1
|
Xiao Y, Lin N, Chen H, Xiao H. MeCP2 promotes keloid progression by regulating ADAM12 expression and Wnt/β-catenin pathway. Arch Dermatol Res 2025; 317:621. [PMID: 40119949 DOI: 10.1007/s00403-025-04131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Methyl-CpG binding protein 2 (MeCP2) has been reported to participate in the progression of human diseases. In this study, we aimed to explore the functions and related mechanisms of MeCP2 in keloid progression. METHODS Expression of MeCP2 and A Disintegrin and Metalloprotease 12 (ADAM12) was measured by qRT-PCR and western blot assay. Cell proliferation was explored by CCK-8 assay. Cell migration and invasion were investigated by transwell assay. Cell apoptosis was analyzed by flow cytometry analysis. The relation between ADAM12 and MeCP2 was analyzed by CHIP RT-PCR assay and dual-luciferase reporter assay. RESULTS ADAM12 was highly expressed in keloid tissues and keloid fibroblasts. Silencing of ADAM12 suppressed the proliferation, migration, invasion, ECM accumulation, facilitated the apoptosis and blocked Wnt/β-catenin pathway in keloid fibroblasts. Furthermore, we verified that MeCP2 could modulate ADAM12 expression by binding to its promoter. MeCP2 knockdown inhibited keloid fibroblasts proliferation, migration, invasion and ECM accumulation, with ADAM12 overexpression ameliorated the effects. Besides, MeCP2 silencing inhibited Wnt/β-catenin pathway by altering ADAM12 expression. CONCLUSION MeCP2 regulated ADAM12 expression and Wnt/β-catenin pathway to promote cell proliferation, migration, invasion and ECM accumulation in keloid fibroblasts.
Collapse
Affiliation(s)
- Yuzhou Xiao
- Department of Burns and Plastic Surgery, Shandong Provincial Hospital, Shandong University, Jinan City, 250021, Shandong, China
| | - Nan Lin
- Department of Burns and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Huaiyin District, Jinan City, 250021, Shandong, China
| | - Huaxia Chen
- Department of Burns and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Huaiyin District, Jinan City, 250021, Shandong, China
| | - Hu Xiao
- Department of Burns and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Huaiyin District, Jinan City, 250021, Shandong, China.
| |
Collapse
|
2
|
Zhu L, Liang F, Han X, Ye B, Xue L. Machine Learning-Based Glycolipid Metabolism Gene Signature Predicts Prognosis and Immune Landscape in Oesophageal Squamous Cell Carcinoma. J Cell Mol Med 2025; 29:e70434. [PMID: 40119618 PMCID: PMC11928743 DOI: 10.1111/jcmm.70434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 03/24/2025] Open
Abstract
Using machine learning approaches, we developed and validated a novel prognostic model for oesophageal squamous cell carcinoma (ESCC) based on glycolipid metabolism-related genes. Through integrated analysis of TCGA and GEO datasets, we established a robust 15-gene signature that effectively stratified patients into distinct risk groups. This signature demonstrated superior prognostic value and revealed significant associations with immune infiltration patterns. High-risk patients exhibited reduced immune cell infiltration, particularly in B cells and NK cells, alongside increased tumour purity. Single-cell RNA sequencing analysis uncovered unique cellular composition patterns and enhanced interaction intensities in the high-risk group, especially within epithelial and smooth muscle cells. Functional validation confirmed MECP2 as a promising therapeutic target, with its knockdown significantly inhibiting tumour progression both in vitro and in vivo. Drug sensitivity analysis identified specific therapeutic agents showing potential efficacy for high-risk patients. Our study provides both a practical prognostic tool and novel insights into the relationship between glycolipid metabolism and tumour immunity in ESCC, offering potential strategies for personalised treatment.
Collapse
Affiliation(s)
- Lin Zhu
- Department of OncologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianChina
| | - Feng Liang
- Department of Gastroenterology, Huai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Xue Han
- Department of Gastroenterology, Huai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Bin Ye
- Department of Gastroenterology, Huai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Lei Xue
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
3
|
Zhang Y, Wu F, Guo S, Yin R, Yuan M, Li X, Zhao X, Li X. Critical role of apoptosis in MeCP2-mediated epithelial-mesenchymal transition of ARPE-19 cells. J Cell Physiol 2024; 239:e31429. [PMID: 39238182 DOI: 10.1002/jcp.31429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Proliferative vitreoretinopathy (PVR) is a complex disease that significantly contributes to recurrent retinal detachment. Its development is notably affected by epithelial-mesenchymal transition (EMT), where apoptosis plays a crucial role as a regulator of EMT. However, the function of MeCP2 in governing apoptosis and EMT in retinal pigment epithelial (RPE) cells and its implications for PVR development have remained inadequately understood. Thus, we investigated the impact of MeCP2 on proliferation, migration, apoptosis and EMT in ARPE-19 cells to provide a fresh perspective on the etiology of PVR. The morphological changes in ARPE-19 cells induced by recombinant human MeCP2 protein and MeCP2 knockdown were observed. Wound healing assay were performed to verify the effects of recombinant human MeCP2 protein and MeCP2 knockdown on ARPE-19 cell migration. Furthermore, cell proliferation was assessed using the CCK-8 assay and flow cytometry. Western blot analysis, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and immunofluorescence analysis were conducted to measure the protein levels associated with apoptosis, cell cycle and EMT. Western blot analysis and immunofluorescence assays confirmed that MeCP2 promoted EMT formation in ARPE-19 cells. The CCK-8 assay revealed that MeCP2 treatment enhanced the proliferation of ARPE-19 cells, whereas MeCP2 knockdown inhibited ARPE-19 cell proliferation. Treatment with recombinant human MeCP2 protein and MeCP2 knockdown altered the morphology of ARPE-19 cells. Wound healing assay demonstrated that MeCP2 knockdown inhibited ARPE-19 cell migration, and MeCP2 treatment promoted ARPE-19 cell migration. MeCP2 knockdown induced a G0/G1 phase block, inhibiting cell growth, and qRT-PCR data indicated reduced expression of cell cycle-related genes. Increased apoptosis was observed after MeCP2 knockdown in ARPE-19 cells. Overall, MeCP2 treatment stimulates cell proliferation, migration and EMT formation; conversely, MeCP2 knockdown inhibits EMT, cell proliferation, migration and cell cycle G1/S phase transition, and induces apoptosis.
Collapse
Affiliation(s)
- Yongya Zhang
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Fei Wu
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Sibei Guo
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Xinxiang Medical University, Zhengzhou, China
| | - Ruijie Yin
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Min Yuan
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xue Li
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xueru Zhao
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xiaohua Li
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Xinxiang Medical University, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
4
|
Hu K, Ma R, Huang M, Cao X, Ding Y, Li Y, Chen Y, Xiao L, Ling S, Huang Y, Yin H, Tan B. Mecp2 promotes the anti-inflammatory effect of alpinetin via epigenetic modification crosstalk. J Cell Mol Med 2024; 28:e18510. [PMID: 38953409 PMCID: PMC11217806 DOI: 10.1111/jcmm.18510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024] Open
Abstract
In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.
Collapse
Affiliation(s)
- Ke Hu
- Medical CollegeHunan University of MedicineHuaihuaChina
| | - Ruoting Ma
- Department of General Medicine, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | | | - Xiangyu Cao
- Medical CollegeHunan University of MedicineHuaihuaChina
| | - Yan Ding
- Medical CollegeHunan University of MedicineHuaihuaChina
| | - Yuxian Li
- Medical CollegeHunan University of MedicineHuaihuaChina
| | - Yuefu Chen
- Medical CollegeHunan University of MedicineHuaihuaChina
| | - Lijun Xiao
- Medical CollegeHunan University of MedicineHuaihuaChina
| | - Sha Ling
- Department of Cardiology, First Affiliated HospitalHunan University of MedicineHuaihuaChina
| | - Youliang Huang
- Department of Cardiology, First Affiliated HospitalHunan University of MedicineHuaihuaChina
| | - Huiming Yin
- Department of Respiratory and Critical Care Medicine, First Affiliated HospitalHunan University of MedicineHuaihuaChina
| | - Bifeng Tan
- Department of Cardiology, First Affiliated HospitalHunan University of MedicineHuaihuaChina
| |
Collapse
|
5
|
Douglas C, Lomeli N, Vu T, Pham J, Bota DA. WITHDRAWN: LonP1 Drives Proneural Mesenchymal Transition in IDH1-R132H Diffuse Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.13.536817. [PMID: 37131765 PMCID: PMC10153221 DOI: 10.1101/2023.04.13.536817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The authors have withdrawn their manuscript owing to massive revision and data validation. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
6
|
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci 2024; 81:79. [PMID: 38334836 PMCID: PMC10857981 DOI: 10.1007/s00018-023-05099-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Metastasis accounts for 90% of cancer-related deaths among the patients. The transformation of epithelial cells into mesenchymal cells with molecular alterations can occur during epithelial-mesenchymal transition (EMT). The EMT mechanism accelerates the cancer metastasis and drug resistance ability in human cancers. Among the different regulators of EMT, Wnt/β-catenin axis has been emerged as a versatile modulator. Wnt is in active form in physiological condition due to the function of GSK-3β that destructs β-catenin, while ligand-receptor interaction impairs GSK-3β function to increase β-catenin stability and promote its nuclear transfer. Regarding the oncogenic function of Wnt/β-catenin, its upregulation occurs in human cancers and it can accelerate EMT-mediated metastasis and drug resistance. The stimulation of Wnt by binding Wnt ligands into Frizzled receptors can enhance β-catenin accumulation in cytoplasm that stimulates EMT and related genes upon nuclear translocation. Wnt/β-catenin/EMT axis has been implicated in augmenting metastasis of both solid and hematological tumors. The Wnt/EMT-mediated cancer metastasis promotes the malignant behavior of tumor cells, causing therapy resistance. The Wnt/β-catenin/EMT axis can be modulated by upstream mediators in which non-coding RNAs are main regulators. Moreover, pharmacological intervention, mainly using phytochemicals, suppresses Wnt/EMT axis in metastasis suppression.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Chengxin Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Milad Ashrafizadeh
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA.
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|