1
|
Huang S, Shi D, Dai S, Jiang X, Wang R, Yang M, Chen B, Chen X, Kong L, He L, Deng P, Chen X, Lin C, Li Y, Li J, Song L, Shi Y, Wei W. RNF31 induces paclitaxel resistance by sustaining ALYREF cytoplasmic-nuclear shuttling in human triple-negative breast cancer. Clin Transl Med 2025; 15:e70203. [PMID: 39915011 PMCID: PMC11802238 DOI: 10.1002/ctm2.70203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Resistance to paclitaxel-based chemotherapy is the major obstacle in triple-negative breast cancer (TNBC) treatment. However, overcoming paclitaxel resistance remains an unsolved problem. The present study aimed to determine whether paclitaxel treatment impairs Aly/REF export factor (ALYREF) cytoplasmic-nuclear shuttling, its mechanism, and the role of ubiquitinated ALYREF in paclitaxel resistance. METHODS The subcellular proportion of ALYREF was detected in samples from patients with TNBC using immunohistochemistry to analyze the relationship between ALYREF distribution and paclitaxel response. Cell viability assays, immunofluorescence assays, quantitative real-time reverse transcription PCR assays, western blotting, and terminal deoxynucleotidyl transferase nick-end-labelling assays were conducted to measure the biological function of the subcellular proportion of ALYREF and E3 ligase ring finger protein 31 (RNF31) on paclitaxel sensitivity in TNBC. The synergistic effects of an RNF31 inhibitor plus paclitaxel on TNBC were evaluated. Cox regression models were adopted to assess the prognostic role of RNF31 in TNBC. RESULTS Herein, we showed that regulation of ALYREF cytoplasmic-nuclear shuttling is associated with the paclitaxel response in TNBC. In paclitaxel-sensitive TNBC, ALYREF was trapped in the cytoplasm by paclitaxel, while in paclitaxel-resistant TNBC, ALYREF was efficiently transported into the nucleus to exert its function, allowing the export of the mRNAs encoding paclitaxel-resistance-related factors, including tubulin beta 3 class III (TUBB3), stathmin 1 (STMN1), and microtubule-associated protein Tau (TAU), ultimately inducing paclitaxel resistance in TNBC. Mechanistically, we found that RNF31 interacts with and ubiquitinates ALYREF, which facilitates ALYREF nuclear transportation via importin 13 (IPO13) under paclitaxel treatment. Notably, the RNF31 inhibitor and paclitaxel synergistically repressed tumour growth in vivo and in TNBC patient-derived organoids. In addition, analysis of patients with TNBC showed that elevated RNF31 levels correlated with poor prognosis. CONCLUSION These data indicated that RNF31-mediated ALYREF ubiquitylation could represent a potent target to reverse paclitaxel resistance in TNBC. KEY POINTS RNF31 facilitated ALYREF-mediated PTX resistance in TNBC. RNF31 promoted ALYREF nuclear transport via IPO13 in response to PTX treatment, subsequently enhancing the export of mRNAs encoding PTX resistance-related factors, including TUBB3, STMN1, and TAU. Blocking RNF31 trapped ALYREF in the cytoplasm and induced TNBC cell death upon PTX treatment. Inhibiting RNF31 activity re-sensitized PTX-resistant TNBC to PTX treatment.
Collapse
Affiliation(s)
- Shumei Huang
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Dongni Shi
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shuqin Dai
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Medicinal LaboratoryState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xingyu Jiang
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Rui Wang
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Muwen Yang
- Department of Radiation OncologyShenzhen Key Laboratory of Gastrointestinal Cancer Translational ResearchCancer InstitutePeking University Shenzhen HospitalShenzhen‐Peking University‐Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Boyu Chen
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuwei Chen
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lingzhi Kong
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lixin He
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Pinwei Deng
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiangfu Chen
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chuyong Lin
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yue Li
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jun Li
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Libing Song
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yawei Shi
- Department of Breast and Thyroid Surgerythe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Weidong Wei
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Breast Oncology DepartmentState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
2
|
Chen W, Baker T, Zhang Z, Ogilvie HA, Van Loo P, Gu S(S. Evolutionary trajectories of immune escape across cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.632799. [PMID: 39868264 PMCID: PMC11761017 DOI: 10.1101/2025.01.17.632799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Immune escape is a critical hallmark of cancer progression and underlies resistance to multiple immunotherapies. However, it remains unclear when the genetic events associated with immune escape occur during cancer development. Here, we integrate functional genomics studies of immunomodulatory genes with a tumor evolution reconstruction approach to infer the evolution of immune escape across 38 cancer types from the Pan-Cancer Analysis of Whole Genomes dataset. Different cancers favor mutations in different immunomodulatory pathways. For example, the antigen presentation machinery is highly mutated in colorectal adenocarcinoma, lung squamous cell carcinoma, and chromophobe renal cell carcinoma, and the protein methylation pathway is highly mutated in bladder transitional cell carcinoma and lung adenocarcinoma. We also observe different timing patterns in multiple immunomodulatory pathways. For instance, mutations impacting genes involved in cellular amino acid metabolism were more likely to happen late in pancreatic adenocarcinoma. Mutations in the glucocorticoid receptor regulatory network pathway tended to occur early, while mutations in the TNF pathways were more likely to occur late in B-cell non-Hodgkin lymphoma. Mutations in the NOD1/2 signaling pathway and DNA binding transcription factor activity tended to happen late in breast adenocarcinoma and ovarian adenocarcinoma. Together, these results delineate the evolutionary trajectories of immune escape in different cancer types and highlight opportunities for improved immunotherapy of cancer.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Toby Baker
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Francis Crick Institute, London, United Kingdom
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Zhihui Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Huw A. Ogilvie
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Van Loo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Francis Crick Institute, London, United Kingdom
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shengqing (Stan) Gu
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Ge X, Zhang K, Zhu J, Chen Y, Wang Z, Wang P, Xu P, Yao J. Targeting protein modification: a new direction for immunotherapy of pancreatic cancer. Int J Biol Sci 2025; 21:63-74. [PMID: 39744438 PMCID: PMC11667816 DOI: 10.7150/ijbs.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational modifications (PTMs) alter protein conformation by covalently attaching functional groups to substrates, influencing their biological activity, mechanisms of action, and functional performance. PTMs and their interactions are essential to many critical signal transduction processes, including tumor transformation, cancer progression, and metastasis in pancreatic cancer. Additionally, advancements in tumor immunotherapy indicate that PTMs are essential in immune cell activation, transport, and energy metabolism. This study aimed to investigate the effects of different PTMs on immunotherapy for pancreatic cancer, providing new perspectives and suggesting directions for future research.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Ke Zhang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Jiangsu 225000, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Zhengwang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| |
Collapse
|
4
|
Chen J, Jiang Y, Hou M, Liu C, Liu E, Zong Y, Wang X, Meng Z, Gu M, Su Y, Wang H, Fu J. Nuclear translocation of plasma membrane protein ADCY7 potentiates T cell-mediated antitumour immunity in HCC. Gut 2024; 74:128-140. [PMID: 39349007 DOI: 10.1136/gutjnl-2024-332902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/31/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The potency of T cell-mediated responses is a determinant of immunotherapy effectiveness in treating malignancies; however, the clinical efficacy of T-cell therapies has been limited in hepatocellular carcinoma (HCC) owing to the extensive immunosuppressive microenvironment. OBJECTIVE Here, we aimed to investigate the key genes contributing to immune escape in HCC and raise a new therapeutic strategy for remoulding the HCC microenvironment. DESIGN The genome-wide in vivo clustered regularly interspaced short palindromic repeats (CRISPR) screen library was conducted to identify the key genes associated with immune tolerance. Single-cell RNA-seq (scRNA-seq), flow cytometry, HCC mouse models, chromatin immunoprecipitation and coimmunoprecipitation were used to explore the function and mechanism of adenylate cyclase 7 (ADCY7) in HCC immune surveillance. RESULTS Here, a genome-wide in vivo CRISPR screen identified a novel immune modulator-ADCY7. The transmembrane protein ADCY7 undergoes subcellular translocation via caveolae-mediated endocytosis and then translocates to the nucleus with the help of leucine-rich repeat-containing protein 59 (LRRC59) and karyopherin subunit beta 1 (KPNB1). In the nucleus, it functions as a transcription cofactor of CCAAT/enhancer binding protein alpha (CEBPA) to induce CCL5 transcription, thereby increasing CD8+ T cell infiltration to restrain HCC progression. Furthermore, ADCY7 can be secreted as exosomes and enter neighbouring tumour cells to promote CCL5 induction. Exosomes with high ADCY7 levels promote intratumoural infiltration of CD8+ T cells and suppress HCC tumour growth. CONCLUSION We delineate the unconventional function and subcellular location of ADCY7, highlighting its pivotal role in T cell-mediated immunity in HCC and its potential as a promising treatment target.
Collapse
Affiliation(s)
- Jianan Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Youhai Jiang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology, Anhui, China
| | - Minghui Hou
- Research Center for Organoids, Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunliang Liu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Erdong Liu
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Yali Zong
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Xiang Wang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhengyuan Meng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingye Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Su
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Zhang Y, Xu Q, Gao Z, Zhang H, Xie X, Li M. High-throughput screening for optimizing adoptive T cell therapies. Exp Hematol Oncol 2024; 13:113. [PMID: 39538305 PMCID: PMC11562648 DOI: 10.1186/s40164-024-00580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Adoptive T cell therapy is a pivotal strategy in cancer immunotherapy, demonstrating potent clinical efficacy. However, its limited durability often results in primary resistance. High-throughput screening technologies, which include both genetic and non-genetic approaches, facilitate the optimization of adoptive T cell therapies by enabling the selection of biologically significant targets or substances from extensive libraries. In this review, we examine advancements in high-throughput screening technologies and their applications in adoptive T cell therapies. We highlight the use of genetic screening for T cells, tumor cells, and other promising combination strategies, and elucidate the role of non-genetic screening in identifying small molecules and targeted delivery systems relevant to adoptive T cell therapies, providing guidance for future research and clinical applications.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qinglong Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Zhifei Gao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
6
|
Buchholz MB, Scheerman DI, Levato R, Wehrens EJ, Rios AC. Human breast tissue engineering in health and disease. EMBO Mol Med 2024; 16:2299-2321. [PMID: 39179741 PMCID: PMC11473723 DOI: 10.1038/s44321-024-00112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/26/2024] Open
Abstract
The human mammary gland represents a highly organized and dynamic tissue, uniquely characterized by postnatal developmental cycles. During pregnancy and lactation, it undergoes extensive hormone-stimulated architectural remodeling, culminating in the formation of specialized structures for milk production to nourish offspring. Moreover, it carries significant health implications, due to the high prevalence of breast cancer. Therefore, gaining insight into the unique biology of the mammary gland can have implications for managing breast cancer and promoting the well-being of both women and infants. Tissue engineering techniques hold promise to narrow the translational gap between existing breast models and clinical outcomes. Here, we provide an overview of the current landscape of breast tissue engineering, outline key requirements, and the challenges to overcome for achieving more predictive human breast models. We propose methods to validate breast function and highlight preclinical applications for improved understanding and targeting of breast cancer. Beyond mammary gland physiology, representative human breast models can offer new insight into stem cell biology and developmental processes that could extend to other organs and clinical contexts.
Collapse
Affiliation(s)
- Maj-Britt Buchholz
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Demi I Scheerman
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Chen D, Xu L, Xuan M, Chu Q, Xue C. Unveiling the functional roles of patient-derived tumour organoids in assessing the tumour microenvironment and immunotherapy. Clin Transl Med 2024; 14:e1802. [PMID: 39245957 PMCID: PMC11381553 DOI: 10.1002/ctm2.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Recent studies have established the pivotal roles of patient-derived tumour organoids (PDTOs), innovative three-dimensional (3D) culture systems, in various biological and medical applications. PDTOs, as promising tools, have been established and extensively used for drug screening, prediction of immune response and assessment of immunotherapeutic effectiveness in various cancer types, including glioma, ovarian cancer and so on. The overarching goal is to facilitate the translation of new therapeutic modalities to guide personalised immunotherapy. Notably, there has been a recent surge of interest in the co-culture of PDTOs with immune cells to investigate the dynamic interactions between tumour cells and immune microenvironment. A comprehensive and in-depth investigation is necessary to enhance our understanding of PDTOs as promising testing platforms for cancer immunotherapy. This review mainly focuses on the latest updates on the applications and challenges of PDTO-based methods in anti-cancer immune responses. We strive to provide a comprehensive understanding of the potential and prospects of PDTO-based technologies as next-generation strategies for advancing immunotherapy approaches.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingfei Chu
- Department of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Djajawi TM, Wichmann J, Vervoort SJ, Kearney CJ. Tumor immune evasion: insights from CRISPR screens and future directions. FEBS J 2024; 291:1386-1399. [PMID: 37971319 DOI: 10.1111/febs.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Despite the clinical success of cancer immunotherapies including immune checkpoint blockade and adoptive cellular therapies across a variety of cancer types, many patients do not respond or ultimately relapse; however, the molecular underpinnings of this are not fully understood. Thus, a system-level understating of the routes to tumor immune evasion is required to inform the design of the next generation of immunotherapy approaches. CRISPR screening approaches have proved extremely powerful in identifying genes that promote tumor immune evasion or sensitize tumor cells to destruction by the immune system. These large-scale efforts have brought to light decades worth of fundamental immunology and have uncovered the key immune-evasion pathways subverted in cancers in an acquired manner in patients receiving immune-modulatory therapies. The comprehensive discovery of the main pathways involved in immune evasion has spurred the development and application of novel immune therapies to target this process. Although successful, conventional CRISPR screening approaches are hampered by a number of limitations, which obfuscate a complete understanding of the precise molecular regulation of immune evasion in cancer. Here, we provide a perspective on screening approaches to interrogate tumor-lymphocyte interactions and their limitations, and discuss further development of technologies to improve such approaches and discovery capability.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | - Johannes Wichmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Stephin J Vervoort
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Conor J Kearney
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| |
Collapse
|
9
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Jin Y, Peng Y, Xu J, Yuan Y, Yang N, Zhang Z, Xu L, Li L, Xiong Y, Sun D, Pan Y, Wu R, Fu J. LUBAC promotes angiogenesis and lung tumorigenesis by ubiquitinating and antagonizing autophagic degradation of HIF1α. Oncogenesis 2024; 13:6. [PMID: 38272870 PMCID: PMC10810860 DOI: 10.1038/s41389-024-00508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Hypoxia-inducible factor 1 (HIF1) is critically important for driving angiogenesis and tumorigenesis. Linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin ligase capable of catalyzing protein linear ubiquitination to date, is implicated in cell signaling and associated with cancers. However, the role and mechanism of LUBAC in regulating the expression and function of HIF1α, the labile subunit of HIF1, remain to be elucidated. Herein we showed that LUBAC increases HIF1α protein expression in cultured cells and tissues of human lung cancer and enhances HIF1α DNA-binding and transcriptional activities, which are dependent upon LUBAC enzymatic activity. Mechanistically, LUBAC increases HIF1α stability through antagonizing HIF1α decay by the chaperone-mediated autophagy (CMA)-lysosome pathway, thereby potentiating HIF1α activity. We further demonstrated that HIF1α selectively interacts with HOIP (the catalytic subunit of LUBAC) primarily in the cytoplasm. LUBAC catalyzes linear ubiquitination of HIF1α at lysine 362. Linear ubiquitination shields HIF1α from interacting with heat-shock cognate protein of 70 kDa and lysosome-associated membrane protein type 2 A, two components of CMA. Consequently, linear ubiquitination confers protection against CMA-mediated destruction of HIF1α, increasing HIF1α stability and activity. We found that prolyl hydroxylation is not a perquisite for LUBAC's effects on HIF1α. Functionally, LUBAC facilitates proliferation, clonogenic formation, invasion and migration of lung cancer cells. LUBAC also boosts angiogenesis and exacerbates lung cancer growth in mice, which are greatly compromised by inhibition of HIF1α. This work provides novel mechanistic insights into the role of LUBAC in regulating HIF1α homeostasis, tumor angiogenesis and tumorigenesis of lung cancer, making LUBAC an attractive therapeutic target for cancers.
Collapse
Affiliation(s)
- Ying Jin
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China.
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Yazhi Peng
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Jie Xu
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Ye Yuan
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Yang
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Zemei Zhang
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China
- Graduate School, Jinzhou Medical University, Liaoning, China
| | - Lei Xu
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Lin Li
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Yulian Xiong
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Dejiao Sun
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Yamu Pan
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Ruiqing Wu
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Jian Fu
- The Laboratory of Inflammation and Vascular Biology, Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei, China.
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
11
|
Ibáñez-Molero S, Pruijs JTM, Atmopawiro A, Wang F, Terry AM, Altelaar M, Peeper DS, Stecker KE. Phosphoprotein dynamics of interacting T cells and tumor cells by HySic. Cell Rep 2024; 43:113598. [PMID: 38150364 DOI: 10.1016/j.celrep.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/16/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Functional interactions between cytotoxic T cells and tumor cells are central to anti-cancer immunity. However, our understanding of the proteins involved is limited. Here, we present HySic (hybrid quantification of stable isotope labeling by amino acids in cell culture [SILAC]-labeled interacting cells) as a method to quantify protein and phosphorylation dynamics between and within physically interacting cells. Using co-cultured T cells and tumor cells, we directly measure the proteome and phosphoproteome of engaged cells without the need for physical separation. We identify proteins whose abundance or activation status changes upon T cell:tumor cell interaction and validate our method with established signal transduction pathways including interferon γ (IFNγ) and tumor necrosis factor (TNF). Furthermore, we identify the RHO/RAC/PAK1 signaling pathway to be activated upon cell engagement and show that pharmacologic inhibition of PAK1 sensitizes tumor cells to T cell killing. Thus, HySic is a simple method to study rapid protein signaling dynamics in physically interacting cells that is easily extended to other biological systems.
Collapse
Affiliation(s)
- Sofía Ibáñez-Molero
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Joannes T M Pruijs
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Alisha Atmopawiro
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Fujia Wang
- Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Alexandra M Terry
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| | - Kelly E Stecker
- Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
12
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
13
|
Li YR, Lyu Z, Tian Y, Fang Y, Zhu Y, Chen Y, Yang L. Advancements in CRISPR screens for the development of cancer immunotherapy strategies. Mol Ther Oncolytics 2023; 31:100733. [PMID: 37876793 PMCID: PMC10591018 DOI: 10.1016/j.omto.2023.100733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
CRISPR screen technology enables systematic and scalable interrogation of gene function by using the CRISPR-Cas9 system to perturb gene expression. In the field of cancer immunotherapy, this technology has empowered the discovery of genes, biomarkers, and pathways that regulate tumor development and progression, immune reactivity, and the effectiveness of immunotherapeutic interventions. By conducting large-scale genetic screens, researchers have successfully identified novel targets to impede tumor growth, enhance anti-tumor immune responses, and surmount immunosuppression within the tumor microenvironment (TME). Here, we present an overview of CRISPR screens conducted in tumor cells for the purpose of identifying novel therapeutic targets. We also explore the application of CRISPR screens in immune cells to propel the advancement of cell-based therapies, encompassing T cells, natural killer cells, dendritic cells, and macrophages. Furthermore, we outline the crucial components necessary for the successful implementation of immune-specific CRISPR screens and explore potential directions for future research.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Li J, Liu S, Li S. Mechanisms underlying linear ubiquitination and implications in tumorigenesis and drug discovery. Cell Commun Signal 2023; 21:340. [PMID: 38017534 PMCID: PMC10685518 DOI: 10.1186/s12964-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 11/30/2023] Open
Abstract
Linear ubiquitination is a distinct type of ubiquitination that involves attaching a head-to-tail polyubiquitin chain to a substrate protein. Early studies found that linear ubiquitin chains are essential for the TNFα- and IL-1-mediated NF-κB signaling pathways. However, recent studies have discovered at least sixteen linear ubiquitination substrates, which exhibit a broader activity than expected and mediate many other signaling pathways beyond NF-κB signaling. Dysregulation of linear ubiquitination in these pathways has been linked to many types of cancers, such as lymphoma, liver cancer, and breast cancer. Since the discovery of linear ubiquitin, extensive effort has been made to delineate the molecular mechanisms of how dysregulation of linear ubiquitination causes tumorigenesis and cancer development. In this review, we highlight newly discovered linear ubiquitination-mediated signaling pathways, recent advances in the role of linear ubiquitin in different types of cancers, and the development of linear ubiquitin inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Jack Li
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Sijin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
15
|
Siegmund D, Zaitseva O, Wajant H. Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling. Front Cell Dev Biol 2023; 11:1267837. [PMID: 38020877 PMCID: PMC10657838 DOI: 10.3389/fcell.2023.1267837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Wong CW, Huang YY, Hurlstone A. The role of IFN-γ-signalling in response to immune checkpoint blockade therapy. Essays Biochem 2023; 67:991-1002. [PMID: 37503572 PMCID: PMC10539948 DOI: 10.1042/ebc20230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Treatment with immune checkpoint inhibitors, widely known as immune checkpoint blockade therapy (ICBT), is now the fourth pillar in cancer treatment, offering the chance of durable remission for patients with advanced disease. However, ICBT fails to induce objective responses in most cancer patients with still others progressing after an initial response. It is necessary, therefore, to elucidate the primary and acquired resistance mechanisms to ICBT to improve its efficacy. Here, we highlight the paradoxical role of the cytokine interferon-γ (IFN-γ) in ICBT response: on the one hand induction of IFN-γ signalling in the tumour microenvironment correlates with good ICBT response as it drives the cellular immune responses required for tumour destruction; nonetheless, IFN-γ signalling is implicated in ICBT acquired resistance. We address the negative feedback and immunoregulatory effects of IFN-γ signalling that promote immune evasion and resistance to ICBT and discuss how these can be targeted pharmacologically to restore sensitivity or circumvent resistance.
Collapse
Affiliation(s)
- Chun Wai Wong
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Yang Yu Huang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Adam Hurlstone
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
17
|
Wu L, Jin Y, Zhao X, Tang K, Zhao Y, Tong L, Yu X, Xiong K, Luo C, Zhu J, Wang F, Zeng Z, Pan D. Tumor aerobic glycolysis confers immune evasion through modulating sensitivity to T cell-mediated bystander killing via TNF-α. Cell Metab 2023; 35:1580-1596.e9. [PMID: 37506695 DOI: 10.1016/j.cmet.2023.07.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/09/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
Metabolic reprogramming toward glycolysis is a hallmark of cancer malignancy. The molecular mechanisms by which the tumor glycolysis pathway promotes immune evasion remain to be elucidated. Here, by performing genome-wide CRISPR screens in murine tumor cells co-cultured with cytotoxic T cells (CTLs), we identified that deficiency of two important glycolysis enzymes, Glut1 (glucose transporter 1) and Gpi1 (glucose-6-phosphate isomerase 1), resulted in enhanced killing of tumor cells by CTLs. Mechanistically, Glut1 inactivation causes metabolic rewiring toward oxidative phosphorylation, which generates an excessive amount of reactive oxygen species (ROS). Accumulated ROS potentiate tumor cell death mediated by tumor necrosis factor alpha (TNF-α) in a caspase-8- and Fadd-dependent manner. Genetic and pharmacological inactivation of Glut1 sensitizes tumors to anti-tumor immunity and synergizes with anti-PD-1 therapy through the TNF-α pathway. The mechanistic interplay between tumor-intrinsic glycolysis and TNF-α-induced killing provides new therapeutic strategies to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Lijian Wu
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Xi Zhao
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiyang Tang
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yaoning Zhao
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linjie Tong
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuerong Yu
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ke Xiong
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ce Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Jiajun Zhu
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science (CLS), Beijing 100084, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Tsinghua-Peking Center for Life Science (CLS), Beijing 100084, China.
| | - Deng Pan
- Department of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science (CLS), Beijing 100084, China.
| |
Collapse
|
18
|
Gu Y, Zhang Z, Camps MG, Ossendorp F, Wijdeven RH, ten Dijke P. Genome-wide CRISPR screens define determinants of epithelial-mesenchymal transition mediated immune evasion by pancreatic cancer cells. SCIENCE ADVANCES 2023; 9:eadf9915. [PMID: 37450593 PMCID: PMC10348683 DOI: 10.1126/sciadv.adf9915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
The genetic circuits that allow cancer cells to evade immune killing via epithelial mesenchymal plasticity remain poorly understood. Here, we showed that mesenchymal-like (Mes) KPC3 pancreatic cancer cells were more resistant to cytotoxic T lymphocyte (CTL)-mediated killing than the parental epithelial-like (Epi) cells and used parallel genome-wide CRISPR screens to assess the molecular underpinnings of this difference. Core CTL-evasion genes (such as IFN-γ pathway components) were clearly evident in both types. Moreover, we identified and validated multiple Mes-specific regulators of cytotoxicity, such as Egfr and Mfge8. Both genes were significantly higher expressed in Mes cancer cells, and their depletion sensitized Mes cancer cells to CTL-mediated killing. Notably, Mes cancer cells secreted more Mfge8 to inhibit proliferation of CD8+ T cells and production of IFN-γ and TNFα. Clinically, increased Egfr and Mfge8 expression was correlated with a worse prognosis. Thus, Mes cancer cells use Egfr-mediated intrinsic and Mfge8-mediated extrinsic mechanisms to facilitate immune escape from CD8+ T cells.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Zhengkui Zhang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Marcel G. M. Camps
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ruud H. Wijdeven
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| |
Collapse
|
19
|
Vredevoogd DW, Peeper DS. Heterogeneity in functional genetic screens: friend or foe? Front Immunol 2023; 14:1162706. [PMID: 37398651 PMCID: PMC10312307 DOI: 10.3389/fimmu.2023.1162706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Functional genetic screens to uncover tumor-intrinsic nodes of immune resistance have uncovered numerous mechanisms by which tumors evade our immune system. However, due to technical limitations, tumor heterogeneity is imperfectly captured with many of these analyses. Here, we provide an overview of the nature and sources of heterogeneity that are relevant for tumor-immune interactions. We argue that this heterogeneity may actually contribute to the discovery of novel mechanisms of immune evasion, given a sufficiently large and heterogeneous set of input data. Taking advantage of tumor cell heterogeneity, we provide proof-of-concept analyses of mechanisms of TNF resistance. Thus, consideration of tumor heterogeneity is imperative to increase our understanding of immune resistance mechanisms.
Collapse
|
20
|
Ito Y, Pan D, Zhang W, Zhang X, Juan TY, Pyrdol JW, Kyrysyuk O, Doench JG, Liu XS, Wucherpfennig KW. Addressing Tumor Heterogeneity by Sensitizing Resistant Cancer Cells to T cell-Secreted Cytokines. Cancer Discov 2023; 13:1186-1209. [PMID: 36811466 PMCID: PMC10164097 DOI: 10.1158/2159-8290.cd-22-1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Tumor heterogeneity is a major barrier to cancer therapy, including immunotherapy. Activated T cells can efficiently kill tumor cells following recognition of MHC class I (MHC-I)-bound peptides, but this selection pressure favors outgrowth of MHC-I-deficient tumor cells. We performed a genome-scale screen to discover alternative pathways for T cell-mediated killing of MHC-I-deficient tumor cells. Autophagy and TNF signaling emerged as top pathways, and inactivation of Rnf31 (TNF signaling) and Atg5 (autophagy) sensitized MHC-I-deficient tumor cells to apoptosis by T cell-derived cytokines. Mechanistic studies demonstrated that inhibition of autophagy amplified proapoptotic effects of cytokines in tumor cells. Antigens from apoptotic MHC-I-deficient tumor cells were efficiently cross-presented by dendritic cells, resulting in heightened tumor infiltration by IFNγ-and TNFα-producing T cells. Tumors with a substantial population of MHC-I-deficient cancer cells could be controlled by T cells when both pathways were targeted using genetic or pharmacologic approaches. SIGNIFICANCE Tumor heterogeneity is a major barrier to immunotherapy. We show that MHC-I-deficient tumor cells are forced into apoptosis by T cell-derived cytokines when TNF signaling and autophagy pathways are targeted. This approach enables T cell-mediated elimination of tumors with a substantial population of resistant, MHC-I-deficient tumor cells. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Yoshinaga Ito
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Laboratory of Immunopathogenesis, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Deng Pan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Wubing Zhang
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Xixi Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Tiffany Y. Juan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Jason W. Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - X. Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA 02115
| |
Collapse
|
21
|
Xi G, Cheng R, Liang L, Che N, Wang Y, Zhao N, Liang X, Shao B, Zhao X, Zhang D. High expression of RNF31 is associated with tumor immune cell infiltration and leads to poor prognosis in liver hepatocellular carcinoma. Sci Rep 2023; 13:6957. [PMID: 37117215 PMCID: PMC10147728 DOI: 10.1038/s41598-023-32692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/31/2023] [Indexed: 04/30/2023] Open
Abstract
Ring finger protein 31 (RNF31) has been found to play an important role in tumor immunity. However, the role of RNF31 in liver hepatocellular carcinoma (LIHC) has not been reported. Therefore, we investigated the expression and prognostic value of RNF31 in patients with LIHC and explored its relationship with immune cell infiltration. The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA-LIHC) dataset was downloaded to analyse the impact of RNF31 on the prognosis and immune cell infiltration of LIHC. The Tumor Immune Estimation Resource (TIMER) database was used to analyse the correlation between RNF31 and tumor immune cell infiltration in LIHC. Additionally, we analysed the relationship between RNF31 and tumor necrosis factor (TNF) as well as the interferon-gamma (IFN-γ) signaling pathway. The expression of RNF31 in LIHC was significantly higher than that in normal tissues. Increased RNF31 expression was associated with decreased overall survival (OS) and relapse-free survival (RFS). An increase in RNF31 expression was closely related to the infiltration levels of immune cells (e.g., natural killer (NK) cells, CD8 + T cells, and B cells). RNF31 was also positively correlated with the expression of immune checkpoint genes in LIHC. Moreover, RNF31 may participate in TNF and IFN-γ signaling pathways. In conclusion, RNF31 is a potentially valuable prognostic biomarker in LIHC. RNF31 is also associated with immune cell infiltration in LIHC. RNF31 may be a potential target for immunotherapy of LIHC.
Collapse
Affiliation(s)
- Guifu Xi
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Runfen Cheng
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Leiting Liang
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Yalei Wang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Bing Shao
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
22
|
Lin C, Traets JJH, Vredevoogd DW, Visser NL, Peeper DS. TSC2 regulates tumor susceptibility to TRAIL-mediated T-cell killing by orchestrating mTOR signaling. EMBO J 2023; 42:e111614. [PMID: 36715448 PMCID: PMC9975943 DOI: 10.15252/embj.2022111614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Resistance to cancer immunotherapy continues to impair common clinical benefit. Here, we use whole-genome CRISPR-Cas9 knockout data to uncover an important role for Tuberous Sclerosis Complex 2 (TSC2) in determining tumor susceptibility to cytotoxic T lymphocyte (CTL) killing in human melanoma cells. TSC2-depleted tumor cells had disrupted mTOR regulation following CTL attack, which was associated with enhanced cell death. Wild-type tumor cells adapted to CTL attack by shifting their mTOR signaling balance toward increased mTORC2 activity, circumventing apoptosis, and necroptosis. TSC2 ablation strongly augmented tumor cell sensitivity to CTL attack in vitro and in vivo, suggesting one of its functions is to critically protect tumor cells. Mechanistically, TSC2 inactivation caused elevation of TRAIL receptor expression, cooperating with mTORC1-S6 signaling to induce tumor cell death. Clinically, we found a negative correlation between TSC2 expression and TRAIL signaling in TCGA patient cohorts. Moreover, a lower TSC2 immune response signature was observed in melanomas from patients responding to immune checkpoint blockade. Our study uncovers a pivotal role for TSC2 in the cancer immune response by governing crosstalk between TSC2-mTOR and TRAIL signaling, aiding future therapeutic exploration of this pathway in immuno-oncology.
Collapse
Affiliation(s)
- Chun‐Pu Lin
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
23
|
Liu X, Sun B, Yao Y, Lai L, Wang X, Xiong J, Zhang X, Jiang J. Identification of copper metabolism and cuproptosis-related subtypes for predicting prognosis tumor microenvironment and drug candidates in hepatocellular carcinoma. Front Immunol 2022; 13:996308. [PMID: 36275743 PMCID: PMC9582144 DOI: 10.3389/fimmu.2022.996308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Copper (Cu) is an essential element of organisms, which can affect the survival of cells. However, the role of copper metabolism and cuproptosis on hepatic carcinoma is still unclear. In this study, the TCGA database was used as the test set, and the ICGC database and self-built database were used as the validation set. We screened out a class of copper metabolism and cuproptosis-related genes (CMCRGs) that could influence hepatic carcinoma prognosis by survival analysis and differential comparison. Based on CMCRGs, patients were divided into two subtypes by cluster analysis. The C2 subtype was defined as the high copper related subtype, while the C1 subtype was defied as the low copper related subtype. At the clinical level, compared with the C1 subtype, the C2 subtype had higher grade pathological features, risk scores, and worse survival. In addition, the immune response and metabolic status also differed between C1 and C2. Specifically, C2 subtype had a higher proportion of immune cell composition and highly expressed immune checkpoint genes. C2 subtype had a higher TIDE score with a higher proportion of tumor immune dysfunction and exclusion. At the molecular level, the C2 subtype had a higher frequency of driver gene mutations (TP53 and OBSCN). Mechanistically, the single nucleotide polymorphisms of C2 subtype had a very strong transcriptional strand bias for C>A mutations. Copy number variations in the C2 subtype were characterized by LOXL3 CNV gain, which also showed high association with PDCD1/CTLA4. Finally, drug sensitivity responsiveness was assessed in both subtypes. C2 subtype had lower IC50 values for targeted and chemotherapeutic agents (sorafenib, imatinib and methotrexate, etc.). Thus, CMCRGs related subtypes showed poor response to immunotherapy and better responsiveness to targeted agents, and the results might provide a reference for precision treatment of hepatic carcinoma.
Collapse
Affiliation(s)
- Xianglong Liu
- Department of Radiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Bo Sun
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiyang Yao
- Department of Gastroenterology, Qidong People’s Hospital, Nantong, China
| | - Linying Lai
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xueyuan Wang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Xiong
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Jie Jiang, ; Xiaoan Zhang, ; Jie Xiong,
| | - Xiaoan Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Clinical Medicine, Henan University of Science and Technology, Luoyang, China,*Correspondence: Jie Jiang, ; Xiaoan Zhang, ; Jie Xiong,
| | - Jie Jiang
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China,*Correspondence: Jie Jiang, ; Xiaoan Zhang, ; Jie Xiong,
| |
Collapse
|