1
|
Feng J, MengHuan L, TingTing Y, XueJie Y, HaiNing G. Research progress on AMPK in the pathogenesis and treatment of MASLD. Front Immunol 2025; 16:1558041. [PMID: 40134423 PMCID: PMC11932893 DOI: 10.3389/fimmu.2025.1558041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as non-alcoholic fatty liver disease, NAFLD) has become one of the most prevalent chronic liver diseases worldwide, with its incidence continuously rising alongside the epidemic of metabolic disorders. AMP-activated protein kinase (AMPK), as a key regulator of cellular energy metabolism, influences multiple pathological processes associated with MASLD. This review systematically summarizes the regulatory roles of AMPK in lipid metabolism, inflammatory response, cell apoptosis, and fibrosis. Additionally, it discusses the latest developments of AMPK activators from preclinical to clinical studies, while analyzing the major challenges currently faced and potential strategies for resolution. A deeper understanding of AMPK regulatory mechanisms will contribute to the development of more effective therapeutic approaches for MASLD.
Collapse
Affiliation(s)
- Jiang Feng
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Yao TingTing
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Gao HaiNing
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
Zhan T, Liu JX, Huang M, Chen MT, Tian XR, Yang XL, Tan J, Zou YL, Han Z, Chen W, Tian X, Huang XD. ILF3 inhibits p-AMPK expression to drive non-alcoholic fatty liver disease progression. World J Hepatol 2025; 17:101691. [PMID: 40027551 PMCID: PMC11866148 DOI: 10.4254/wjh.v17.i2.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/03/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a disease of increasing global prevalence and an important risk factor for the development of insulin resistance, type 2 diabetes, non-alcoholic steatohepatitis and hepatocellular carcinoma, but the pathogenesis is not clear. The aim of this study was to explore the role of ILF3 in NAFLD. AIM To investigate the molecular processes through which ILF3 facilitates the advancement of NAFLD by inhibiting the expression of p-AMPK. This exploration seeks to provide new insights into the etiology of NAFLD and evaluate the potential of ILF3 as a diagnostic marker and potential treatment focus for future interventions. METHODS In vitro and in vivo experiments were conducted using HepG2 cells and NAFLD animal models. The effects of ILF3 knockdown on lipid synthesis and triglyceride (TG) secretion were examined by analyzing the expression levels of p-AMPK. Additionally, the roles of ILF3 and the AMPK signaling pathway were verified using techniques such as Western blotting, quantitative reverse transcription PCR, Oil Red O staining, and immunohistochemistry. RESULTS Investigations revealed an increase in ILF3 Levels within both HepG2 cells and animal models of NAFLD, concurrently with a decrease in p-AMPK expression. Knocking down ILF3 activated the AMPK pathway, reducing lipid production and TG secretion in hepatocytes, thereby mitigating the advancement of NAFLD. CONCLUSION ILF3 promotes the evolution of NAFLD by inhibiting the expression of p-AMPK. The knockdown of ILF3 activates the AMPK signaling pathway, alleviating the severity of NAFLD. These findings underscore the function of ILF3 in the pathogenesis of NAFLD and demonstrate its viability as a treatment focus and diagnostic indicator.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Jia-Xi Liu
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Min Huang
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Ming-Tao Chen
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Xiao-Rong Tian
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Xiu-Lin Yang
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Jie Tan
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Yan-Li Zou
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Zheng Han
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Wei Chen
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Xiao-Dong Huang
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China.
| |
Collapse
|
3
|
Wan X, Ma J, Bai H, Hu X, Ma Y, Zhao M, Liu J, Duan Z. Drug Advances in NAFLD: Individual and Combination Treatment Strategies of Natural Products and Small-Synthetic-Molecule Drugs. Biomolecules 2025; 15:140. [PMID: 39858534 PMCID: PMC11764138 DOI: 10.3390/biom15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is closely associated with metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome. However, effective treatment strategies for NAFLD are still lacking. In recent years, progress has been made in understanding the pathogenesis of NAFLD, identifying multiple therapeutic targets and providing new directions for drug development. This review summarizes the recent advances in the treatment of NAFLD, focusing on the mechanisms of action of natural products, small-synthetic-molecule drugs, and combination therapy strategies. This review aims to provide new insights and strategies in treating NAFLD.
Collapse
Affiliation(s)
- Xing Wan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
- Institute of Integrated Traditional Chinese and Western Medicine, Dalian Medical University, Dalian 116051, China
| | - Jingyuan Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - He Bai
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Xuyang Hu
- The Second Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China;
| | - Yanna Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - Mingjian Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Jifeng Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Zhijun Duan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| |
Collapse
|
4
|
Yan M, Cui Y, Xiang Q. Metabolism of hepatic stellate cells in chronic liver diseases: emerging molecular and therapeutic interventions. Theranostics 2025; 15:1715-1740. [PMID: 39897543 PMCID: PMC11780521 DOI: 10.7150/thno.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
Chronic liver diseases, primarily metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic and metabolic dysfunction-associated alcoholic liver disease (MetALD), and viral hepatitis, can lead to liver fibrosis, cirrhosis, and cancer. Hepatic stellate cell (HSC) activation plays a central role in the development of myofibroblasts and fibrogenesis in chronic liver diseases. However, HSC activation is influenced by the complex microenvironments within the liver, which are largely shaped by the interactions between HSCs and various other cell types. Changes in HSC phenotypes and metabolic mechanisms involve glucose, lipid, and cholesterol metabolism, oxidative stress, activation of the unfolded protein response (UPR), autophagy, ferroptosis, senescence, and nuclear receptors. Clinical interventions targeting these pathways have shown promising results in addressing liver inflammation and fibrosis, as well as in modulating glucose and lipid metabolism and metabolic stress responses. Therefore, a comprehensive understanding of HSC phenotypes and metabolic mechanisms presents opportunities for novel therapeutic approaches aimed at halting or even reversing chronic liver diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
An H, Jang Y, Choi J, Hur J, Kim S, Kwon Y. New Insights into AMPK, as a Potential Therapeutic Target in Metabolic Dysfunction-Associated Steatotic Liver Disease and Hepatic Fibrosis. Biomol Ther (Seoul) 2025; 33:18-38. [PMID: 39702310 PMCID: PMC11704404 DOI: 10.4062/biomolther.2024.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
AMP-activated protein kinase (AMPK) activators have garnered significant attention for their potential to prevent the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) into liver fibrosis and to fundamentally improve liver function. The broad spectrum of pathways regulated by AMPK activators makes them promising alternatives to conventional liver replacement therapies and the limited pharmacological treatments currently available. In this study, we aim to illustrate the newly detailed multiple mechanisms of MASLD progression based on the multiple-hit hypothesis. This model posits that impaired lipid metabolism, combined with insulin resistance and metabolic imbalance, initiates inflammatory cascades, gut dysbiosis, and the accumulation of toxic metabolites, ultimately promoting fibrosis and accelerating MASLD progression to irreversible hepatocellular carcinoma (HCC). AMPK plays a multifaceted protective role against these pathological conditions by regulating several key downstream signaling pathways. It regulates biological effectors critical to metabolic and inflammatory responses, such as SIRT1, Nrf2, mTOR, and TGF-β, through complex and interrelated mechanisms. Due to these intricate connections, AMPK's role is pivotal in managing metabolic and inflammatory disorders. In this review, we demonstrate the specific roles of AMPK and its related pathways. Several agents directly activate AMPK by binding as agonists, while some others indirectly activate AMPK by modulating upstream molecules, including adiponectin, LKB1, and the AMP: ATP ratio. As AMPK activators can target each stage of MASLD progression, the development of AMPK activators offers immense potential to expand therapeutic strategies for liver diseases such as MASH, MASLD, and liver fibrosis.
Collapse
Affiliation(s)
- Haeun An
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yerin Jang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jungin Choi
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Juhee Hur
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seojeong Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Khan TJ, Semenkovich CF, Zayed MA. De novo lipid synthesis in cardiovascular tissue and disease. Atherosclerosis 2025; 400:119066. [PMID: 39616863 DOI: 10.1016/j.atherosclerosis.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Most tissues have the capacity for endogenous lipid synthesis. A crucial foundational pathway for lipid synthesis is de novo lipid synthesis (DNL), a ubiquitous and complex metabolic process that occurs at high levels in the liver, adipose and brain tissue. Under normal physiological conditions, DNL is vital in converting excess carbohydrates into fatty acids. DNL is linked to other pathways, including the endogenous synthesis of phospholipids and sphingolipids. However, abnormal lipid synthesis can contribute to various pathologies and clinical conditions. Experimental studies involving dietary restriction and in vivo genetic modifications provide compelling evidence demonstrating the significance of lipid synthesis in maintaining normal cardiovascular tissue function. Similarly, clinical investigations suggest altered lipid synthesis can harm cardiac and arterial tissues, thereby influencing cardiovascular disease (CVD) development and progression. Consequently, there is increased interest in exploring pharmacological interventions that target lipid synthesis metabolic pathways as potential strategies to alleviate CVD. Here we review the physiological and pathological impact of endogenous lipid synthesis and its implications for CVD. Since lipid synthesis can be targeted pharmacologically, enhancing our understanding of the molecular and biochemical mechanisms underlying lipid generation and cardiovascular function may prompt new insights into CVD and its treatment.
Collapse
Affiliation(s)
- Tariq J Khan
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Clay F Semenkovich
- Washington University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, St. Louis, MO, USA; Washington University School of Medicine, Department of Cell Biology and Physiology, St. Louis, MO, USA
| | - Mohamed A Zayed
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA; Washington University School of Medicine, Department of Surgery, Division of Surgical Sciences, St. Louis, MO, USA; Washington University School of Medicine, Department of Radiology, St. Louis, MO, USA; Washington University School of Medicine, Division of Molecular Cell Biology, St. Louis, MO, USA; Washington University, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, MO, USA; Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
7
|
Choi J, Choi H, Jang Y, Paik HG, Kwon HS, Kwon J. Fermented Gold Kiwifruit Protects Mice Against Non-Alcoholic Fatty Liver Disease in a High-Fat Diet Model. APPLIED SCIENCES 2024; 14:11503. [DOI: 10.3390/app142411503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Gold kiwifruit is known for its high vitamin C content and various benefits. This study investigated the effects and molecular mechanisms of fermented gold kiwifruit (FGK) in a mouse model of high-fat diet (HFD)-induced obesity and hepatic steatosis. FGK powder was prepared using five strains of lactic acid bacteria: L. paracasei, Lc. lactis, L. acidophilus, L. casei, and L. helveticus. ICR mice were fed an HFD for 8 weeks to induce obesity and hepatic steatosis, and FGK supplementation was evaluated for its therapeutic potential. FGK administration significantly reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol, triglyceride, and glucose compared to the HFD-only group. Histopathological analysis showed that FGK reduced lipid accumulation and hepatic lesions, as confirmed by hematoxylin and eosin (H&E) staining. Furthermore, administration of FGK activated the sirtuin 1(SIRT1)/adenosine monophosphate-activated protein kinase (AMPK) pathway and inhibited expression of the pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in liver tissue. These findings suggest that FGK could reduce the severity of non-alcoholic fatty liver disease (NAFLD) by inhibiting fat synthesis, promoting fat breakdown, and suppressing inflammation in HFD-induced obese mice.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Hwal Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Yuseong Jang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Hyeon-Gi Paik
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Hyuck-Se Kwon
- R&D Team, Food & Supplement Health Claims, Vitech, #602 Giyeon B/D 141 Anjeon-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| |
Collapse
|
8
|
Li Y, Zhao W, Sair AT, Li T, Liu RH. Ferulic acid restores mitochondrial dynamics and autophagy via AMPK signaling pathway in a palmitate-induced hepatocyte model of metabolic syndrome. Sci Rep 2024; 14:18970. [PMID: 39152139 PMCID: PMC11329500 DOI: 10.1038/s41598-024-66362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/01/2024] [Indexed: 08/19/2024] Open
Abstract
Mitochondrial dysfunction, characterized by elevated oxidative stress, impaired energy balance, and dysregulated mitochondrial dynamics, is a hallmark of metabolic syndrome (MetS) and its comorbidities. Ferulic acid (FA), a principal phenolic compound found in whole grains, has demonstrated potential in ameliorating oxidative stress and preserving energy homeostasis. However, the influence of FA on mitochondrial health within the context of MetS remains unexplored. Moreover, the impact of FA on autophagy, which is essential for maintaining energy homeostasis and mitochondrial integrity, is not fully understood. Here, we aimed to study the mechanisms of action of FA in regulating mitochondrial health and autophagy using palmitate-treated HepG2 hepatocytes as a MetS cell model. We found that FA improved mitochondrial health by restoring redox balance and optimizing mitochondrial dynamics, including biogenesis and the fusion/fission ratio. Additionally, FA was shown to recover autophagy and activate AMPK-related cell signaling. Our results provide new insights into the therapeutic potential of FA as a mitochondria-targeting agent for the prevention and treatment of MetS.
Collapse
Affiliation(s)
- Yitong Li
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, NY, 14853, USA
| | - Weiyang Zhao
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, NY, 14853, USA
| | - Ali Tahir Sair
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, NY, 14853, USA
| | - Tong Li
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, NY, 14853, USA
| | - Rui Hai Liu
- Department of Food Science, Cornell University, 245 Stocking Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Anggreini P, Kuncoro H, Sumiwi SA, Levita J. Molecular Docking Study of Phytosterols in Lygodium microphyllum Towards SIRT1 and AMPK, the in vitro Brine Shrimp Toxicity Test, and the Phenols and Sterols Levels in the Extract. J Exp Pharmacol 2023; 15:513-527. [PMID: 38148923 PMCID: PMC10751218 DOI: 10.2147/jep.s438435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
Background Lygodium microphyllum is a fern plant with various pharmacological activities, and phytosterols were reported contained in the n-hexane and ethyl acetate extract of this plant. Phytosterols are known to inhibit steatosis, oxidative stress, and inflammation. Sirtuin 1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK) are the key proteins that control lipogenesis. However, information about L. microphyllum on SIRT1 and AMPK is still lacking. Purpose This study aims to investigate the binding mode of phytosterols in L. microphyllum extract towards AMPK and SIRT1, and the toxicity of the extract against brine shrimp (Artemia salina) larvae, and to determine the phenols and sterols levels in the extract. Methods The molecular docking was performed towards SIRT1 and AMPK using AutoDock v4.2.6, the toxicity of the extract was assayed against brine shrimp (Artemia salina) larvae, and the phytosterols were analyzed by employing a thin layer chromatography densitometry, and the total phenols were by spectrophotometry. Results The molecular docking study revealed that β-sitosterol and stigmasterol could occupy the active allosteric-binding site of SIRT1 and AMPK by binding to important residues similar to the protein's activators. The cold extraction of the plant yields 15.86% w/w. Phytochemical screening revealed the presence of phenols, steroids, flavonoids, alkaloids, and saponins. The total phenols are equivalent to 126 mg gallic acid (GAE)/g dry extract, the total sterols are 954.04 µg/g, and the β-sitosterol level is 283.55 µg/g. The LC50 value of the extract towards A. salina larvae is 203.704 ppm. Conclusion Lygodium microphyllum extract may have the potential to be further explored for its pharmacology activities, particularly in the discovery of plant-based anti-dyslipidemic drug candidates. However, further studies are needed to confirm their roles in alleviating lipid disorders.
Collapse
Affiliation(s)
- Putri Anggreini
- Faculty of Pharmacy, Padjadjaran University, Sumedang, 46363, Indonesia
- Faculty of Pharmacy, Mulawarman University, Samarinda, 75119, Indonesia
| | - Hadi Kuncoro
- Faculty of Pharmacy, Mulawarman University, Samarinda, 75119, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, 46363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, 46363, Indonesia
| |
Collapse
|
10
|
Cui Y, Chen J, Zhang Z, Shi H, Sun W, Yi Q. The role of AMPK in macrophage metabolism, function and polarisation. J Transl Med 2023; 21:892. [PMID: 38066566 PMCID: PMC10709986 DOI: 10.1186/s12967-023-04772-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitous sensor of energy and nutritional status in eukaryotic cells. It plays a key role in regulating cellular energy homeostasis and multiple aspects of cell metabolism. During macrophage polarisation, AMPK not only guides the metabolic programming of macrophages, but also counter-regulates the inflammatory function of macrophages and promotes their polarisation toward the anti-inflammatory phenotype. AMPK is located at the intersection of macrophage metabolism and inflammation. The metabolic characteristics of macrophages are closely related to immune-related diseases, infectious diseases, cancer progression and immunotherapy. This review discusses the structure of AMPK and its role in the metabolism, function and polarisation of macrophages. In addition, it summarises the important role of the AMPK pathway and AMPK activators in the development of macrophage-related diseases.
Collapse
Affiliation(s)
- Yinxing Cui
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Junhua Chen
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Zhao Zhang
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Weichao Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
11
|
Ziamanesh F, Mohammadi M, Ebrahimpour S, Tabatabaei-Malazy O, Mosallanejad A, Larijani B. Unraveling the link between insulin resistance and Non-alcoholic fatty liver disease (or metabolic dysfunction-associated steatotic liver disease): A Narrative Review. J Diabetes Metab Disord 2023; 22:1083-1094. [PMID: 37975107 PMCID: PMC10638269 DOI: 10.1007/s40200-023-01293-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/24/2023] [Indexed: 11/19/2023]
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming a significant global health concern, representing the leading cause of chronic liver disease and posing a substantial public health challenge. NAFLD is associated with higher insulin resistance (IR) levels, a key pathophysiological mechanism contributing to its development and progression. To counter this growing trend, it is crucial to raise awareness about NAFLD and promote healthy lifestyles to mitigate the impact of this disease. Methods Relevant studies regarding IR and NAFLD published until May 30, 2023, were extracted from Google PubMed, Scopus, and Web Of Science web databases. The following keywords were used: IR, diabetes mellitus, Non-alcoholic fatty liver disease, and metabolic syndrome. Results IR leads to an accumulation of fatty acids within liver cells, resulting from increased glycolysis and decreased apolipoprotein B-100. Furthermore, the manifestations of NAFLD extend beyond liver-related morbidity and mortality, affecting multiple organs and giving rise to various non-communicable disorders such as diabetes mellitus, metabolic syndrome, polycystic ovary syndrome, obstructive sleep apnea, and cardiovascular disease. Although lifestyle modification remains the primary treatment approach for NAFLD, alternative therapies, including pharmacological, herbal, and surgical interventions, may be considered. By implementing early and simple measures, cirrhosis, end-stage liver disease, and hepatocellular carcinoma can be prevented. Conclusions There is a clear association between NAFLD and elevated levels of IR. Several metabolic conditions, such as obesity, type 2 diabetes mellitus, dyslipidemia, and metabolic syndrome, are closely interrelated with NAFLD and IR. Raising awareness about NAFLD and promoting a healthy lifestyle are crucial steps to reverse the impact of this disease.
Collapse
Affiliation(s)
- Fateme Ziamanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Sholeh Ebrahimpour
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Sun H, Kemper JK. MicroRNA regulation of AMPK in nonalcoholic fatty liver disease. Exp Mol Med 2023; 55:1974-1981. [PMID: 37653034 PMCID: PMC10545736 DOI: 10.1038/s12276-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 09/02/2023] Open
Abstract
Obesity-associated nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is the leading cause of liver failure and death. The function of AMP-activated protein kinase (AMPK), a master energy sensor, is aberrantly reduced in NAFLD, but the underlying mechanisms are not fully understood. Increasing evidence indicates that aberrantly expressed microRNAs (miRs) are associated with impaired AMPK function in obesity and NAFLD. In this review, we discuss the emerging evidence that miRs have a role in reducing AMPK activity in NAFLD and nonalcoholic steatohepatitis (NASH), a severe form of NAFLD. We also discuss the underlying mechanisms of the aberrant expression of miRs that can negatively impact AMPK, as well as the therapeutic potential of targeting the miR-AMPK pathway for NAFLD/NASH.
Collapse
Affiliation(s)
- Hao Sun
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
13
|
Khan MS, Kim HS, Kim R, Yoon SH, Kim SG. Dysregulated Liver Metabolism and Polycystic Ovarian Syndrome. Int J Mol Sci 2023; 24:ijms24087454. [PMID: 37108615 PMCID: PMC10138914 DOI: 10.3390/ijms24087454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A significant fraction of couples around the world suffer from polycystic ovarian syndrome (PCOS), a disease defined by the characteristics of enhanced androgen synthesis in ovarian theca cells, hyperandrogenemia, and ovarian dysfunction in women. Most of the clinically observable symptoms and altered blood biomarker levels in the patients indicate metabolic dysregulation and adaptive changes as the key underlying mechanisms. Since the liver is the metabolic hub of the body and is involved in steroid-hormonal detoxification, pathological changes in the liver may contribute to female endocrine disruption, potentially through the liver-to-ovary axis. Of particular interest are hyperglycemic challenges and the consequent changes in liver-secretory protein(s) and insulin sensitivity affecting the maturation of ovarian follicles, potentially leading to female infertility. The purpose of this review is to provide insight into emerging metabolic mechanisms underlying PCOS as the primary culprit, which promote its incidence and aggravation. Additionally, this review aims to summarize medications and new potential therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Muhammad Sohaib Khan
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Hee-Sun Kim
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
| | - Ranhee Kim
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
| | - Sang Ho Yoon
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
- Department of Obstetrics and Gynecology, Dongguk University Medical College, Goyang-si 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
14
|
Kosmalski M, Frankowski R, Ziółkowska S, Różycka-Kosmalska M, Pietras T. What's New in the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD). J Clin Med 2023; 12:jcm12051852. [PMID: 36902639 PMCID: PMC10003344 DOI: 10.3390/jcm12051852] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious health problem due to its high incidence and consequences. In view of the existing controversies, new therapeutic options for NAFLD are still being sought. Therefore, the aim of our review was to evaluate the recently published studies on the treatment of NAFLD patients. We searched for articles in the PubMed database using appropriate terms, including "non-alcoholic fatty liver disease", "nonalcoholic fatty liver disease", "NAFLD", "diet", "treatment", "physical activity", "supplementation", "surgery", "overture" and "guidelines". One hundred forty-eight randomized clinical trials published from January 2020 to November 2022 were used for the final analysis. The results show significant benefits of NAFLD therapy associated with the use of not only the Mediterranean but also other types of diet (including low-calorie ketogenic, high-protein, anti-inflammatory and whole-grain diets), as well as enrichment with selected food products or supplements. Significant benefits in this group of patients are also associated with moderate aerobic physical training. The available therapeutic options indicate, above all, the usefulness of drugs related to weight reduction, as well as the reduction in insulin resistance or lipids level and drugs with anti-inflammatory or antioxidant properties. The usefulness of therapy with dulaglutide and the combination of tofogliflozin with pioglitazone should be emphasized. Based on the results of the latest research, the authors of this article suggest a revision of the therapeutic recommendations for NAFLD patients.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
- Correspondence: ; Tel.: +48-728-358-504
| | - Rafał Frankowski
- Students’ Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Sylwia Ziółkowska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
15
|
Lin D, Song Y. Dapagliflozin Presented Nonalcoholic Fatty Liver Through Metabolite Extraction and AMPK/NLRP3 Signaling Pathway. Horm Metab Res 2023; 55:75-84. [PMID: 36495240 DOI: 10.1055/a-1970-3388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, the incidence rate of nonalcoholic fatty liver disease (NAFLD) has been increasing year by year. The experiments conducted on rat elucidated the effect and underlying mechanism of dapagliflozin in NAFLD. Sprague Dawley rats were fed with HFD (Fat accounts for 52%, carbohydrate 34% and protein 14%) for 12 weeks as NAFLD model. Dapagliflozin presented NAFLD in rat model. Dapagliflozin reduced oxidative stress and inflammation in rat model of NAFLD. Dapagliflozin reduced oxidative stress and inflammation in vitro model of NAFLD. Dapagliflozin in a model of NAFLD metabolized into histamine H1 receptor, caffeine metabolism, mannose type O-glycan biosynthesis, choline metabolism in cancer, tryptophan metabolism, and glycerophospholipid metabolism. Dapagliflozin induced AMPK/NLRP3 signaling pathway. The regulation of AMPK/NLRP3 signaling pathway affected the effects of dapagliflozin on nonalcoholic fatty liver. In summary, dapagliflozin plays a preventative role in NAFLD through metabolite extraction, the inhibition of oxidative stress, and inflammation by AMPK/NLRP3 signaling pathway. Dapagliflozin may be a potential therapeutic agent for oxidative stress and inflammation in model of NAFLD.
Collapse
Affiliation(s)
- Deng Lin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuling Song
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Anggreini P, Kuncoro H, Sumiwi SA, Levita J. Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review). Mol Med Rep 2022; 27:35. [PMID: 36562343 PMCID: PMC9827347 DOI: 10.3892/mmr.2022.12922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD) is an increasingly prevalent ailment worldwide. Moreover, de novo lipogenesis (DNL) is considered a critical factor in the development of NAFLD; hence, its inhibition is a promising target for the prevention of fatty liver disease. There is evidence to indicate that AMP‑activated protein kinase (AMPK) and sirtuin 1 (SIRT1) may play a crucial role in DNL and are the regulatory proteins in type 2 diabetes mellitus, obesity and cardiovascular disease. Therefore, AMPK and SIRT1 may be promising targets for the treatment of NAFLD. The present review article thus aimed to summarize the findings of clinical studies published during the past decade that suggested the beneficial effects of AMPK and SIRT1, using their specific activators and their combined effects on fatty liver disease.
Collapse
Affiliation(s)
- Putri Anggreini
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java 46363, Indonesia,Laboratory of Pharmaceutical Research and Development, Faculty of Pharmacy, Mulawarman University, Samarinda, East Borneo 75119, Indonesia
| | - Hadi Kuncoro
- Laboratory of Pharmaceutical Research and Development, Faculty of Pharmacy, Mulawarman University, Samarinda, East Borneo 75119, Indonesia,Correspondence to: Dr Hadi Kuncoro, Laboratory of Pharmaceutical Research and Development, Faculty of Pharmacy, Mulawarman University, Muara Muntai Street, Gunung Kelua, Samarinda, East Borneo 75119, Indonesia, E-mail:
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java 46363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java 46363, Indonesia
| |
Collapse
|
17
|
Zhang CS, Li M, Wang Y, Li X, Zong Y, Long S, Zhang M, Feng JW, Wei X, Liu YH, Zhang B, Wu J, Zhang C, Lian W, Ma T, Tian X, Qu Q, Yu Y, Xiong J, Liu DT, Wu Z, Zhu M, Xie C, Wu Y, Xu Z, Yang C, Chen J, Huang G, He Q, Huang X, Zhang L, Sun X, Liu Q, Ghafoor A, Gui F, Zheng K, Wang W, Wang ZC, Yu Y, Zhao Q, Lin SY, Wang ZX, Piao HL, Deng X, Lin SC. The aldolase inhibitor aldometanib mimics glucose starvation to activate lysosomal AMPK. Nat Metab 2022; 4:1369-1401. [PMID: 36217034 PMCID: PMC9584815 DOI: 10.1038/s42255-022-00640-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/16/2022] [Indexed: 01/20/2023]
Abstract
The activity of 5'-adenosine monophosphate-activated protein kinase (AMPK) is inversely correlated with the cellular availability of glucose. When glucose levels are low, the glycolytic enzyme aldolase is not bound to fructose-1,6-bisphosphate (FBP) and, instead, signals to activate lysosomal AMPK. Here, we show that blocking FBP binding to aldolase with the small molecule aldometanib selectively activates the lysosomal pool of AMPK and has beneficial metabolic effects in rodents. We identify aldometanib in a screen for aldolase inhibitors and show that it prevents FBP from binding to v-ATPase-associated aldolase and activates lysosomal AMPK, thereby mimicking a cellular state of glucose starvation. In male mice, aldometanib elicits an insulin-independent glucose-lowering effect, without causing hypoglycaemia. Aldometanib also alleviates fatty liver and nonalcoholic steatohepatitis in obese male rodents. Moreover, aldometanib extends lifespan and healthspan in both Caenorhabditis elegans and mice. Taken together, aldometanib mimics and adopts the lysosomal AMPK activation pathway associated with glucose starvation to exert physiological roles, and might have potential as a therapeutic for metabolic disorders in humans.
Collapse
Affiliation(s)
- Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Mengqi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yu Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yue Zong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Shating Long
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jin-Wei Feng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Baoding Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Wenhua Lian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Teng Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiao Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qi Qu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yaxin Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Jinye Xiong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Dong-Tai Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Zhenhua Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Zheni Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Guohong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qingxia He
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qingfeng Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Abdul Ghafoor
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Fu Gui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Kaili Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Zhi-Chao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Yong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Zhi-Xin Wang
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
18
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
19
|
Monternier PA, Parasar P, Theurey P, Gluais Dagorn P, Kaur N, Nagaraja TN, Fouqueray P, Bolze S, Moller DE, Singh J, Hallakou-Bozec S. Beneficial Effects of the Direct AMP-Kinase Activator PXL770 in In Vitro and In Vivo Models of X-Linked Adrenoleukodystrophy. J Pharmacol Exp Ther 2022; 382:208-222. [PMID: 35764327 PMCID: PMC11047065 DOI: 10.1124/jpet.122.001208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
X-linked adrenoleukodystrophy (ALD) is a severe orphan disease caused by mutations in the peroxisomal ABCD1 transporter gene, leading to toxic accumulation of Very Long-Chain Fatty Acids (VLCFA - in particular C26:0) resulting in inflammation, mitochondrial dysfunction and demyelination. AMP-activated protein kinase (AMPK) is downregulated in ALD, and its activation is implicated as a therapeutic target. PXL770 is the first direct allosteric AMPK activator with established clinical efficacy and tolerability. Methods: We investigated its effects in ALD patient-derived fibroblasts/lymphocytes and Abcd1 KO mouse glial cells. Readouts included VLCFA levels, mitochondrial function and mRNA levels of proinflammatory genes and compensatory transporters (ABCD2-3). After PXL770 treatment in Abcd1 KO mice, we assessed VLCFA levels in tissues, sciatic nerve axonal morphology by electronic microscopy and locomotor function by open-field/balance-beam tests. Results: In patients' cells and Abcd1 KO glial cells, PXL770 substantially decreased C26:0 levels (by ∼90%), improved mitochondrial respiration, reduced expression of multiple inflammatory genes and induced expression of ABCD2-3 In Abcd1 KO mice, PXL770 treatment normalized VLCFA in plasma and significantly reduced elevated levels in brain (-25%) and spinal cord (-32%) versus untreated (P < 0.001). Abnormal sciatic nerve axonal morphology was also improved along with amelioration of locomotor function. Conclusion: Direct AMPK activation exerts beneficial effects on several hallmarks of pathology in multiple ALD models in vitro and in vivo, supporting clinical development of PXL770 for this disease. Further studies would be needed to overcome limitations including small sample size for some parameters, lack of additional in vivo biomarkers and incomplete pharmacokinetic characterization. SIGNIFICANCE STATEMENT: Adrenoleukodystrophy is a rare and debilitating condition with no approved therapies, caused by accumulation of very long-chain fatty acids. AMPK is downregulated in the disease and has been implicated as a potential therapeutic target. PXL770 is a novel clinical stage direct AMPK activator. In these studies, we used PXL770 to achieve preclinical validation of direct AMPK activation for this disease - based on correction of key biochemical and functional readouts in vitro and in vivo, thus supporting clinical development.
Collapse
Affiliation(s)
- Pierre-Axel Monternier
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Parveen Parasar
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Pierre Theurey
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Pascale Gluais Dagorn
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Navtej Kaur
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Tavarekere N Nagaraja
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Pascale Fouqueray
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Sébastien Bolze
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - David E Moller
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Jaspreet Singh
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Sophie Hallakou-Bozec
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| |
Collapse
|