1
|
Amoakoah Twum L, Ocloo FC, Duah-Bisiw D, Odai BT. Determining the effect of heat treatment on iron fortified soybean gari blend and its potential bioavailability. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
2
|
Keats EC, Oh C, Chau T, Khalifa DS, Imdad A, Bhutta ZA. Effects of vitamin and mineral supplementation during pregnancy on maternal, birth, child health and development outcomes in low- and middle-income countries: A systematic review. CAMPBELL SYSTEMATIC REVIEWS 2021; 17:e1127. [PMID: 37051178 PMCID: PMC8356361 DOI: 10.1002/cl2.1127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Almost two billion people who are deficient in vitamins and minerals are women and children in low- and middle-income countries (LMIC). These deficiencies are worsened during pregnancy due to increased energy and nutritional demands, causing adverse outcomes in mother and child. To reduce micronutrient deficiencies, several strategies have been implemented, including diet diversification, large-scale and targeted fortification, staple crop bio-fortification and micronutrient supplementation. Objectives To evaluate and summarize the available evidence on the effects of micronutrient supplementation during pregnancy in LMIC on maternal, fetal, child health and child development outcomes. This review will assess the impact of single micronutrient supplementation (calcium, vitamin A, iron, vitamin D, iodine, zinc, vitamin B12), iron-folic acid (IFA) supplementation, multiple micronutrient (MMN) supplementation, and lipid-based nutrient supplementation (LNS) during pregnancy. Search Methods We searched papers published from 1995 to 31 October 2019 (related programmes and good quality studies pre-1995 were limited) in CAB Abstracts, CINAHL, Cochrane Central Register of Controlled Trials, Embase, International Initiative for Impact Evaluations, LILACS, Medline, POPLINE, Web of Science, WHOLIS, ProQuest Dissertations & Theses Global, R4D, WHO International Clinical Trials Registry Platform. Non-indexed grey literature searches were conducted using Google, Google Scholar, and web pages of key international nutrition agencies. Selection Criteria We included randomized controlled trials (individual and cluster-randomized) and quasi-experimental studies that evaluated micronutrient supplementation in healthy, pregnant women of any age and parity living in a LMIC. LMIC were defined by the World Bank Group at the time of the search for this review. While the aim was to include healthy pregnant women, it is likely that these populations had one or more micronutrient deficiencies at baseline; women were not excluded on this basis. Data Collection and Analysis Two authors independently assessed studies for inclusion and risk of bias, and conducted data extraction. Data were matched to check for accuracy. Quality of evidence was assessed using the GRADE approach. Main Results A total of 314 papers across 72 studies (451,723 women) were eligible for inclusion, of which 64 studies (439,649 women) contributed to meta-analyses. Seven studies assessed iron-folic acid (IFA) supplementation versus folic acid; 34 studies assessed MMN vs. IFA; 4 studies assessed LNS vs. MMN; 13 evaluated iron; 13 assessed zinc; 9 evaluated vitamin A; 11 assessed vitamin D; and 6 assessed calcium. Several studies were eligible for inclusion in multiple types of supplementation. IFA compared to folic acid showed a large and significant (48%) reduction in the risk of maternal anaemia (average risk ratio (RR) 0.52, 95% CI 0.41 to 0.66; studies = 5; participants = 15,540; moderate-quality evidence). As well, IFA supplementation demonstrated a smaller but significant, 12% reduction in risk of low birthweight (LBW) babies (average RR 0.88, 95% CI 0.78 to 0.99; studies = 4; participants = 17,257; high-quality evidence). MMN supplementation was defined as any supplement that contained at least 3 micronutrients. Post-hoc analyses were conducted, where possible, comparing the differences in effect of MMN with 4+ components and MMN with 3 or 4 components. When compared to iron with or without FA, MMN supplementation reduced the risk of LBW by 15% (average RR 0.85, 95% CI 0.77 to 0.93; studies = 28; participants = 79,972); this effect was greater in MMN with >4 micronutrients (average RR 0.79, 95% CI 0.71 to 0.88; studies = 19; participants = 68,138 versus average RR 1.01, 95% CI 0.92 to 1.11; studies = 9; participants = 11,834). There was a small and significant reduction in the risk of stillbirths (average RR 0.91; 95% CI 0.86 to 0.98; studies = 22; participants = 96,772) and a small and significant effect on the risk of small-for-gestational age (SGA) (average RR 0.93; 95% CI 0.88 to 0.98; studies = 19; participants = 52,965). For stillbirths and SGA, the effects were greater among those provided MMN with 4+ micronutrients. Children whose mothers had been supplemented with MMN, compared to IFA, demonstrated a 16% reduced risk of diarrhea (average RR 0.84; 95% CI 0.76 to 0.92; studies = 4; participants = 3,142). LNS supplementation, compared to MMN, made no difference to any outcome; however, the evidence is limited. Iron supplementation, when compared to no iron or placebo, showed a large and significant effect on maternal anaemia, a reduction of 47% (average RR 0.53, 95% CI 0.43 to 0.65; studies = 6; participants = 15,737; moderate-quality evidence) and a small and significant effect on LBW (average RR 0.88, 95% CI 0.78 to 0.99; studies = 4; participants = 17,257; high-quality evidence). Zinc and vitamin A supplementation, each both compared to placebo, had no impact on any outcome examined with the exception of potentially improving serum/plasma zinc (mean difference (MD) 0.43 umol/L; 95% CI -0.04 to 0.89; studies = 5; participants = 1,202) and serum/plasma retinol (MD 0.13 umol/L; 95% CI -0.03 to 0.30; studies = 6; participants = 1,654), respectively. When compared to placebo, vitamin D supplementation may have reduced the risk of preterm births (average RR 0.64; 95% CI 0.40 to 1.04; studies = 7; participants = 1,262), though the upper CI just crosses the line of no effect. Similarly, calcium supplementation versus placebo may have improved rates of pre-eclampsia/eclampsia (average RR 0.45; 95% CI 0.19 to 1.06; studies = 4; participants = 9,616), though the upper CI just crosses 1. Authors' Conclusions The findings suggest that MMN and vitamin supplementation improve maternal and child health outcomes, including maternal anaemia, LBW, preterm birth, SGA, stillbirths, micronutrient deficiencies, and morbidities, including pre-eclampsia/eclampsia and diarrhea among children. MMN supplementation demonstrated a beneficial impact on the most number of outcomes. In addition, MMN with >4 micronutrients appeared to be more impactful than MMN with only 3 or 4 micronutrients included in the tablet. Very few studies conducted longitudinal analysis on longer-term health outcomes for the child, such as anthropometric measures and developmental outcomes; this may be an important area for future research. This review may provide some basis to guide continual discourse around replacing IFA supplementation with MMN along with the use of single micronutrient supplementation programs for specific outcomes.
Collapse
Affiliation(s)
- Emily C. Keats
- Centre for Global Child HealthThe Hospital for Sick ChildrenTorontoCanada
| | - Christina Oh
- Centre for Global Child HealthThe Hospital for Sick ChildrenTorontoCanada
| | - Tamara Chau
- Centre for Global Child HealthThe Hospital for Sick ChildrenTorontoCanada
| | - Dina S. Khalifa
- Centre for Global Child HealthThe Hospital for Sick ChildrenTorontoCanada
| | - Aamer Imdad
- PediatricsUpstate Medical University, SyracuseNew YorkUSA
| | - Zulfiqar A. Bhutta
- Centre for Global Child HealthThe Hospital for Sick ChildrenTorontoCanada
| |
Collapse
|
3
|
Armini NKA, Hidayati N, Kusumaningrum T. Determinants of Nutritional Status Among Pregnant Women: a Transcultural Nursing Approach. JURNAL NERS 2020. [DOI: 10.20473/jn.v15i2.21388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction: Pregnant women experiencing poor nutritional status remains a problem which is still commonly found in Surabaya. Poor nutritional status is one of the causes of increased mortality in pregnant women. The mother's education and occupation, family income, number of children, and family shape are associated with the incidence of nutritional status in pregnant women. The purpose of this study was to explain the factors related to the nutritional status of pregnant women based on transcultural nursing theory.Methods: his study uses a cross-sectional design. The population were pregnant women at the Public Health Center Tanah Kali Kedinding Surabaya Indonesia, 104 respondents were selected using a consecutive sampling technique. The independent variables were technological, religious, family support, cultural values, political & legal, economic, and educational, while the dependent variable was the incidence of nutritional status in pregnant women. The data was obtained using questionnaires and mid upper arm circumstance (MUAC) measurements. The data was analyzed using the Spearman rho test.Results: There was a relationship between technological (p=0.001 ; r=0.332), family support (p=0.000 ; r=0.379), cultural values (p=0.000 ; r=0.702), political & legal (p=0.000 ; r=0.387), economic (p=0.031 ; r=0.212), and educational (p=0.020 ; r=0.228) factors with nutritional status in pregnant women.Discussion: Technological, family support, cultural values, political & legal, economic, and educational factors influenced the nutritional status of pregnant women. The cultural factor was the most dominant in influencing the nutritional status of pregnant women.
Collapse
|
4
|
Guerrero N, Molina O, Winkelried D. Conditional cash transfers, spillovers, and informal health care: Evidence from Peru. HEALTH ECONOMICS 2020; 29:111-122. [PMID: 31828867 DOI: 10.1002/hec.3956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Conditional cash transfer programs have become instrumental in encouraging the use of formal health services in developing countries, but little is known about their effect on the use of low-quality informal care. Using a large survey of Peruvian rural households and a regression discontinuity design, we find a sizeable reduction in the use of informal health care providers not only by targeted but also by nontargeted members of households that qualify for the program. This indicates the existence of spillover effects within the household. We also provide evidence that beyond the direct increase in income, the availability of better information about institutional services is a potential mechanism that drives these effects.
Collapse
Affiliation(s)
- Natalia Guerrero
- School of Economics and Finance, Universidad del Pacífico, Lima, Peru
| | - Oswaldo Molina
- School of Economics and Finance, Universidad del Pacífico, Lima, Peru
| | - Diego Winkelried
- School of Economics and Finance, Universidad del Pacífico, Lima, Peru
| |
Collapse
|
5
|
Ruggiero CF, Hohman EE, Birch LL, Paul IM, Savage JS. The Intervention Nurses Start Infants Growing on Healthy Trajectories (INSIGHT) responsive parenting intervention for firstborns impacts feeding of secondborns. Am J Clin Nutr 2020; 111:21-27. [PMID: 31782493 PMCID: PMC6944525 DOI: 10.1093/ajcn/nqz277] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/14/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The Intervention Nurses Start Infant Growing on Healthy Trajectories (INSIGHT) study's responsive parenting (RP) intervention, initiated in early infancy, prevented the use of nonresponsive, controlling feeding practices and promoted use of structure-based feeding among first-time parents compared with controls. OBJECTIVES We sought to examine the spillover effect of the RP intervention on maternal feeding practices with their secondborn (SB) infants enrolled in an observational-only study, SIBSIGHT, and to test the moderating effect of spacing of births. METHODS SB infants of mothers participating in the INSIGHT study were enrolled into the observation-only ancillary study, SIBSIGHT. SBs were healthy singleton infants ≥36 weeks of gestation. Infant feeding practices (i.e., food to soothe, structure vs. control-based practices) were assessed using validated questionnaires: Babies Need Soothing Questionnaire, Infant Feeding Styles Questionnaire, and the Structure and Control in Parent Feeding Questionnaire. RESULTS SBs (n = 117 [RP: 57, control: 60]; 43% male) were delivered 2.5 ± 0.8 y after firstborns (FBs). At age 1 y, the Structure and Control in Parent Feeding Questionnaire revealed that the mothers in the RP group used more consistent feeding routines (4.19 [0.43] compared with 3.77 [0.62], P = 0.0006, Cohen's D: 0.69) compared with control group mothers. From the Infant Feeding Styles Questionnaire, RP group mothers also used less nonresponsive, controlling feeding practices such as pressuring their SB infant to finish (1.81 [0.52] compared with 2.24 [0.68], P = 0.001, Cohen's D: 0.68) compared with controls. In contrast to our hypotheses, no differences were detected in bottle-feeding practices such as putting to bed with a bottle/sippy cup or adding cereal to the bottle, despite observing study group differences in FBs. Spacing of births did not moderate intervention effects. CONCLUSIONS RP guidance given to mothers of FBs may prevent the use of some nonresponsive, controlling feeding practices while establishing consistent feeding routines in subsequent siblings.
Collapse
Affiliation(s)
- Cara F Ruggiero
- Center for Childhood Obesity Research, The Pennsylvania State University, University Park, PA, USA,Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA,Address correspondence to CFR (e-mail: )
| | - Emily E Hohman
- Center for Childhood Obesity Research, The Pennsylvania State University, University Park, PA, USA
| | - Leann L Birch
- Department of Foods and Nutrition, University of Georgia, Athens,GA, USA
| | - Ian M Paul
- Pediatrics and Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Jennifer S Savage
- Center for Childhood Obesity Research, The Pennsylvania State University, University Park, PA, USA,Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Das JK, Salam RA, Hadi YB, Sadiq Sheikh S, Bhutta AZ, Weise Prinzo Z, Bhutta ZA. Preventive lipid-based nutrient supplements given with complementary foods to infants and young children 6 to 23 months of age for health, nutrition, and developmental outcomes. Cochrane Database Syst Rev 2019; 5:CD012611. [PMID: 31046132 PMCID: PMC6497129 DOI: 10.1002/14651858.cd012611.pub3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND One nutritional intervention advocated to prevent malnutrition among children is lipid-based nutrient supplements (LNS). LNS provide a range of vitamins and minerals, but unlike most other micronutrient supplements, LNS also provide energy, protein and essential fatty acids. Alternative recipes and formulations to LNS include fortified blended foods (FBF), which are foods fortified with vitamins and minerals, and micronutrient powders (MNP), which are a combination of vitamins and minerals, OBJECTIVES: To assess the effects and safety of preventive LNS given with complementary foods on health, nutrition and developmental outcomes of non-hospitalised infants and children six to 23 months of age, and whether or not they are more effective than other foods (including FBF or MNP).This review did not assess the effects of LNS as supplementary foods or therapeutic foods in the management of moderate and severe acute malnutrition. SEARCH METHODS In October 2018, we searched CENTRAL, MEDLINE, Embase, 21 other databases and two trials registers for relevant studies. We also checked the reference lists of included studies and relevant reviews and contacted the authors of studies and other experts in the area for any ongoing and unpublished studies. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs that evaluated the impact of LNS plus complementary foods given at point-of-use (for any dose, frequency, duration) to non-hospitalised infants and young children aged six to 23 months in stable or emergency settings and compared to no intervention, other supplementary foods (i.e. FBF), nutrition counselling or multiple micronutrient supplements or powders for point-of-use fortification of complementary foods. DATA COLLECTION AND ANALYSIS Two review authors independently screened studies for relevance and, for those studies included in the review, extracted data, assessed risk of bias and rated the quality of the evidence using the GRADE approach. We carried out statistical analysis using Review Manager software. We used a random-effects meta-analysis for combining data as the interventions differed significantly. We set out the main findings of the review in 'Summary of findings' tables,. MAIN RESULTS Our search identified a total of 8124 records, from which we included 17 studies (54 papers) with 23,200 children in the review. The included studies reported on one or more of the pre-specified primary outcomes, and five studies included multiple comparison groups.Overall, the majority of trials were at low risk of bias for random sequence generation, allocation concealment, blinding of outcome assessment, incomplete outcome data, selective reporting and other sources of bias, but at high risk of bias for blinding of participants and personnel due to the nature of the intervention. Using the GRADE approach, we judged the quality of the evidence for most outcomes as low or moderate.LNS+complementary feeding compared with no intervention Thirteen studies compared LNS plus complementary feeding with no intervention. LNS plus complementary feeding reduced the prevalence of moderate stunting by 7% (risk ratio (RR) 0.93, 95% confidence interval (CI) 0.88 to 0.98; nine studies, 13,372 participants; moderate-quality evidence), severe stunting by 15% (RR 0.85, 95% CI 0.74 to 0.98; five studies, 6151 participants; moderate-quality evidence), moderate wasting by 18% (RR 0.82, 95% CI 0.74 to 0.91; eight studies; 13,172 participants; moderate-quality evidence), moderate underweight by 15% (RR 0.85, 95% CI 0.80 to 0.91; eight studies, 13,073 participants; moderate-quality evidence), and anaemia by 21% (RR 0.79, 95% CI 0.69 to 0.90; five studies, 2332 participants; low-quality evidence). There was no impact of LNS plus complementary feeding on severe wasting (RR 1.27, 95% CI 0.66 to 2.46; three studies, 2329 participants) and severe underweight (RR 0.78, 95%CI 0.54 to 1.13; two studies, 1729 participants). Adverse effects did not differ between the groups (RR 0.86, 95% CI 0.74 to 1.01; three studies, 3382 participants).LNS+complementary feeding compared with FBF Five studies compared LNS plus complementary feeding with other FBF, including corn soy blend and UNIMIX. We pooled four of the five studies in meta-analyses and found that, when compared to other FBF, LNS plus complementary feeding significantly reduced the prevalence of moderate stunting (RR 0.89, 95% CI 0.82 to 0.97; three studies, 2828 participants; moderate-quality evidence), moderate wasting (RR 0.79, 95% CI 0.65 to 0.97; two studies, 2290 participants; moderate-quality evidence), and moderate underweight (RR 0.81, 95% CI 0.73 to 0.91; two studies, 2280 participants; moderate-quality evidence). We found no difference between LNS plus complementary feeding and FBF for severe stunting (RR 0.41, 95% CI 0.12 to 1.42; two studies, 729 participants; low-quality evidence), severe wasting (RR 0.64, 95% CI 0.19 to 2.81; two studies, 735 participants; moderate-quality evidence), and severe underweight (RR 1.23, 95% CI 0.67 to 2.25; one study, 173 participants; low-quality evidence).LNS+complementary feeding compared with MNP Four studies compared LNS plus complementary feeding with MNP. We pooled data from three of the four studies in meta-analyses and found that compared to MNP, LNS plus complementary feeding significantly reduced the prevalence of moderate underweight (RR 0.88, 95% CI 0.78 to 0.99; two studies, 2004 participants; moderate-quality evidence) and anaemia (RR 0.38, 95% CI 0.21 to 0.68; two studies, 557 participants; low-quality evidence). There was no difference between LNS plus complementary feeding and MNP for moderate stunting (RR 0.92, 95% CI 0.82 to 1.02; three studies, 2365 participants) and moderate wasting (RR 0.97, 95% CI 0.77 to 1.23; two studies, 2004 participants). AUTHORS' CONCLUSIONS The findings of this review suggest that LNS plus complementary feeding compared to no intervention is effective at improving growth outcomes and anaemia without adverse effects among children aged six to 23 months in low- and middle-income countries (LMIC) in Asia and Africa, and more effective if provided over a longer duration of time (over 12 months). Limited evidence also suggests that LNS plus complementary feeding is more effective than FBF and MNP at improving growth outcomes.
Collapse
Affiliation(s)
- Jai K Das
- Aga Khan University HospitalDivision of Women and Child HealthStadium RoadPO Box 3500KarachiSindPakistan
| | - Rehana A Salam
- Aga Khan University HospitalDivision of Women and Child HealthStadium RoadPO Box 3500KarachiSindPakistan
| | - Yousaf Bashir Hadi
- West Virginia UniversityDepartment of Internal Medicine1 Medical Center DriveMorgantownWest VirginiaUSA26506
| | - Sana Sadiq Sheikh
- Aga Khan University HospitalDivision of Women and Child HealthStadium RoadPO Box 3500KarachiSindPakistan
| | - Afsah Z Bhutta
- Dow University of Health SciencesKarachiSindhPakistan75500
| | - Zita Weise Prinzo
- World Health OrganizationDepartment of Nutrition for Health and DevelopmentAvenue Appia 20GenevaGESwitzerland1211
| | - Zulfiqar A Bhutta
- The Hospital for Sick ChildrenCentre for Global Child HealthTorontoCanada
- Aga Khan University HospitalCenter for Excellence in Women and Child HealthKarachiPakistan
| | | |
Collapse
|
7
|
Das JK, Hoodbhoy Z, Salam RA, Bhutta AZ, Valenzuela‐Rubio NG, Weise Prinzo Z, Bhutta ZA. Lipid-based nutrient supplements for maternal, birth, and infant developmental outcomes. Cochrane Database Syst Rev 2018; 8:CD012610. [PMID: 30168868 PMCID: PMC6513224 DOI: 10.1002/14651858.cd012610.pub2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ready-to-use lipid-based nutrient supplements (LNS) are a highly nutrient-dense supplement, which could be a good source of macro- and micronutrients for pregnant women who need to supplement their nutrient intake. OBJECTIVES To assess the effects of LNS for maternal, birth and infant outcomes in pregnant women. Secondary objectives were to explore the most appropriate composition, frequency and duration of LNS administration. SEARCH METHODS In May 2018, we searched CENTRAL, MEDLINE, Embase, 22 other databases and two trials registers for any published and ongoing studies. We also checked the reference lists of included studies and relevant reviews, and we contacted the authors of included studies and other experts in the field to identify any studies we may have missed, including any unpublished studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs that compared LNS given in pregnancy to no intervention, placebo, iron folic acid (IFA), multiple micronutrients (MMN) or nutritional counselling. DATA COLLECTION AND ANALYSIS We used standard Cochrane procedures. MAIN RESULTS We included four studies in 8018 pregnant women. All four studies took place in stable community settings in low- and middle-income countries: Bangladesh, Burkina Faso, Ghana and Malawi. None were in emergency settings. The oldest trial was published in 2009. Of the four included studies, one compared LNS to IFA, one compared LNS to MMN, and two compared LNS to both IFA and MMN.We considered the included studies to be of medium to high quality, and we rated the quality of the evidence as moderate using the GRADE approach.LNS versus IFAMaternal outcomes: there was no difference between the LNS and IFA groups as regards maternal gestational weight gain per week (standard mean difference (SMD) 0.46, 95% confidence interval (CI) -0.44 to 1.36; 2 studies, 3539 participants). One study (536 participants) showed a two-fold increase in the prevalence of maternal anaemia in the LNS group compared to the IFA group, but no difference between the groups as regards adverse effects. There was no difference between the two groups for maternal mortality (risk ratio (RR) 0.53, 95% CI 0.12 to 2.41; 3 studies, 5628 participants).Birth and infant outcomes: there was no difference between the LNS and IFA groups for low birth weight (LBW) (RR 0.87, 95% CI 0.72 to 1.05; 3 studies, 4826 participants), though newborns in the LNS group had a slightly higher mean birth weight (mean difference (MD) 53.28 g, 95% CI 28.22 to 78.33; 3 studies, 5077 participants) and birth length (cm) (MD 0.24 cm, 95% CI 0.11 to 0.36; 3 studies, 4986 participants). There was a reduction in the proportion of infants who were small for gestational age (SGA) (RR 0.94, 95% CI 0.89 to 0.99; 3 studies, 4823 participants) and had newborn stunting (RR 0.82, 95% CI 0.71 to 0.94; 2 studies, 4166 participants) in the LNS group, but no difference between the LNS and IFA groups for preterm delivery (RR 0.94, 95% CI 0.80 to 1.11; 4 studies, 4924 participants), stillbirth (RR 1.14; 95% CI 0.52 to 2.48; 3 studies, 5575 participants) or neonatal death (RR 0.96, 95% CI 0.14 to 6.51). The current evidence for child developmental outcomes is not sufficient to draw any firm conclusions.LNS versus MMNMaternal outcomes: one study (662 participants) showed no difference between the LNS and MMN groups as regards gestational weight gain per week or adverse effects. Another study (557 participants) showed an increased risk of maternal anaemia in the LNS group compared to the MMN group.Birth and infant outcomes: there was no difference between the LNS and MMN groups for LBW (RR 0.92, 95% CI 0.74 to 1.14; 3 studies, 2404 participants), birth weight (MD 23.67 g, 95% CI -10.53 to 57.86; 3 studies, 2573 participants), birth length (MD 0.20 cm, 95% CI -0.02 to 0.42; 3 studies, 2567 participants), SGA (RR 0.95, 95% CI 0.84 to 1.07; 3 studies, 2393 participants), preterm delivery (RR 1.15, 95% CI 0.93 to 1.42; 3 studies, 2630 participants), head circumference z score (MD 0.10, 95% CI -0.01 to 0.21; 2 studies, 1549 participants) or neonatal death (RR 0.88, 95% CI 0.36 to 2.15; 1 study, 1175 participants). AUTHORS' CONCLUSIONS Findings from this review suggest that LNS supplementation has a slight, positive effect on weight at birth, length at birth, SGA and newborn stunting compared to IFA. LNS and MMN were comparable for all maternal, birth and infant outcomes. Both IFA and MMN were better at reducing maternal anaemia when compared to LNS. We did not find any trials for LNS given to pregnant women in emergency settings.Readers should interpret the beneficial findings of the review with caution since the evidence comes from a small number of trials, with one-large scale study (conducted in community settings in Bangladesh) driving most of the impact. In addition, effect sizes are too small to propose any concrete recommendation for practice.
Collapse
Affiliation(s)
- Jai K Das
- Aga Khan University HospitalDivision of Women and Child HealthStadium RoadPO Box 3500KarachiSindPakistan
| | - Zahra Hoodbhoy
- Aga Khan University HospitalDivision of Women and Child HealthStadium RoadPO Box 3500KarachiSindPakistan
| | - Rehana A Salam
- Aga Khan University HospitalDivision of Women and Child HealthStadium RoadPO Box 3500KarachiSindPakistan
| | | | - Nancy G Valenzuela‐Rubio
- Autonomous University of SinaloaSchool of Nutrition and GastronomyPuerto Ensenada Ave. 1783Nuevo CuliacanCuliacanSinaloaMexico80170
- Mexican Association for Nutrition and Health ResearchCuliacanMexico
| | - Zita Weise Prinzo
- World Health OrganizationDepartment of Nutrition for Health and DevelopmentAvenue Appia 20GenevaGESwitzerland1211
| | - Zulfiqar A Bhutta
- The Hospital for Sick ChildrenCentre for Global Child HealthTorontoONCanadaM5G A04
- Aga Khan University HospitalCentre for Excellence in Women and Child HealthStadium RoadPO Box 3500KarachiPakistan74800
| | | |
Collapse
|