TBI + AMN082 groups. AMN082 (10 mg/kg) was intraperitoneally injected 0, 24, or 48 h after TBI. In the 120 min after TBI, heart rate, mean arterial pressure, intracranial pressure (ICP), and cerebral perfusion pressure (CPP) were continuously measured. Motor function, the infarct volume, neuronal nitrosative stress-associated apoptosis, and N-methyl-D-aspartate receptor 2A (NR2A) and NR2B expression in the pericontusional cortex were measured on the 3rd day after TBI. RESULTS The results showed that the AMN082-treated group had a lower ICP and higher CPP after TBI. TBI-induced motor deficits, the increase in infarct volume, neuronal apoptosis, and 3-nitrotyrosine and inducible nitric oxide synthase expression in the pericontusional cortex were significantly improved by AMN082 therapy. Simultaneously, AMN082 increased NR2A and NR2B expression in neuronal cells. CONCLUSIONS We concluded that intraperitoneal injection of AMN082 for 3 days may ameliorate TBI by attenuating glutamate receptor-associated nitrosative stress and neuronal apoptosis in the pericontusional cortex. We suggest that AMN082 administration in the acute stage may be a promising strategy for TBI.
Collapse
Affiliation(s)
- Chung-Che Lu
- Department of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
| | - Tee-Tau Eric Nyam
- Department of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
| | - Jinn-Rung Kuo
- Department of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yao-Lin Lee
- Department of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
| | - Chung-Ching Chio
- Department of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
| | - Che-Chuan Wang
- Department of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| |
Collapse
|
7
|
Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front Immunol 2020; 11:2021. [PMID: 33013859 PMCID: PMC7513624 DOI: 10.3389/fimmu.2020.02021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological disorders are major contributors to death and disability worldwide. The pathology of injuries and disease processes includes a cascade of events that often involve molecular and cellular components of the immune system and their interaction with cells and structures within the central nervous system. Because of this, there has been great interest in developing neuroprotective therapeutic approaches that target neuroinflammatory pathways. Several neuroprotective anti-inflammatory agents have been investigated in clinical trials for a variety of neurological diseases and injuries, but to date the results from the great majority of these trials has been disappointing. There nevertheless remains great interest in the development of neuroprotective strategies in this arena. With this in mind, the complement system is being increasingly discussed as an attractive therapeutic target for treating brain injury and neurodegenerative conditions, due to emerging data supporting a pivotal role for complement in promoting multiple downstream activities that promote neuroinflammation and degeneration. As we move forward in testing additional neuroprotective and immune-modulating agents, we believe it will be useful to review past trials and discuss potential factors that may have contributed to failure, which will assist with future agent selection and trial design, including for complement inhibitors. In this context, we also discuss inhibition of the complement system as a potential neuroprotective strategy for neuropathologies of the central nervous system.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Davis M. Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Mohammed Alshareef
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
8
|
Abrahamson EE, Poloyac SM, Dixon CE, Dekosky ST, Ikonomovic MD. Acute and chronic effects of single dose memantine after controlled cortical impact injury in adult rats. Restor Neurol Neurosci 2020; 37:245-263. [PMID: 31177251 DOI: 10.3233/rnn-190909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Altered glutamatergic neurotransmission after traumatic brain injury (TBI) contributes to excitotoxic cell damage and death. Prevention or suppression of such changes is a desirable goal for treatment of TBI. Memantine (3,5-dimethyl-1-adamantanamine), an uncompetitive NMDA receptor antagonist with voltage-dependent open channel blocking kinetics, was reported to be neuroprotective in preclinical models of excitotoxicity, brain ischemia, and in TBI when administered prophylactically, immediately, or within minutes after injury. METHODS The current study examined effects of memantine administered by single intraperitoneal injection to adult male rats at a more clinically relevant delay of one hour after moderate-severe controlled cortical impact (CCI) injury or sham surgery. Histopathology was assessed on days 1, 7, 21, and 90, vestibulomotor function (beam balance and beam walk) was assessed on days 1-5 and 71-75, and spatial memory (Morris water maze test, MWM) was assessed on days 14-21 and 83-90 after CCI injury or sham surgery. RESULTS When administered at 10 mg/kg, but not 2.5 or 5 mg/kg, memantine preserved cortical tissue and reduced neuronal degeneration 1 day after injury, and attenuated loss of synaptophysin immunoreactivity in the hippocampus 7 days after injury. No effects of 10 mg/kg memantine were observed on histopathology at 21 and 90 days after CCI injury or sham surgery, or on vestibulomotor function and spatial memory acquisition assessed during any of the testing periods. However, 10 mg/kg memantine resulted in trends for improved search strategy in the MWM memory retention probe trial. CONCLUSIONS Administration of memantine at a clinically-relevant delay after moderate-severe CCI injury has beneficial effects on acute outcomes, while more significant improvement on subacute and chronic outcomes may require repeated drug administration or its combination with another therapy.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh PA, USA
| | - C Edward Dixon
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurosurgery, University of Pittsburgh, Pittsburgh PA, USA
| | - Steven T Dekosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
9
|
Triglyceride is a Good Biomarker of Increased Injury Severity on a High Fat Diet Rat After Traumatic Brain Injury. Neurochem Res 2020; 45:1536-1550. [PMID: 32222876 DOI: 10.1007/s11064-020-03018-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Injury severity is correlated with poor prognosis after traumatic brain injury (TBI). It is not known whether triglycerides (TGs) or total cholesterol (TC) is good biomarker of increased injury of neuroinflammation and apoptosis in a high fat diet (HFD)-treated rat after TBI episodes. Five-week-old male Sprague-Dawley (SD) rats were fed a HFD for 8 weeks. The anesthetized male SD rats were divided into three sub-groups: sham-operated and TBI with 1.6 atm or with 2.4 atm fluid percussion injury (FPI). Cell infarction volume (triphenyltetrazolium chloride stain), tumor necrosis factor-alpha (TNF-α) expression in the microglia (OX42 marker) and astrocytes (Glial fibrillary acidic protein marker), TNF-α receptor expression in the neurons (TNFR1 and TNFR2 markers), and the extent of neuronal apoptosis (TUNEL marker) were evaluated by immunofluorescence, and the functional outcome was assessed by an inclined plane test. These tests were performed 72 h after TBI. Serum triglyceride and cholesterol levels were measured at 24, 48 and 72 h after TBI. The FPI with 2.4 atm significantly increased body weight loss, infarction volume, neuronal apoptosis and TNF-α expression in the microglia and astrocytes, and it decreased the maximum grasp degree and TNFR1 and TNFR2 expression in neurons at the 3rd day following TBI. The serum TG level was positively correlated with FPI force, infarction volume, Neu-N-TUNEL, GFAP-TNFα, and OX42-TNFα Simultaneously; the serum TG level was negatively correlated with Neu-N-TNFR1 and Neu-N-TNFR2. TG is a good biomarker of increased injury for neuroinflammation and apoptosis at the 3rd day after TBI in HFD rats.
Collapse
|
10
|
Mak S, Liu Z, Wu L, Guo B, Luo F, Liu Z, Hu S, Wang J, Cui G, Sun Y, Wang Y, Zhang G, Han Y, Zhang Z. Pharmacological Characterizations of anti-Dementia Memantine Nitrate via Neuroprotection and Vasodilation in Vitro and in Vivo. ACS Chem Neurosci 2020; 11:314-327. [PMID: 31922720 DOI: 10.1021/acschemneuro.9b00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have previously designed and synthesized a series of novel memantine nitrates, and some of them have shown neuroprotective effects; however, the detailed mechanisms remain unknown. In this study, we demonstrated that MN-12, one of the memantine nitrates, concentration-dependently protected against glutamate-induced neurotoxicity in rat primary cultured cerebellar granule neurons (CGNs). Western blotting assays revealed that MN-12 might possess neuroprotective effects through the inhibition of ERK pathway and activation of PI3K/Akt pathway concurrently. Moreover, MN-12 concentration-dependently dilated precontracted rat middle cerebral artery through activation of NO-cGMP pathway ex vivo. In the 2-vessel occlusion (2VO) rat model, MN-12 alleviated the impairments of spatial memory and motor dysfunction possibly via neuroprotection and improvement of the cerebral blood flow. Furthermore, the results of preliminary pharmacokinetic studies showed that MN-12 might quickly distribute to the major organs including the brain, indicating that MN-12 could penetrate the blood-brain barrier. Taken together, MN-12 might provide multifunctional therapeutic benefits for dementia associated with Alzheimer's disease, vascular dementia, and ischemic stroke, via neuroprotection and vessel dilation to improve the cerebral blood flow.
Collapse
Affiliation(s)
- Shinghung Mak
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Zheng Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
- Foshan Stomatology Hospital, School of Stomatology and Medicine , Foshan University , Foshan 528000 , China
- Foshan Magpie Pharmaceuticals Co., Ltd. , Foshan , 528000 Guangdong , China
| | - Liangmiao Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Baojian Guo
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Fangcheng Luo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
- Foshan Magpie Pharmaceuticals Co., Ltd. , Foshan , 528000 Guangdong , China
| | - Ziyan Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Shengquan Hu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Jiajun Wang
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Guozhen Cui
- Department of Bioengineering , Zunyi Medical University Zhuhai Campus , Zhuhai 519041 , China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Yifan Han
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) , Jinan University College of Pharmacy , 601 Huangpu Avenue West , Guangzhou 510632 , China
| |
Collapse
|
11
|
Chong AJ, Wee HY, Chang CH, Chio CC, Kuo JR, Lim SW. Effects of a High-Fat Diet on Neuroinflammation and Apoptosis in Acute Stage After Moderate Traumatic Brain Injury in Rats. Neurocrit Care 2019; 33:230-240. [DOI: 10.1007/s12028-019-00891-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Machado CA, Silva ACSE, de Miranda AS, Cordeiro TME, Ferreira RN, de Souza LC, Teixeira AL, de Miranda AS. Immune-Based Therapies for Traumatic Brain Injury: Insights from Pre-Clinical Studies. Curr Med Chem 2019; 27:5374-5402. [PMID: 31291871 DOI: 10.2174/0929867326666190710173234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/24/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Traumatic Brain Injury (TBI) is a major public health problem. It is the leading cause of death and disability, especially among children and young adults. The neurobiology basis underlying TBI pathophysiology remains to be fully revealed. Over the past years, emerging evidence has supported the hypothesis that TBI is an inflammatory based condition, paving the way for the development of potential therapeutic targets. There is no treatment capable to prevent or minimize TBIassociated outcomes. Therefore, the search for effective therapies is a priority goal. In this context, animal models have become valuable tools to study molecular and cellular mechanisms involved in TBI pathogenesis as well as novel treatments. Herein, we discuss therapeutic strategies to treat TBI focused on immunomodulatory and/or anti-inflammatory approaches in the pre-clinical setting.
Collapse
Affiliation(s)
- Caroline Amaral Machado
- Laboratorio de Neurobiologia, Departamento de Morfologia, Instituto de Ciencias Biologicas, UFMG, Brazil
| | - Ana Cristina Simões E Silva
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Amanda Silva de Miranda
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thiago Macedo E Cordeiro
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Rodrigo Novaes Ferreira
- Laboratorio de Neurobiologia, Departamento de Morfologia, Instituto de Ciencias Biologicas, UFMG, Brazil
| | - Leonardo Cruz de Souza
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, United States
| | - Aline Silva de Miranda
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
13
|
Blood-Based Glutamate Scavengers Reverse Traumatic Brain Injury-Induced Synaptic Plasticity Disruption by Decreasing Glutamate Level in Hippocampus Interstitial Fluid, but Not Cerebral Spinal Fluid, In Vivo. Neurotox Res 2018; 35:360-372. [DOI: 10.1007/s12640-018-9961-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
|
14
|
O'Neil DA, Nicholas MA, Lajud N, Kline AE, Bondi CO. Preclinical Models of Traumatic Brain Injury: Emerging Role of Glutamate in the Pathophysiology of Depression. Front Pharmacol 2018; 9:579. [PMID: 29910733 PMCID: PMC5992468 DOI: 10.3389/fphar.2018.00579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
More than 10 million people worldwide incur a traumatic brain injury (TBI) each year, with two million cases occurring in the United States. TBI survivors exhibit long-lasting cognitive and affective sequelae that are associated with reduced quality of life and work productivity, as well as mental and emotional disturbances. While TBI-related disabilities often manifest physically and conspicuously, TBI has been linked with a "silent epidemic" of psychological disorders, including major depressive disorder (MDD). The prevalence of MDD post-insult is approximately 50% within the 1st year. Furthermore, given they are often under-reported when mild, TBIs could be a significant overall cause of MDD in the United States. The emergence of MDD post-TBI may be rooted in widespread disturbances in the modulatory role of glutamate, such that glutamatergic signaling becomes excessive and deleterious to neuronal integrity, as reported in both clinical and preclinical studies. Following this acute glutamatergic storm, regulators of glutamatergic function undergo various manipulations, which include, but are not limited to, alterations in glutamatergic subunit composition, release, and reuptake. This review will characterize the glutamatergic functional and signaling changes that emerge and persist following experimental TBI, utilizing evidence from clinical, molecular, and rodent behavioral investigations. Special care will be taken to speculate on how these manipulations may correlate with the development of MDD following injury in the clinic, as well as pharmacotherapies to date. Indisputably, TBI is a significant healthcare issue that warrants discovery and subsequent refinement of therapeutic strategies to improve neurobehavioral recovery and mental health.
Collapse
Affiliation(s)
- Darik A O'Neil
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Melissa A Nicholas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Naima Lajud
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,División de Neurociencias, Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States.,Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|