1
|
Yegorov S, Brewer A, Cyr L, Ward BJ, Pullenayegum E, Miller MS, Loeb M. Hemagglutination-Inhibition Antibodies and Protection against Influenza Elicited by Inactivated and Live Attenuated Vaccines in Children. J Infect Dis 2025; 231:e308-e316. [PMID: 39504434 PMCID: PMC11841627 DOI: 10.1093/infdis/jiae489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hemagglutinin (HA)-inhibiting antibodies contribute to the immune defense against influenza infection. However, there are insufficient data on the extent of correlation between vaccine-elicited HA antibodies and protection in children against different influenza strains, particularly when comparing live attenuated influenza vaccines (LAIV) versus inactivated influenza vaccines (IIV). METHODS We measured postvaccination hemagglutination-inhibition (HAI) titers in 3-15-year-old participants of a cluster-randomized controlled trial of trivalent LAIV(3) versus IIV(3) in Canadian Hutterite colonies. We assessed HAI titers as predictors of symptomatic, reverse transcription polymerase chain reaction (RT-PCR)-confirmed influenza over 3 influenza seasons using Cox proportional hazards regression models with vaccine type as a covariate. RESULTS For each log2 unit increase in postvaccination HAI against A/H1N1 in 2013-2014, A/H3N2 2014-2015, and B/Yamagata in 2013-2014 (each the predominant circulating strain for the respective influenza season), the reduction in the risk of confirmed influenza was equal to 29.6% (95% confidence interval [CI], 17.1%-39.5%), 34.8% (95% CI, 17.2%-47.9%), and 31.8% (95% CI, 23.8%-38.5%), respectively. No reduction in the risk of influenza was observed with B/Yamagata-specific HAI titers in 2012-2013, which was dominated by a mixture of Yamagata and Victoria strains. Despite the overall lower HAI titers in the LAIV3 group, both H1N1 and H3N2 HAI titers were associated with protection against subtype matched influenza. CONCLUSIONS Both LAIV3- and IIV3-elicited HA antibodies are associated with protection against influenza infection in seasons when the vaccine strains match the circulating influenza strain subtypes, supporting the use of HAI as a correlate of protection for both vaccine types in children.
Collapse
MESH Headings
- Humans
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Child
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Hemagglutination Inhibition Tests
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Adolescent
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Child, Preschool
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Female
- Male
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Canada
- Influenza B virus/immunology
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Angela Brewer
- Research Institute of the McGill University Health Centre, Montreal, Québec City, Canada
| | - Louis Cyr
- Research Institute of the McGill University Health Centre, Montreal, Québec City, Canada
| | - Brian J Ward
- Research Institute of the McGill University Health Centre, Montreal, Québec City, Canada
| | - Eleanor Pullenayegum
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, The University of Toronto, Toronto, Ontario, Canada
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Mark Loeb
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methodology, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Institute for Infectious Disease Research, Health Research Methodology, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Zhuang Z, Zhuo J, Yuan Y, Chen Z, Zhang S, Zhu A, Zhao J, Zhao J. Harnessing T-Cells for Enhanced Vaccine Development against Viral Infections. Vaccines (Basel) 2024; 12:478. [PMID: 38793729 PMCID: PMC11125924 DOI: 10.3390/vaccines12050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Despite significant strides in vaccine research and the availability of vaccines for many infectious diseases, the threat posed by both known and emerging infectious diseases persists. Moreover, breakthrough infections following vaccination remain a concern. Therefore, the development of novel vaccines is imperative. These vaccines must exhibit robust protective efficacy, broad-spectrum coverage, and long-lasting immunity. One promising avenue in vaccine development lies in leveraging T-cells, which play a crucial role in adaptive immunity and regulate immune responses during viral infections. T-cell recognition can target highly variable or conserved viral proteins, and memory T-cells offer the potential for durable immunity. Consequently, T-cell-based vaccines hold promise for advancing vaccine development efforts. This review delves into the latest research advancements in T-cell-based vaccines across various platforms and discusses the associated challenges.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yaochang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| |
Collapse
|
3
|
Zareein A, Mahmoudi M, Jadhav SS, Wilmore J, Wu Y. Biomaterial engineering strategies for B cell immunity modulations. Biomater Sci 2024; 12:1981-2006. [PMID: 38456305 PMCID: PMC11019864 DOI: 10.1039/d3bm01841e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
B cell immunity has a penetrating effect on human health and diseases. Therapeutics aiming to modulate B cell immunity have achieved remarkable success in combating infections, autoimmunity, and malignancies. However, current treatments still face significant limitations in generating effective long-lasting therapeutic B cell responses for many conditions. As the understanding of B cell biology has deepened in recent years, clearer regulation networks for B cell differentiation and antibody production have emerged, presenting opportunities to overcome current difficulties and realize the full therapeutic potential of B cell immunity. Biomaterial platforms have been developed to leverage these emerging concepts to augment therapeutic humoral immunity by facilitating immunogenic reagent trafficking, regulating T cell responses, and modulating the immune microenvironment. Moreover, biomaterial engineering tools have also advanced our understanding of B cell biology, further expediting the development of novel therapeutics. In this review, we will introduce the general concept of B cell immunobiology and highlight key biomaterial engineering strategies in the areas including B cell targeted antigen delivery, sustained B cell antigen delivery, antigen engineering, T cell help optimization, and B cell suppression. We will also discuss our perspective on future biomaterial engineering opportunities to leverage humoral immunity for therapeutics.
Collapse
Affiliation(s)
- Ali Zareein
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Mina Mahmoudi
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Shruti Sunil Jadhav
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
| | - Joel Wilmore
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
4
|
Yegorov S, Kadyrova I, Negmetzhanov B, Kolesnikova Y, Kolesnichenko S, Korshukov I, Baiken Y, Matkarimov B, Miller MS, Hortelano GH, Babenko D. Sputnik-V reactogenicity and immunogenicity in the blood and mucosa: a prospective cohort study. Sci Rep 2022; 12:13207. [PMID: 35915123 PMCID: PMC9342835 DOI: 10.1038/s41598-022-17514-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022] Open
Abstract
Sputnik-V (Gam-COVID-Vac) is a heterologous, recombinant adenoviral (rAdv) vector-based, COVID-19 vaccine now used in > 70 countries. Yet there is a shortage of data on this vaccine's performance in diverse populations. Here, we performed a prospective cohort study to assess the reactogenicity and immunologic outcomes of Sputnik-V vaccination in Kazakhstan. COVID-19-free participants (n = 82 at baseline) were followed at day 21 after Sputnik-V dose 1 (rAd5) and dose 2 (rAd26). Self-reported local and systemic adverse events were captured using questionnaires. Blood and nasopharyngeal swabs were collected to perform SARS-CoV-2 diagnostic and immunologic assays. We observed that most of the reported adverse events were mild-to-moderate injection site or systemic reactions, no severe or potentially life-threatening conditions were reported, and dose 1 appeared to be more reactogenic than dose 2. The seroconversion rate was 97% post-dose 1, remaining the same post-dose 2. The proportion of participants with detectable virus neutralization was 83% post-dose 1, increasing to 98% post-dose 2, with the largest relative increase observed in participants without prior COVID-19 exposure. Dose 1 boosted nasal S-IgG and S-IgA, while the boosting effect of dose 2 on mucosal S-IgG, but not S-IgA, was only observed in subjects without prior COVID-19. Systemically, vaccination reduced serum levels of growth regulated oncogene (GRO), which correlated with an elevation in blood platelet count. Overall, Sputnik-V dose 1 elicited both blood and mucosal SARS-CoV-2 immunity, while the immune boosting effect of dose 2 was minimal. Thus, adjustments to the current vaccine dosing regimen are necessary to optimize immunization efficacy and cost-effectiveness. While Sputnik-V reactogenicity is similar to that of other COVID-19 vaccines, the induced alterations to the GRO/platelet axis warrant investigation of the vaccine's effects on systemic immunology.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan.
| | - Irina Kadyrova
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan.
| | - Baurzhan Negmetzhanov
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | - Ilya Korshukov
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan
| | - Yeldar Baiken
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Gonzalo H Hortelano
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dmitriy Babenko
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan
| |
Collapse
|