1
|
Contreras L, Rodríguez-Gil A, Muntané J, de la Cruz J. Sorafenib-associated translation reprogramming in hepatocellular carcinoma cells. RNA Biol 2025; 22:1-11. [PMID: 40116042 PMCID: PMC11934173 DOI: 10.1080/15476286.2025.2483484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Sorafenib (Sfb) is a multikinase inhibitor regularly used for the management of patients with advanced hepatocellular carcinoma (HCC) that has been shown to increase very modestly life expectancy. We have shown that Sfb inhibits protein synthesis at the level of initiation in cancer cells. However, the global snapshot of mRNA translation following Sorafenib-treatment has not been explored so far. In this study, we performed a genome-wide polysome profiling analysis in Sfb-treated HCC cells and demonstrated that, despite global translation repression, a set of different genes remain efficiently translated or are even translationally induced. We reveal that, in response to Sfb inhibition, translation is tuned, which strongly correlates with the presence of established mRNA cis-acting elements and the corresponding protein factors that recognize them, including DAP5 and ARE-binding proteins. At the level of biological processes, Sfb leads to the translational down-regulation of key cellular activities, such as those related to the mitochondrial metabolism and the collagen synthesis, and the translational up-regulation of pathways associated with the adaptation and survival of cells in response to the Sfb-induced stress. Our findings indicate that Sfb induces an adaptive reprogramming of translation and provides valuable information that can facilitate the analysis of other drugs for the development of novel combined treatment strategies based on Sfb therapy.
Collapse
Affiliation(s)
- Laura Contreras
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Jordi Muntané
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Nasr G, Ali DME, Fawzy MA, Ali FEM, Fathy M. Combined quercetin with phosphodiesterase inhibitors; sildenafil and pentoxifylline alleviated CCl 4-induced chronic hepatic fibrosis: Role of redox-sensitive pathways. Food Chem Toxicol 2025; 201:115442. [PMID: 40220882 DOI: 10.1016/j.fct.2025.115442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Liver fibrosis is a common pathological condition that is caused by complicated molecular and cellular processes. This study evaluated the therapeutic potential of combined quercetin (QU) with either sildenafil (Sild) or pentoxifylline (PTX) in chronic carbon tetrachloride (CCl4)-induced liver fibrosis in Wistar albino rats. Fibrosis was induced by CCl4 injections (1.5 mg/kg, i.p.) three times weekly for 10 weeks. After six weeks, rats received oral QU (50 mg/kg/day), Sild (50 mg/kg/day), or PTX (10 mg/kg twice/day) individually or in combination for the remaining four weeks. Results showed significant alterations in liver biochemical markers, histopathology, oxidative stress, inflammation, apoptosis, and hypoxic responses due to CCl4 exposure. These changes included reduced expression of Nrf-2, HO-1, and cytoglobin, alongside increased levels of NF-κB, cleaved caspase-3, TNF-α, IL-1β, and HIF-1. Notably, QU, Sild, and PTX, individually or in combination, improved these parameters. The combination of QU with Sild or PTX proved more effective than single treatments, modulating anti-oxidant (Nrf2/HO-1/cytoglobin), anti-inflammatory (NF-κB/TNF-α), and hypoxic signaling pathways (HIF-1α). In conclusion, QU combined with phosphodiesterase inhibitors shows promise as a therapy for liver fibrosis, offering enhanced protection through anti-oxidants and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Gehad Nasr
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | | | - Michael A Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba, 77110, Jordan.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Biochemistry Department, Faculty of Pharmacy, Minia National University, New Minia, Egypt
| |
Collapse
|
3
|
Dong S, Chen X, Li X, Wang Y, Huang Q, Li Y, Jin J, Zhu X, Zhong Y, Cai Q, Xue C, Guo F, Huang L, Feng M, Liu B, Hu S. A conceptual exploration on the synergistic anti-tumor effects of high-order combination of OHSV2-DSTE FAP5/CD3, CAR-T cells, and immunotoxins in hepatocellular carcinoma. Front Immunol 2025; 16:1509087. [PMID: 40406146 PMCID: PMC12095149 DOI: 10.3389/fimmu.2025.1509087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Background Although the treatment landscape for advanced hepatocellular carcinoma (HCC) has seen significant advancements in the past decade with the introduction of immune checkpoint inhibitors and antiangiogenic drugs, progress has fallen short of expectations. Recently, a novel engineered oncolytic virus (OHSV2) that secretes dual-specific T-cell engagers (DSTEs) targeting the fibroblast activation protein (FAP) was developed and combined with GPC3-targeting CAR-T cells and immunotoxins to exert a synergistic antitumor effect. Methods OHSV2-DSTEFAP5/CD3 was initially generated by transducing the DSTEs engaging FAP5 on fibroblasts into the backbone of our oncolytic virus OHSV2. An innovative high-order combination was devised in a xenograft mouse model to conceptually explore whether enhanced anti-tumor effects could be achieved. Additionally, the underlying mechanisms of synergistic effects and safety profiles were preliminarily investigated. Results OHSV2-DSTEFAP5/CD3 effectively targeted and eliminated fibroblasts in vitro while maintaining cytotoxicity and inducing immune activation compared to parental OHSV2. In vivo, dose-adjusted combination therapy resulted in a remarkable antitumor effect compared to control treatments, leading to tumor regression in 40% of mice without significant toxicity to major organs. Mechanistically, rather than directly depleting fibroblasts, OHSV2-DSTEFAP5/CD3 played an essential role in priming T-cell proliferation, infiltration, and activation, and inhibiting the supportive interaction between cancer cells and fibroblasts. Conclusions This high-order combination represents a novel multiple-wave immunotherapeutic approach for HCC. Despite being a conceptual exploration, this strategy has demonstrated promising therapeutic efficacy and acceptable safety profiles.
Collapse
Affiliation(s)
- Shuang Dong
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
| | - Xiaoyu Li
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
| | - Qing Huang
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanxiang Li
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Jin
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Xianmin Zhu
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhong
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Cai
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Xue
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Guo
- Department of Pathology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Le Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binlei Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Sheng Hu
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Weiskirchen R, Weiskirchen S, Grassi C, Scaggiante B, Grassi M, Tierno D, Biasin A, Truong NH, Minh TD, Cemazar M, Pastorin G, Tonon F, Grassi G. Recent advances in optimizing siRNA delivery to hepatocellular carcinoma cells. Expert Opin Drug Deliv 2025; 22:729-745. [PMID: 40126051 DOI: 10.1080/17425247.2025.2484287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Hepatocellularcarcinoma (HCC), the primary form of liver cancer, is the second leading cause of cancer-related deaths worldwide. Current therapies have limited effectiveness, particularly in advanced stages of the disease, highlighting the need for innovative treatment options. Small-interfering RNA(siRNA) molecules show great promise as a therapeutic solution since they can inhibit the expression of genes promoting HCC growth. Their cost-effective synthesis has further encouraged their potential use as novel drugs. However, siRNAs are vulnerable to degradation in biological environments, necessitating protective delivery systems. Additionally, targeted delivery to HCC is critical for optimal efficacy and minimal undesired side effects. AREACOVERED This review addresses the challenges associated with the delivery of siRNA toHCC, discussing and focusing on delivery systems based on lipid and polymeric nanoparticles in publications from the past five years. EXPERT OPINION Future nano particles will need to effectively cross the vessel wall, migrate through the extracellular matrix and finally cross the HCC cell membrane. This may be achieved by optimizing nanoparticle size, the equipment of nanoparticles withHCC targeting moieties and loading nanoparticles with siRNAs againstHCC-specific oncogenes.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | | | | | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Trieste, Italy
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, Trieste, Italy
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Nhung Hai Truong
- Laboratory of Regenerative Biomedicine, University of Science-VNUHCM, Ho Chi MInh City, Vietnam
- Faculty of Biology and Biotechnology, Viet Nam National University, Ho Chi Minh City, Vietnam
| | - Thanh Dang Minh
- Laboratory of Regenerative Biomedicine, University of Science-VNUHCM, Ho Chi MInh City, Vietnam
- Faculty of Biology and Biotechnology, Viet Nam National University, Ho Chi Minh City, Vietnam
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Giorgia Pastorin
- Pharmacy Department, National University of Singapore, Singapore
| | - Federica Tonon
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| |
Collapse
|
5
|
Ibrahim AMA, Abd El-Fattah AI, Shaker OG, Youssef AA. Overexpression of mRNA Leukocyte-Associated Immunoglobulin-Like Receptor 2 (LAIR-2) Levels Correlates With Immune Cell Subtype Infiltration, T Cell Exhaustion, and Its Prognostic Potential in Hepatocellular Carcinoma. J Med Virol 2025; 97:e70417. [PMID: 40400328 DOI: 10.1002/jmv.70417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/18/2025] [Accepted: 05/04/2025] [Indexed: 05/23/2025]
Abstract
The immunological microenvironment in hepatocellular carcinoma (HCC) is characterized by impaired immune responses. Significantly, LAIR-2 levels correlate with immune cell subtype infiltration, T cell exhaustion, and its prognostic potential in HCC. This study aims to assess the diagnostic and prognostic significance of expression levels of Pax8-AS1 and LAIR-2 in patients with HCV and their association with susceptibility to HCC. Pax8-AS1 and LAIR-2 expression levels in the serum of patients were analyzed using reverse transcription-quantitative PCR (RT-PCR), while the efficacy of biomarkers in prognostic prediction was assessed by using bioinformatics. The current research showed that Pax8-AS1 had low expression levels in the blood and a positive correlation with portal vein diameter in HCC, which is predictive of portal vein thrombosis (PVT) development. The expression levels of LAIR-2 were elevated in HCV and HCC cases. In HCC, there was an inverse correlation among LAIR-2 and hematology laboratory tests, albumin, tumor nodules, ascites, and splenomegaly. However, there was a positive correlation among LAIR-2, spleen diameter, AFP, and bilirubin. Pax8-AS1 and LAIR-2 showed remarkable diagnostic efficacy, with sensitivity and specificity values, respectively (p < 0.001) (80%, 80% and 90%, 100%) in HCV and (96.7%, 80% and 93%, 100%) in HCC. LAIR-2 overexpression positively correlates with several critical genes associated with exhausted T cells immune infiltration, T cells, CD4+, and CD8+ T cells. The present data support a novel diagnostic and prognostic function for LAIR2 and PAX8-AS1 in HCC, and its significant association with T cell exhaustion contributes to its promotion in HCC. LAIR-2 detection could provide a new prognosis prediction method, and regulation within T-cell exhaustion, optimizing anti-HCC treatments.
Collapse
Affiliation(s)
| | - Abeer I Abd El-Fattah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Olfat Gamil Shaker
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed A Youssef
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacy, KUT University College, AL KUT, Wasit, Iraq
| |
Collapse
|
6
|
Mokhtari RB, Sampath D, Eversole P, Yu Lin MO, Bosykh DA, Boopathy GT, Sivakumar A, Wang C, Kumar R, Sheng JYP, Karasik E, Foster BA, Yu H, Ling X, Wu W, Li F, Ohler ZW, Brainson CF, Goodrich DW, Hong W, Chakraborty S. An Agrin-YAP/TAZ Rigidity Sensing Module Drives EGFR-Addicted Lung Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413443. [PMID: 40165020 PMCID: PMC12120797 DOI: 10.1002/advs.202413443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Despite epidermal growth factor receptor (EGFR) is a pivotal oncogene for several cancers, including lung adenocarcinoma (LUAD), how it senses extracellular matrix (ECM) rigidity remain elusive in the context of the increasing role of tissue rigidity on various hallmarks of cancer development. Here it is shown that EGFR dictates tumorigenic agrin expression in lung cancer cell lines, genetically engineered EGFR-driven mouse models, and human specimens. Agrin expression confers substrate stiffness-dependent oncogenic attributes to EGFR-reliant cancer cells. Mechanistically, agrin mechanoactivates EGFR through epidermal growth factor (EGF)-dependent and independent modes, thereby sensitizing its activity toward localized cancer cell-ECM adherence and bulk rigidity by fostering interactions with integrin β1. Notably, a feed-forward loop linking agrin-EGFR rigidity response to YAP-TEAD mechanosensing is essential for tumorigenesis. Together, the combined inhibition of EGFR-YAP/TEAD may offer a strategy to reduce lung tumorigenesis by disrupting agrin-EGFR mechanotransduction, uncovering a therapeutic vulnerability for EGFR-addicted lung cancers.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Divyaleka Sampath
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Paige Eversole
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Melissa Ong Yu Lin
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Dmitriy A. Bosykh
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Gandhi T.K. Boopathy
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Aravind Sivakumar
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Cheng‐Chun Wang
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Joe Yeong Poh Sheng
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Ellen Karasik
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Barbara A. Foster
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Han Yu
- Department of BiostatisticsRoswell Park Comprehensive Cancer CenterBuffaloNY14263USA
| | - Xiang Ling
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Wenjie Wu
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Fengzhi Li
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical ResearchFrederick National Laboratory for Cancer ResearchNational Cancer InstituteNIHBethesdaMD20892‐1088USA
| | - Christine F. Brainson
- Department of Toxicology and Cancer BiologyMarkey Cancer CenterUniversity of KentuckyLexingtonKY40536USA
| | - David W. Goodrich
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Sayan Chakraborty
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNY14263USA
- Program of Developmental TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNY14263USA
| |
Collapse
|
7
|
Terrell JA, Chen C. Extracellular Matrix Microstructures Modulate Hepatic Methionine Cycle and Methylations. Biomacromolecules 2025. [PMID: 40298277 DOI: 10.1021/acs.biomac.4c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The field of mechanobiology has grown in the past decade, but limited studies investigate how the extracellular matrix affects the cell metabolome. The methionine cycle involves the catabolism and regeneration of methionine through the donation and recovery of a single methyl group; this methyl group can methylate DNA, RNA, and proteins to alter gene expression and protein-protein interactions. Through studying cells cultured on fibrous (mimicking healthy extracellular matrice (ECM)) and flat (mimicking severely fibrotic ECM) substrates, we observed an increase in methionine cycle enzyme expression in cells on the flat substrate. We also present how the methionine cycle is modulated by the ECM through transmembrane protein integrin β1. By inhibiting integrin activation through the ligand-mimicking peptide RGD, we observed that the methionine cycle was protected from alteration. The results presented provide insight into possible therapeutic targets for fibrotic diseases and knowledge of mechanisms by which the ECM alters cell processes.
Collapse
Affiliation(s)
- John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
8
|
Yan W, Xiao GH, Wang LJ, Zhou Y, Yang F, Mou KH. CAFs activated by YAP1 upregulate cancer matrix stiffness to mediate hepatocellular carcinoma progression. J Transl Med 2025; 23:450. [PMID: 40241143 PMCID: PMC12004581 DOI: 10.1186/s12967-025-06325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND The stiffness of the matrix is closely related to the progression of hepatocellular carcinoma (HCC). Although direct targeting of stromal rigidity in HCC remains a clinical challenge, cancer-associated fibroblasts (CAFs) are considered key contributors to this process. Given the heterogeneity of CAFs, this study explored the relationship between specific CAF subsets and liver cancer matrix stiffness, aiming to identify novel therapeutic targets for HCC patients. METHODS Single-cell sequencing datasets were leveraged to identify cell types within liver cancer and characterize the transcriptomic profiles of CAFs. Prognostic analysis, utilizing the Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) liver cancer datasets, assessed the correlation between matrix stiffness-related genes and HCC patient outcomes. Pseudo-time analysis was applied to trace the developmental trajectories of CAFs. By calculating intercellular communication probabilities and analyzing transcription factor activity, the functions and interactions of different CAF subsets were elucidated. Gene Ontology (GO) analysis was used to explore the functional roles of CAFs in distinct Yes-associated protein 1 (YAP1) groups. Finally, cellular experiments and animal experiments were further conducted to validate the hypotheses of this study. RESULTS This study identified CAF subpopulations based on single-cell sequencing data and analyzed transcriptional changes within these subpopulations. Key findings include the identification of collagen type I alpha 1 (COL1A1), collagen type III alpha 1 (COL3A1), and lysyloxidase (LOX) as pivotal node genes during CAF development. Moreover, the expression of matrix stiffness-related genes was inversely correlated with the prognosis of HCC patients. Notably, the YAP1-positive CAF subpopulation emerged as the primary contributor to matrix stiffness in liver cancer. This subpopulation upregulates the expression of matrix stiffness-related genes and promotes tumor progression by activating signaling pathways such as autophagy and GTPase activity regulation. Cellular experiments and animal studies further validated this conclusion. CONCLUSION This single-cell analysis uncovered the functional roles of CAFs in liver cancer. The YAP1-positive CAF subpopulation, in particular, was shown to contribute to matrix stiffness by upregulating the expression of relevant genes and promoting tumor progression through the activation of specific signaling pathways.
Collapse
Affiliation(s)
- Wei Yan
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Guo-Hui Xiao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Juan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Yan Zhou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Kuan-Hou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.
| |
Collapse
|
9
|
Chaulagain RP, Padder AM, Shrestha H, Gupta R, Bhandari R, Shrestha Y, Qasem Moqbel A, Gautam S, Lal N, Jin S. Deciphering the Matrisome: Extracellular Matrix Remodeling in Liver Cirrhosis and Hepatocellular Carcinoma. Cureus 2025; 17:e82171. [PMID: 40370880 PMCID: PMC12076258 DOI: 10.7759/cureus.82171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 05/16/2025] Open
Abstract
Liver cirrhosis and hepatocellular carcinoma (HCC) are major public health concerns due to their high morbidity and mortality rates. The liver, a vital organ for metabolism, detoxification, and homeostasis, depends on the matrisome, a complex and dynamic network of extracellular matrix (ECM) components for maintaining structural and functional integrity. Chronic liver inflammation, induced by factors such as alcohol abuse, viral hepatitis, and non-alcoholic fatty liver disease, leads to fibrosis and cirrhosis, progressing to HCC. The matrisome, composed of ECM proteins including collagen, fibronectin, and laminin, plays a critical role in regulating tissue homeostasis, cell signaling, and tissue repair. Dysregulation of ECM components contributes to the pathogenesis of both liver cirrhosis and cancer. In cirrhosis, matrisome alterations are characterized by excessive ECM deposition and fibrosis, which disrupt the liver's architecture and impair its function. Activated hepatic stellate cells (HSCs) are the principal mediators of fibrosis, producing large quantities of ECM components. In liver cancer, matrisome remodeling facilitates tumorigenesis by promoting cancer cell proliferation, invasion, and metastasis. The tumor microenvironment, shaped by ECM alterations, further supports tumor growth and dissemination. Matrix metalloproteinases (MMPs) play a pivotal role in ECM degradation, fibrosis progression, and tumor invasion, while tissue inhibitors of metalloproteinases (TIMPs) modulate MMP activity. A comprehensive understanding of the molecular mechanisms that link matrisome alterations with the progression from cirrhosis to liver cancer is essential for identifying novel diagnostic and therapeutic targets. This review highlights the dynamic responses of the hepatic matrisome to both acute and chronic insults, emphasizing the complex interplay between ECM components, cellular behavior, and disease progression. Elucidating these interactions may inform strategies aimed at improving clinical outcomes for patients with liver cirrhosis and HCC.
Collapse
Affiliation(s)
- Ram Prasad Chaulagain
- Internal Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, CHN
| | - Aadil Mushtaq Padder
- Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, CHN
| | | | - Radheshyam Gupta
- Urology Surgery, Cancer Hospital, Harbin Medical University, Harbin, CHN
| | - Rameshor Bhandari
- Surgical Gastroenterology, Grande International Hospital, Kathmandu, NPL
| | - Yelona Shrestha
- Dermatology, First Affiliated Hospital of Xinjiang Medical University, Xinxiang, CHN
| | | | - Smriti Gautam
- Dermatology, Kathmandu Medical College, Kathmandu, NPL
| | - Nand Lal
- Physiology, School of Biomedical Sciences, Harbin Medical University, Harbin, CHN
| | - Shizhu Jin
- Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, CHN
| |
Collapse
|
10
|
Morabito M, Thibodot P, Gigandet A, Compagnon P, Toso C, Berishvili E, Lacotte S, Peloso A. Liver Extracellular Matrix in Colorectal Liver Metastasis. Cancers (Basel) 2025; 17:953. [PMID: 40149289 PMCID: PMC11939972 DOI: 10.3390/cancers17060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
The liver is the most common site of metastasis of colorectal cancer (CRC), and colorectal liver metastasis is one of the major causes of CRC-related deaths worldwide. The tumor microenvironment, particularly the extracellular matrix (ECM), plays a critical role in CRC metastasis and chemoresistance. Based on findings from clinical and basic research, this review attempts to offer a complete understanding of the role of the ECM in colorectal liver metastasis and to suggest potential ways for therapeutic intervention. First, the ECMs' role in regulating cancer cell fate is explored. We then discuss the hepatic ECM fingerprint and its influence on the metastatic behavior of CRC cells, highlighting key molecular interactions that promote metastasis. In addition, we examine how changes in the ECM within the metastatic niche contribute to chemoresistance, focusing on ECM remodeling by ECM stiffening and the activation of specific signaling pathways. Understanding these mechanisms is crucial for the development of novel strategies to overcome metastasis and improve outcomes for CRC patients.
Collapse
Affiliation(s)
- Marika Morabito
- General, Emergency and Transplant Surgery Department, ASST Settelaghi, University Hospital and Faculty of Medicine of Insubria, 21100 Varese, Italy
| | - Pauline Thibodot
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Anthony Gigandet
- School of Medecine, Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland
| | - Philippe Compagnon
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
| | - Christian Toso
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Andrea Peloso
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
11
|
Davis SS, Bassaro LR, Tuma PL. MAL2 and rab17 selectively redistribute invadopodia proteins to laterally-induced protrusions in hepatocellular carcinoma cells. Mol Biol Cell 2025; 36:ar26. [PMID: 39813085 PMCID: PMC11974961 DOI: 10.1091/mbc.e24-09-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
MAL2 (myelin and lymphocyte protein 2) and rab17 have been identified as hepatocellular carcinoma tumor suppressors. However, little is known how their functions in hepatic polarized protein sorting/trafficking translate into how they function in the epithelial-to-mesenchymal transition and/or the mesenchymal-to-epithelial transition in metastases. To investigate this, we expressed MAL2 and rab17 alone or together in hepatoma-derived Clone 9 cells (that lack endogenous MAL2 and rab17). Like MAL2, we found that rab17 expression led to the formation of actin- and cholesterol-dependent protrusions that correlated to its anti-oncogenic properties. MAL2 or rab17 selectively promoted the redistribution of invadopodia proteins to the protrusion tips that correlated with decreased matrix degradation. MAL2-mediated redistribution required a putative EVH1 recognition motif whereas rab17-mediated redistribution was GTP dependent. We also determined that MAL2 and rab17 interaction was GTP dependent, but not dependent on the MAL2 EVH1 recognition motifs, and that protrusions formed by their combined expression shared features of those induced by either alone. Finally, we report that MAL2 or rab17 can redirect trafficking of newly synthesized membrane proteins from the Golgi to the induced protrusions and that the EVH1 recognition motif was required in MAL2 and that rab17-mediated trafficking was GTP dependent.
Collapse
Affiliation(s)
- Saniya S. Davis
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Lauren. R. Bassaro
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Pamela L. Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
12
|
Huo X, Jiang S, Wu S, Lian Q, Chen H. Mechanosensitive ion channel-related genes in hepatocellular carcinoma: Unraveling prognostic genes and their roles in drug resistance and immune modulation. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:36-48. [PMID: 40206431 PMCID: PMC11977149 DOI: 10.1016/j.livres.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 04/11/2025]
Abstract
Background and aims Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, and its etiology involves a complex interplay of genetic and environmental factors. Despite advancements in our understanding of HCC biology and the development of novel therapeutic strategies, the molecular mechanisms underlying its onset, progression, and resistance to therapy remain largely vague. This study aimed to investigate the role of mechanosensitive ion channel-related genes (MICRGs) in HCC, focusing on their potential as prognostic biomarkers and their involvement in immune modulation and drug resistance. Methods A comprehensive analysis was conducted using The Cancer Genome Atlas database to identify MICRGs that are upregulated in HCC. Gene expression profiling, bioinformatics tools, and functional experiments were employed to elucidate the role of these channels. In addition, protein-protein interaction (PPI) network analyses and enrichment analyses were performed to explore the biological significance of these genes. An immune cell infiltration analysis was also conducted to understand MICRG-related immune landscape. Single-cell RNA sequencing (scRNA-seq) data were utilized to identify MICRGs in different cell types within the HCC tissue. Deep-learning neural network analysis across patient cohorts was conducted to identify genes associated with sorafenib resistance. Knockdown experiments, cell viability assays, and apoptosis assays on HCC cell lines were performed to examine the role of Piezo-type mechanosensitive ion channel component 1 (PIEZO1) in sorafenib resistance. Results The analysis identified a subset of MICRGs, including PIEZO1, that were significantly upregulated in HCC and associated with poor prognosis. The PPI network analysis revealed complex interactions among these genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses proposed the involvement of these genes in calcium signaling pathways. Immune cell infiltration analysis demonstrated distinct associations between MICRGs and various immune subpopulations, highlighting their potential roles in immune modulation. scRNA-seq data indicated the upregulation of MICRGs in various cell types in HCC tissues, particularly in endothelial cells and tumor-associated macrophages. Deep-learning neural network analysis across different patient cohorts identified PIEZO1 as a crucial regulator of sorafenib resistance in HCC, which was further validated by functional assays on HCC cell lines. Conclusions This study provides evidence that MICRGs, particularly PIEZO1, take on crucial roles in HCC progression and drug resistance. The upregulation of PIEZO1 in HCC cells is associated with poor prognosis and resistance to sorafenib. These findings indicate that PIEZO1 could serve as a potential therapeutic target for overcoming drug resistance and a prognostic biomarker in HCC. Future studies should focus on validating these findings in larger patient cohorts and exploring the functional implications of targeting PIEZO1 in preclinical models.
Collapse
Affiliation(s)
- Xinyan Huo
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shiyu Jiang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihuang Wu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qinghai Lian
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Sererols-Viñas L, Garcia-Vicién G, Ruiz-Blázquez P, Lee TF, Lee YA, Gonzalez-Sanchez E, Vaquero J, Moles A, Filliol A, Affò S. Hepatic Stellate Cells Functional Heterogeneity in Liver Cancer. Semin Liver Dis 2025; 45:33-51. [PMID: 40043738 DOI: 10.1055/a-2551-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Hepatic stellate cells (HSCs) are the liver's pericytes, and play key roles in liver homeostasis, regeneration, fibrosis, and cancer. Upon injury, HSCs activate and are the main origin of myofibroblasts and cancer-associated fibroblasts (CAFs) in liver fibrosis and cancer. Primary liver cancer has a grim prognosis, ranking as the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) being the predominant type, followed by intrahepatic cholangiocarcinoma (iCCA). Moreover, the liver hosts 35% of all metastatic lesions. The distinct spatial distribution and functional roles of HSCs across these malignancies represent a significant challenge for universal therapeutic strategies, requiring a nuanced and tailored understanding of their contributions. This review examines the heterogeneous roles of HSCs in liver cancer, focusing on their spatial localization, dynamic interactions within the tumor microenvironment (TME), and emerging therapeutic opportunities, including strategies to modulate their activity, and harness their potential as targets for antifibrotic and antitumor interventions.
Collapse
Affiliation(s)
- Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paloma Ruiz-Blázquez
- University of Barcelona, Barcelona, Spain
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Youngmin A Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ester Gonzalez-Sanchez
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Javier Vaquero
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Anna Moles
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aveline Filliol
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Affò
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
14
|
Yang J, Tang S, Saba NF, Shay C, Teng Y. Tumor secretome shapes the immune landscape during cancer progression. J Exp Clin Cancer Res 2025; 44:47. [PMID: 39930476 PMCID: PMC11809007 DOI: 10.1186/s13046-025-03302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
The focus of cancer immunotherapy has traditionally been on immune cells and tumor cells themselves, often overlooking the tumor secretome. This review provides a comprehensive overview of the intricate relationship between tumor cells and the immune response in cancer progression. It highlights the pivotal role of the tumor secretome - a diverse set of molecules secreted by tumor cells - in significantly influencing immune modulation, promoting immunosuppression, and facilitating tumor survival. In addition to elucidating these complex interactions, this review discusses current clinical trials targeting the tumor secretome and highlights their potential to advance personalized medicine strategies. These trials aim to overcome the challenges of the tumor microenvironment by designing therapies tailored to the secretome profiles of individual cancer patients. In addition, advances in proteomic techniques are highlighted as essential tools for unraveling the complexity of the tumor secretome, paving the way for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Sijia Tang
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
15
|
Liu L, Zhang D, Fan R, Cheng S, Yang J, Ma L, Ling Z, Zhang Y, Hou J, Wang X, Sun B, Niu J. Serum ECM1 is a promising biomarker for staging and monitoring fibrosis in patients with chronic hepatitis B. SCIENCE CHINA. LIFE SCIENCES 2025; 68:431-440. [PMID: 39348048 DOI: 10.1007/s11427-024-2691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/23/2024] [Indexed: 10/01/2024]
Abstract
It is critical to assess the extent and progression of liver fibrosis for patients to receive suitable treatments, but its diagnostic methods remain unmet. Extracellular matrix protein 1 (ECM1) has previously been reported to be a key factor in the induction and progression of liver fibrosis. However, little is known about the use of ECM1 as a biomarker to evaluate fibrosis. In a CCl4-induced mouse model of liver fibrosis, the present study demonstrated that ECM1 decreased with gradually increasing fibrosis. Using biopsy as a reference, the serum ECM1 levels decreased with increasing fibrosis stage in 247 patients with liver fibrosis, but there were no significant changes between fibrosis stage 2 and stage 0-1. To improve the performance of ECM1, age, platelet count, and ECM1 concentration were combined to calculate an EPA (ECM1-platelet-age) score (ranging from 0 to 10). The areas under the receiver operating characteristic curve of the EPA scores for the detection of F⩾2, F⩾3, and F4 were 0.6801, 0.7377, and 0.8083, respectively, which showed a comparable or significantly greater diagnostic performance for assessing fibrosis than that of the AST/ALT ratio, APRI score, or FIB-4 score. In HBV patients following antiviral treatment, the dynamics of the EPA score depended on the status of liver fibrosis development. The accuracy of the EPA score in predicting fibrosis regression and progression was 66.00% and 71.43%, respectively, while that of the LSM, another useful method for monitoring hepatic fibrosis changes during treatment, was only 52.00% and 7.14%, respectively. Compared with healthy controls, there were lower levels of serum ECM1 in HBV patients and individuals with HCV infection, MAFLD, ALD, PBC, and DILI. These findings suggested that individuals with reduced ECM1 levels may have a risk of developing liver injury, and further examinations or medical care are needed. In conclusion, the ECM1-containing EPA score is a valuable noninvasive test for staging fibrosis and predicting the progression of liver fibrosis. Additionally, ECM1 alone is an indicator for distinguishing patients with liver injury from healthy controls.
Collapse
Affiliation(s)
- Lian Liu
- Shanghai Institute of Biochemistry and Cell Biology, Centre for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Danyan Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rong Fan
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shipeng Cheng
- Shanghai Institute of Biochemistry and Cell Biology, Centre for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jichao Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Liyan Ma
- Shanghai Institute of Biochemistry and Cell Biology, Centre for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyang Ling
- Shanghai Institute of Biochemistry and Cell Biology, Centre for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yaguang Zhang
- Med-X Institute, Centre for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jinlin Hou
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaomei Wang
- Hepatology Department, Centre of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, 130021, China.
| | - Bing Sun
- Shanghai Institute of Biochemistry and Cell Biology, Centre for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Junqi Niu
- Hepatology Department, Centre of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
16
|
Eghbali S, Heumann TR. Next-Generation Immunotherapy for Hepatocellular Carcinoma: Mechanisms of Resistance and Novel Treatment Approaches. Cancers (Basel) 2025; 17:236. [PMID: 39858016 PMCID: PMC11764197 DOI: 10.3390/cancers17020236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, and, with only 15-20% of HCC patients being suitable for potentially curative treatments, the vast majority of patients with HCC ultimately require systemic therapy. For decades, the choice of effective systemic therapy for HCC remained sparse. In recent years, after the combination of atezolizumab and bevacizumab demonstrated superior overall survival over the first-line standard, sorafenib, there has been a major therapeutic paradigm shift to immunotherapy-based regimens for HCC. While representing a great leap forward for the treatment of this cancer, the reality is that less than one-third of patients achieve an objective response to immune checkpoint inhibitor-based therapy, so there remains a significant clinical need for further therapeutic optimization. In this review, we provide an overview of the current landscape of immunotherapy for unresectable HCC and delve into the tumor intrinsic and extrinsic mechanisms of resistance to established immunotherapies with a focus on novel therapeutic targets with strong translational potential. Following this, we spotlight emerging immunotherapy approaches and notable clinical trials aiming to optimize immunotherapy efficacy in HCC that include novel immune checkpoint inhibitors, tumor microenvironment modulators, targeted delivery systems, and locoregional interventions.
Collapse
Affiliation(s)
- Shabnam Eghbali
- Division of Internal Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thatcher Ross Heumann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
| |
Collapse
|
17
|
Xie G, Cao S, Wang G, Zhang X, Zhang Y, Wu H, Shen S, Le J, Li K, Huang Z. Vitamin A and its influence on tumour extracellular matrix. Discov Oncol 2025; 16:16. [PMID: 39775988 PMCID: PMC11707171 DOI: 10.1007/s12672-025-01751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Vitamin A is a crucial nutrient renowned for its role in visual health and cellular regulation. Its derivatives influence cell differentiation, proliferation, and tissue homeostasis, making them significant in cancer research due to their effects on both normal and tumour cells. This review explores the intricate relationship between vitamin A metabolism and the extracellular matrix (ECM) in cancer. The ECM profoundly affects tumour behaviour, including proliferation, invasion, and metastasis. Alterations in the ECM can facilitate tumour progression, and vitamin A derivatives have shown potential in modulating these changes. Through transcriptional regulation, vitamin A impacts ECM components and matrix metalloproteinases, influencing tumour dynamics. The review highlights the potential of vitamin A and its derivatives as adjunctive agents in cancer therapy. Despite promising laboratory findings, their clinical application remains limited due to challenges in translating these effects into therapeutic outcomes. Future research should focus on the modulation of retinol metabolism within tumours and the development of targeted therapies to enhance treatment efficacy and improve patient prognosis.
Collapse
Affiliation(s)
- Guoqing Xie
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shun Cao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianzhong Zhang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Urology, the First Affiliated Hospital of Peking University, Beijing, China
| | - Haofan Wu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuxian Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- School of Medicine, Cancer Institute, Tongji University, Shanghai, China
| | - Jiandong Le
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Keqiang Li
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- School of Medicine, Cancer Institute, Tongji University, Shanghai, China.
| | - Zhenlin Huang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
18
|
Benderski K, Schneider P, Kordeves P, Fichter M, Schunke J, De Lorenzi F, Durak F, Schrörs B, Akilli Ö, Kiessling F, Bros M, Diken M, Grabbe S, Schattenberg JM, Lammers T, Sofias AM, Kaps L. A hepatocellular carcinoma model with and without parenchymal liver damage that integrates technical and pathophysiological advantages for therapy testing. Pharmacol Res 2025; 211:107560. [PMID: 39730106 DOI: 10.1016/j.phrs.2024.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Hepatocellular Carcinoma (HCC) is the most common form of primary liver cancer, with cirrhosis being its strongest risk factor. Interestingly, an increasing number of HCC cases is also observed without cirrhosis. We developed an HCC model via intrasplenic injection of highly tumorigenic HCC cells, which, due to cellular tropism, invade the liver and allow for a controllable disease progression. Specifically, C57BL/6JRj mice were intrasplenically inoculated with Dt81Hepa1-6 HCC cells, with a subgroup pre-treated with CCl4 to induce cirrhosis (C-HCC). At four weeks post-inoculation, mice were sacrificed, and diseased livers were analyzed via histology, flow cytometry, and RT-qPCR to profile the extracellular matrix (ECM), angiogenesis, and immune cells. In addition, tumor-bearing mice were treated with the first-line therapy, AtezoBev, to assess therapeutic responsiveness of the model. Dt81Hepa1-6 cells displayed similar gene expression as human HCC. After intrasplenic injection, all mice developed multifocal disease. C-HCC mice had a significantly higher tumor load than non-cirrhotic HCC mice. Both HCC and C-HCC models displayed extensive ECM formation, increased levels of vascularization, and immune cell infiltration compared to healthy and non-cancerous cirrhotic livers. AtezoBev treatment produced robust antitumor efficacy, validating the model's suitability for therapy testing. In conclusion, we established a rapidly developing and high-yield HCC model through a simple intrasplenic injection, with or without cirrhotic damage. The model overexpressed key human HCC genes and showed high responsiveness to first-line treatment. Our model uniquely combines all the above-mentioned features, promoting its use towards HCC therapy testing.
Collapse
Affiliation(s)
- Karina Benderski
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Panayiotis Kordeves
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Feyza Durak
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Barbara Schrörs
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Özlem Akilli
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Jörn M Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, Saarbrücken 66123, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, Saarbrücken 66123, Germany.
| |
Collapse
|
19
|
Yu Lin MO, Sampath D, Bosykh DA, Wang C, Wang X, Subramaniam T, Han W, Hong W, Chakraborty S. YAP/TAZ Drive Agrin-Matrix Metalloproteinase 12-Mediated Diabetic Skin Wound Healing. J Invest Dermatol 2025; 145:155-170.e2. [PMID: 38810954 DOI: 10.1016/j.jid.2024.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
Macroscopic loss of extracellular matrix can lead to chronic defects in skin wound healing, but supplementation of extracellular matrix holds promise for facilitating wound closure, particularly in diabetic wound healing. We recently showed that the extracellular matrix proteoglycan agrin accelerates cutaneous wound healing by improving mechanoperception of migrating keratinocytes and allowing them to respond to mechanical stresses through matrix metalloproteinase 12 (MMP12). RNA-sequencing analysis revealed that in addition to a disorganized extracellular matrix, agrin-depleted skin cells have impaired YAP/TAZ transcriptional outcomes, leading us to hypothesize that YAP/TAZ, as central mechanosensors, drive the functionality of agrin-MMP12 signaling during cutaneous wound repair. In this study, we demonstrate that agrin activates YAP/TAZ during migration of keratinocytes after wounding in vitro and in vivo. Mechanistically, YAP/TAZ sustain agrin and MMP12 protein expression during migration after wounding through positive feedback. YAP/TAZ silencing abolishes agrin-MMP12-mediated force recognition and geometrical constraints. Importantly, soluble agrin therapy accelerates wound closure in diabetic mouse models by engaging MMP12-YAP. Because patients with diabetic foot ulcers and impaired wound healing have reduced expression of agrin-MMP12 that correlates with YAP/TAZ inactivation, we propose that timely activation of YAP/TAZ by soluble agrin therapy can accentuate mechanobiological microenvironments for efficient wound healing, under normal and diabetic conditions.
Collapse
Affiliation(s)
| | | | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Chengchun Wang
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Xiaomeng Wang
- Institute of Molecular and Cell Biology, Singapore, Singapore; Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore
| | - Tavintharan Subramaniam
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore; Division of Endocrinology, Department of Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Singapore, Singapore.
| | - Sayan Chakraborty
- Institute of Molecular and Cell Biology, Singapore, Singapore; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.
| |
Collapse
|
20
|
Yuan Y, Sun W, Xie J, Zhang Z, Luo J, Han X, Xiong Y, Yang Y, Zhang Y. RNA nanotherapeutics for hepatocellular carcinoma treatment. Theranostics 2025; 15:965-992. [PMID: 39776807 PMCID: PMC11700867 DOI: 10.7150/thno.102964] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, particularly due to the limited effectiveness of current therapeutic options for advanced-stage disease. The efficacy of traditional treatments is often compromised by the intricate liver microenvironment and the inherent heterogeneity. RNA-based therapeutics offer a promising alternative, utilizing the innovative approach of targeting aberrant molecular pathways and modulating the tumor microenvironment. The integration of nanotechnology in this field, through the development of advanced nanocarrier delivery systems, especially lipid nanoparticles (LNPs), polymer nanoparticles (PNPs), and bioinspired vectors, enhances the precision and efficacy of RNA therapies. This review highlights the significant progress in RNA nanotherapeutics for HCC treatment, covering micro RNA (miRNA), small interfering RNA (siRNA), message RNA (mRNA), and small activating RNA (saRNA) mediated gene silencing, therapeutic protein restoration, gene activation, cancer vaccines, and concurrent therapy. It further comprehensively discusses the prevailing challenges within this therapeutic landscape and provides a forward-looking perspective on the potential of RNA nanotherapeutics to transform HCC treatment.
Collapse
Affiliation(s)
- Yihang Yuan
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
- Department of General Surgery Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School Nanjing University, Nanjing 210008, China
| | - Weijie Sun
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Jiaqi Xie
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Ziheng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jing Luo
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiangfei Han
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637600, China
| | - Yang Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Oura K, Morishita A, Tadokoro T, Fujita K, Tani J, Kobara H. Immune Microenvironment and the Effect of Vascular Endothelial Growth Factor Inhibition in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:13590. [PMID: 39769351 PMCID: PMC11679663 DOI: 10.3390/ijms252413590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Systemic therapy for unresectable hepatocellular carcinoma (HCC) has progressed with the development of multiple kinases, such as vascular endothelial growth factor (VEGF) signaling, targeting cancer growth and angiogenesis. Additionally, the efficacy of sorafenib, regorafenib, lenvatinib, ramucirumab, and cabozantinib has been demonstrated in various clinical trials, and they are now widely used in clinical practice. Furthermore, the development of effective immune checkpoint inhibitors has progressed in systemic therapy for unresectable HCC, and atezolizumab + bevacizumab (atezo/bev) therapy and durvalumab + tremelimumab therapy are now recommended as first-line treatment. Atezo/bev therapy, which combines an anti-programmed cell death 1 ligand 1 antibody with an anti-VEGF antibody, is the first cancer immunotherapy to demonstrate efficacy against unresectable HCC. With the increasing popularity of these treatments, VEGF inhibition is attracting attention from the perspective of its anti-angiogenic effects and impact on the cancer-immune cycle. In this review, we outline the role of VEGF in the tumor immune microenvironment and cancer immune cycle in HCC and outline the potential immune regulatory mechanisms of VEGF. Furthermore, we consider the potential significance of the dual inhibition of angiogenesis and immune-related molecules by VEGF, and ultimately aim to clarify the latest treatment strategies that maximizes efficacy.
Collapse
Affiliation(s)
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita 761-0793, Kagawa, Japan; (K.O.)
| | | | | | | | | |
Collapse
|
22
|
Bannister ME, Chatterjee DA, Shetty S, Patten DA. The Role of Macrophages in Hepatocellular Carcinoma and Their Therapeutic Potential. Int J Mol Sci 2024; 25:13167. [PMID: 39684877 DOI: 10.3390/ijms252313167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant clinical burden globally and is predicted to continue to increase in incidence for the foreseeable future. The treatment of HCC is complicated by the fact that, in the majority of cases, it develops on a background of advanced chronic inflammatory liver disease. Chronic inflammation can foster an immunosuppressive microenvironment that promotes tumour progression and metastasis. In this setting, macrophages make up a major immune component of the HCC tumour microenvironment, and in this review, we focus on their contribution to HCC development and progression. Tumour-associated macrophages (TAMs) are largely derived from infiltrating monocytes and their potent anti-inflammatory phenotype can be induced by factors that are found within the tumour microenvironment, such as growth factors, cytokines, hypoxia, and extracellular matrix (ECM) proteins. In general, experimental evidence suggest that TAMs can exhibit a variety of functions that aid HCC tumour progression, including the promotion of angiogenesis, resistance to drug therapy, and releasing factors that support tumour cell proliferation and metastasis. Despite their tumour-promoting profile, there is evidence that the underlying plasticity of these cells can be targeted to help reprogramme TAMs to drive tumour-specific immune responses. We discuss the potential for targeting TAMs therapeutically either by altering their phenotype within the HCC microenvironment or by cell therapy approaches by taking advantage of their infiltrative properties from the circulation into tumour tissue.
Collapse
Affiliation(s)
- Megan E Bannister
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| | - Devnandan A Chatterjee
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Daniel A Patten
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
23
|
Premnath V, Veerappapillai S. Unveiling miRNA-Gene Regulatory Axes as Promising Biomarkers for Liver Cirrhosis and Hepatocellular Carcinoma. ACS OMEGA 2024; 9:44507-44521. [PMID: 39524633 PMCID: PMC11541530 DOI: 10.1021/acsomega.4c06551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024]
Abstract
Liver cirrhosis, a severe scarring condition of the liver with the potential to progress to hepatocellular carcinoma (HCC), necessitates the development of reliable biomarkers for early detection due to the asymptomatic nature of its early stages. Recent discoveries in microRNAs (miRNAs) hold promise for a noninvasive test, with the potential to significantly improve patient outcomes. Building upon these promising findings, this study investigates gene expression data, identifying distinct sets of DEGs and DEMs using GEO2R. Subsequently, a gene-miRNA network was constructed using Cytoscape to explore potential interactions between DEMs and their target genes (DEGs). Boxplot analysis was carried out to identify and validate differences in gene expression between healthy and diseased tissues. This analysis revealed four significantly differentially expressed genes: CAV1, PEA15, EMP1, and ENAH. Notably, subsequent survival analysis demonstrated that EMP1 and ENAH significantly impact overall patient survival. Intriguingly, the constructed network identified several potential regulatory axes: hsa-miR-191-5p/ENAH, hsa-miR-3158-3p/ENAH, hsa-miR-371a-5p/ENAH, and hsa-miR-6753-5p/EMP1. Crucially, a direct comparison of DEGs and DEMs between liver cirrhosis and HCC pinpointed AGO3, NCOA3, and TNPO1, along with their regulatory elements, as potential key drivers of HCC development in cirrhotic patients, underscoring their importance as targets for early diagnostic and therapeutic strategies. Finally, immunohistochemical (IHC) analysis not only validates our findings but also reiterates the novelty of the identified genes. Overall, elucidating the role of these novel genes and regulatory elements could pave the way for an earlier and more accurate diagnosis of liver diseases.
Collapse
Affiliation(s)
- Varshni Premnath
- Department of Biotechnology,
School of Bio Sciences and Technology, Vellore
Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shanthi Veerappapillai
- Department of Biotechnology,
School of Bio Sciences and Technology, Vellore
Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
24
|
Bitar R, Salem R, Finn R, Greten TF, Goldberg SN, Chapiro J, Atzen S. Interventional Oncology Meets Immuno-oncology: Combination Therapies for Hepatocellular Carcinoma. Radiology 2024; 313:e232875. [PMID: 39560477 PMCID: PMC11605110 DOI: 10.1148/radiol.232875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 11/20/2024]
Abstract
The management of hepatocellular carcinoma (HCC) is undergoing transformational changes due to the emergence of various novel immunotherapies and their combination with image-guided locoregional therapies. In this setting, immunotherapy is expected to become one of the standards of care in both neoadjuvant and adjuvant settings across all disease stages of HCC. Currently, more than 50 ongoing prospective clinical trials are investigating various end points for the combination of immunotherapy with both percutaneous and catheter-directed therapies. This review will outline essential tumor microenvironment mechanisms responsible for disease evolution and therapy resistance, discuss the rationale for combining locoregional therapy with immunotherapy, summarize ongoing clinical trials, and report on developing imaging end points and novel biomarkers that are relevant to both diagnostic and interventional radiologists participating in the management of HCC.
Collapse
Affiliation(s)
- Ryan Bitar
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Riad Salem
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Richard Finn
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Tim F. Greten
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - S. Nahum Goldberg
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Julius Chapiro
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Sarah Atzen
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| |
Collapse
|
25
|
Hua R, Yu P, Zheng W, Wu N, Yu W, Kong Q, He J, Qin L. Tim-1-mediated extracellular matrix promotes the development of hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1761-1773. [PMID: 39444345 PMCID: PMC11693869 DOI: 10.3724/abbs.2024191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Tim-1 (T-cell immunoglobulin and mucin domain 1), also known as Kim-1 (kidney injury molecule 1) or hepatitis A virus cellular receptor 1 (HAVCR1), is a transmembrane protein expressed on various immune and epithelial cells. It plays a role in modulating inflammatory and immune responses. In this study, we find that Tim-1 is overexpressed in hepatocellular carcinoma (HCC) samples and that its expression is significantly correlated with postoperative survival. Bulk RNA sequencing reveals a general upregulation of extracellular matrix-related genes in HCC tissues with Tim-1 overexpression. The results of the cell and in vivo experiments reveal that Tim-1 in HCC not only affects biological processes such as the proliferation, migration, and invasion of HCC cells but also broadly promotes extracellular matrix processes by influencing cytokine secretion. Further studies demonstrate that Tim-1 mediates the activation of hepatic stellate cells and upregulates Th1 and Th2 cytokines, thereby promoting HCC progression. Thus, Tim-1 may represent a novel target for future interventions in HCC and liver fibrosis.
Collapse
Affiliation(s)
- Ruheng Hua
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Department of Gastrointestinal SurgeryAffiliated Hospital of Nantong UniversityNantong226001China
| | - Pengfei Yu
- Affiliated Huishan Hospital of Xinglin CollegeNantong UniversityWuxi Huishan District People’s HospitalWuxi214100China
| | - Wanting Zheng
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Research Institute of General SurgeryJinling HospitalNanjing University School of MedicineNanjing210095China
| | - Nuwa Wu
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Wangjianfei Yu
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Qingyu Kong
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Jun He
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Lei Qin
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| |
Collapse
|
26
|
Chahine JJ, Davis SS, Culfaci S, Kallakury BV, Tuma PL. Chromosome 8q24 amplification associated with human hepatocellular carcinoma predicts MYC/ZEB1/MIZ1 transcriptional regulation. Sci Rep 2024; 14:24488. [PMID: 39424877 PMCID: PMC11489779 DOI: 10.1038/s41598-024-75219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Genomic instability is associated with late stage carcinomas and the epithelial mesenchymal transition (EMT). Of note is chromosome 8q24 amplification that has been documented in many epithelial-derived carcinomas. On this amplified region is the potent oncogene, c-myc. Not only does MYC overexpression activate targets that promote cell proliferation, it also activates transcription factors that drive EMT, including ZEB1. Further reinforcing EMT, overexpressed MYC also represses tumor suppressors involved in promoting the epithelial phenotype, including MIZ1. We predict that as carcinomas progress, chromosome 8q24 is amplified leading to high MYC levels that leads to ZEB1 expression and MIZ1 repression driving cells through EMT. To interrogate this clinically, limited cohorts of human epithelial-derived carcinomas were examined for MYC/ZEB1/MIZ1 expression patterns across increasing carcinoma grades. Interestingly, the predicted temporal patterns were only observed in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinomas. Yet MIZ1 proved to be an excellent marker to assess carcinoma progression across types. We expanded the HCC cohort and determined that c-myc amplification was restricted to grade III/IV HCC that also exhibited increased MYC and ZEB1 nuclear expression whereas cytosolic MIZ1 expression was lost and only nuclear expression retained. These same resections were obtained from only individuals who had histories of alcohol consumption that were also diagnosed with cirrhosis, metastasis and had viral hepatitis suggesting etiology-specific mechanisms of cancer progression. Finally, analysis performed in Hep3B cells determined that alterations in MYC expression promoted the predicted changes in ZEB1 and MIZ1 expression and/or distributions and in markers for EMT further suggesting a relationship among these three transcription factors in HCC and their correlation to driving EMT.
Collapse
Affiliation(s)
- Joeffrey J Chahine
- Department of Pathology, MedStar Georgetown University Hospital, 20007, Washington, DC, USA
| | - Saniya S Davis
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, NE, 103 McCort-Ward, 20064, Washington, DC, USA
| | - Sumeyye Culfaci
- Department of Pathology, MedStar Georgetown University Hospital, 20007, Washington, DC, USA
| | - Bhaskar V Kallakury
- Department of Pathology, MedStar Georgetown University Hospital, 20007, Washington, DC, USA
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, NE, 103 McCort-Ward, 20064, Washington, DC, USA.
| |
Collapse
|
27
|
Han H, Zhao Z, He M, Guan G, Cao J, Li T, Han B, Zhang B. Global research trends in the tumor microenvironment of hepatocellular carcinoma: insights based on bibliometric analysis. Front Immunol 2024; 15:1474869. [PMID: 39411719 PMCID: PMC11473330 DOI: 10.3389/fimmu.2024.1474869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Objective This study aimed to use visual mapping and bibliometric analysis to summarize valuable information on the tumor microenvironment (TME)-related research on hepatocellular carcinoma (HCC) in the past 20 years and to identify the research hotspots and trends in this field. Methods We screened all of the relevant literature on the TME of HCC in the Web of Science database from 2003 to 2023 and analysed the research hotspots and trends in this field via VOSviewer and CiteSpace. Results A total of 2,157 English studies were collected. According to the prediction, the number of papers that were published in the past three years will be approximately 1,394, accounting for 64.63%. China published the most papers (n=1,525) and had the highest total number of citations (n=32,253). Frontiers In Immunology published the most articles on the TME of HCC (n=75), whereas, Hepatology was the journal with the highest total number of citations (n=4,104) and average number of citations (n=91). The four clusters containing keywords such as "cancer-associated fibroblasts", "hepatic stellate cells", "immune cells", "immunotherapy", "combination therapy", "landscape", "immune infiltration", and "heterogeneity" are currently hot research topics in this field. The keywords "cell death", "ferroptosis", "biomarkers", and "prognostic features" have emerged relatively recently, and these research directions are becoming increasingly popular. Conclusions We identified four key areas of focus in the study of the TME in HCC: the main components and roles in the TME, immunotherapy, combination therapy, and the microenvironmental landscape. Moreover, the result of our study indicate that effect of ferroptosis on the TME in HCC may become a future research trend.
Collapse
Affiliation(s)
- Hongmin Han
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziyin Zhao
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyang He
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ge Guan
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junning Cao
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianxiang Li
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhang
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Lu SL, Pei Y, Liu WW, Han K, Cheng JCH, Li PC. Evaluating ECM stiffness and liver cancer radiation response via shear-wave elasticity in 3D culture models. Radiat Oncol 2024; 19:128. [PMID: 39334323 PMCID: PMC11430210 DOI: 10.1186/s13014-024-02513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The stiffness of the tumor microenvironment (TME) directly influences cellular behaviors. Radiotherapy (RT) is a common treatment for solid tumors, but the TME can impact its efficacy. In the case of liver cancer, clinical observations have shown that tumors within a cirrhotic, stiffer background respond less to RT, suggesting that the extracellular matrix (ECM) stiffness plays a critical role in the development of radioresistance. METHODS This study explored the effects of ECM stiffness and the inhibition of lysyl oxidase (LOX) isoenzymes on the radiation response of liver cancer in a millimeter-sized three-dimensional (3D) culture. We constructed a cube-shaped ECM-based millimeter-sized hydrogel containing Huh7 human liver cancer cells. By modulating the collagen concentration, we produced two groups of samples with different ECM stiffnesses to mimic the clinical scenarios of normal and cirrhotic livers. We used a single-transducer system for shear-wave-based elasticity measurement, to derive Young's modulus of the 3D cell culture to investigate how the ECM stiffness affects radiosensitivity. This is the first demonstration of a workflow for assessing radiation-induced response in a millimeter-sized 3D culture. RESULTS Increased ECM stiffness was associated with a decreased radiation response. Moreover, sonoporation-assisted LOX inhibition with BAPN (β-aminopropionitrile monofumarate) significantly decreased the initial ECM stiffness and increased RT-induced cell death. Inhibition of LOX was particularly effective in reducing ECM stiffness in stiffer matrices. Combining LOX inhibition with RT markedly increased radiation-induced DNA damage in cirrhotic liver cancer cells, enhancing their response to radiation. Furthermore, LOX inhibition can be combined with sonoporation to overcome stiffness-related radioresistance, potentially leading to better treatment outcomes for patients with liver cancer. CONCLUSIONS The findings underscore the significant influence of ECM stiffness on liver cancer's response to radiation. Sonoporation-aided LOX inhibition emerges as a promising strategy to mitigate stiffness-related resistance, offering potential improvements in liver cancer treatment outcomes.
Collapse
Affiliation(s)
- Shao-Lun Lu
- Department of Radiation Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu Pei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Wei-Wen Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Graduate of Institute of Oral Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kun Han
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Jason Chia-Hsien Cheng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Radiation Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
29
|
Baj J, Kołodziej M, Kobak J, Januszewski J, Syty K, Portincasa P, Forma A. Significance of Immune and Non-Immune Cell Stroma as a Microenvironment of Hepatocellular Carcinoma-From Inflammation to Hepatocellular Carcinoma Progression. Int J Mol Sci 2024; 25:10233. [PMID: 39408564 PMCID: PMC11475949 DOI: 10.3390/ijms251910233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer as well as the most prevalent cause of death in the adult patient population with cirrhosis. The occurrence of HCC is primarily caused by chronic liver inflammation that might occur because of a viral infection, non-alcoholic fatty liver disease (NAFLD), or various lifestyle-associated factors. The objective of this review was to summarize the current knowledge regarding the microenvironment of HCC, indicating how immune- and non-immune-cell stroma might affect the onset and progression of HCC. Therefore, in the following narrative review, we described the role of tumor-infiltrating neutrophils, bone-marrow-derived cells, tumor-associated mast cells, cancer-associated fibroblasts, tumor-associated macrophages, liver-sinusoidal endothelial cells, lymphocytes, and certain cytokines in liver inflammation and the further progression to HCC. A better understanding of the HCC microenvironment might be crucial to introducing novel treatment strategies or combined therapies that could lead to more effective clinical outcomes.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Magdalena Kołodziej
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Joanna Kobak
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Kinga Syty
- Institute of Health Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1G, 20-708 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| |
Collapse
|
30
|
Kim S, Yeop Baek S, Cha C. Bioactive Microgels with Tunable Microenvironment as a 3D Platform to Guide the Complex Physiology of Hepatocellular Carcinoma Spheroids. Chembiochem 2024:e202400482. [PMID: 39226234 DOI: 10.1002/cbic.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Miniaturized three-dimensional tissue models, such as spheroids, have become a highly useful and efficient platform to investigate tumor physiology and explore the effect of chemotherapeutic efficacy over traditional two-dimensional monolayer culture, since they can provide more in-depth analysis, especially in regards to intercellular interactions and diffusion. The development of most tumor spheroids relies on the high proliferative capacity and self-aggregation behavior of tumor cells. However, it often disregards the effect of microenvironmental factors mediated by extracellular matrix, which are indispensable components of tissue structure. In this study, hepatocellular carcinoma (HCC) cells are encapsulated in bioactive microgels consisting of gelatin and hyaluronic acid designed to emulate tumor microenvironment in order to induce hepatic tumor spheroid formation. Two different subtypes of HCC's, HepG2 and Hep3B cell lines, are explored. The physicomechanical and biochemical properties of the microgels, controlled by changing the crosslinking density and polymer composition, are clearly shown to have substantial influence over the formation and spheroid formation. Moreover, the spheroids made from different cells and microgel properties display highly variable chemoresistance effects, further highlighting the importance of microenvironmental factors guiding tumor spheroid physiology.
Collapse
Affiliation(s)
- Suntae Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Seung Yeop Baek
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| |
Collapse
|
31
|
Wang X, Yang Y, Zhao S, Wu D, Li L, Zhao Z. Chitosan-based biomaterial delivery strategies for hepatocellular carcinoma. Front Pharmacol 2024; 15:1446030. [PMID: 39161903 PMCID: PMC11330802 DOI: 10.3389/fphar.2024.1446030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Hepatocellular carcinoma accounts for 80% of primary liver cancers, is the most common primary liver malignancy. Hepatocellular carcinoma is the third leading cause of tumor-related deaths worldwide, with a 5-year survival rate of approximately 18%. Chemotherapy, although commonly used for hepatocellular carcinoma treatment, is limited by systemic toxicity and drug resistance. Improving targeted delivery of chemotherapy drugs to tumor cells without causing systemic side effects is a current research focus. Chitosan, a biopolymer derived from chitin, possesses good biocompatibility and biodegradability, making it suitable for drug delivery. Enhanced chitosan formulations retain the anti-tumor properties while improving stability. Chitosan-based biomaterials promote hepatocellular carcinoma apoptosis, exhibit antioxidant and anti-inflammatory effects, inhibit tumor angiogenesis, and improve extracellular matrix remodeling for enhanced anti-tumor therapy. Methods We summarized published experimental papers by querying them. Results and Conclusions This review discusses the physicochemical properties of chitosan, its application in hepatocellular carcinoma treatment, and the challenges faced by chitosan-based biomaterials.
Collapse
Affiliation(s)
- Xianling Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Zhao
- Endoscopy Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Di Wu
- First Digestive Endoscopy Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Le Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Zhao
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Fan W, Bradford TM, Török NJ. Metabolic dysfunction-associated liver disease and diabetes: Matrix remodeling, fibrosis, and therapeutic implications. Ann N Y Acad Sci 2024; 1538:21-33. [PMID: 38996214 DOI: 10.1111/nyas.15184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Metabolic dysfunction-associated liver disease (MASLD) and steatohepatitis (MASH) are becoming the most common causes of chronic liver disease in the United States and worldwide due to the obesity and diabetes epidemics. It is estimated that by 2030 close to 100 million people might be affected and patients with type 2 diabetes are especially at high risk. Twenty to 30% of patients with MASLD can progress to MASH, which is characterized by steatosis, necroinflammation, hepatocyte ballooning, and in advanced cases, fibrosis progressing to cirrhosis. Clinically, it is recognized that disease progression in diabetic patients is accelerated and the role of various genetic and epigenetic factors, as well as cell-matrix interactions in fibrosis and stromal remodeling, have recently been recognized. While there has been great progress in drug development and clinical trials for MASLD/MASH, the complexity of these pathways highlights the need to improve diagnosis/early detection and develop more successful antifibrotic therapies that not only prevent but reverse fibrosis.
Collapse
Affiliation(s)
- Weiguo Fan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
- Palo Alto VA Medical Center, Palo Alto, California, USA
| | - Toby M Bradford
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Natalie J Török
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
- Palo Alto VA Medical Center, Palo Alto, California, USA
| |
Collapse
|
33
|
Kapoor A, Bayat Mokhtari R, Sonti SS, Patel R, George A, Attwood K, Iyer R, Chakraborty S. Circulatory Agrin Serves as a Prognostic Indicator for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2719. [PMID: 39123447 PMCID: PMC11312157 DOI: 10.3390/cancers16152719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of liver cancer, is associated with high mortality rates both in the United States and globally. Despite current advances in immunotherapy regimens, there is a scarcity of biomarkers to guide therapy selection. Alpha-fetoprotein (AFP) and glypican-3 have been proposed as biomarkers for HCC, but they do not provide any prognostic benefit for modeling disease progression. Agrin, a secreted proteoglycan, is frequently overexpressed in HCC and plays prominent role(s) in the liver tumor microenvironment (TME) to promote hepatocarcinogenesis. Here we employed a pilot single-center retrospective investigation to assess the prognostic value of agrin in HCC. Our evidence suggests that elevated serum agrin levels are associated with poor prognosis and performance among HCC patients. Multivariate Cox regression models indicate that secreted agrin serves as a better prognostic indicator compared to AFP that is significantly correlated with other secreted biomarkers (e.g., IL6). Cumulatively, this work demonstrates a promising clinical value of agrin in the detection and prognosis of HCC.
Collapse
Affiliation(s)
- Ankita Kapoor
- Department of Hematology-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.K.); (S.S.S.); (R.P.)
| | - Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Sahithi Savithri Sonti
- Department of Hematology-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.K.); (S.S.S.); (R.P.)
| | - Riya Patel
- Department of Hematology-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.K.); (S.S.S.); (R.P.)
| | - Anthony George
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.G.); (K.A.)
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.G.); (K.A.)
| | - Renuka Iyer
- Department of Hematology-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (A.K.); (S.S.S.); (R.P.)
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
34
|
Gładyś A, Mazurski A, Czekaj P. Potential Consequences of the Use of Adipose-Derived Stem Cells in the Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7806. [PMID: 39063048 PMCID: PMC11277008 DOI: 10.3390/ijms25147806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the most prevalent of primary liver cancers and stands as the third leading cause of cancer-related deaths. Early-stage HCC can be effectively managed with available treatment modalities ranging from invasive techniques, such as liver resection and thermoablation, to systemic therapies primarily employing tyrosine kinase inhibitors. Unfortunately, these interventions take a significant toll on the body, either through physical trauma or the adverse effects of pharmacotherapy. Consequently, there is an understandable drive to develop novel HCC therapies. Adipose-derived stem cells (ADSCs) are a promising therapeutic tool. Their facile extraction process, coupled with the distinctive immunomodulatory capabilities of their secretome, make them an intriguing subject for investigation in both oncology and regenerative medicine. The factors they produce are both enzymes affecting the extracellular matrix (specifically, metalloproteinases and their inhibitors) as well as cytokines and growth factors affecting cell proliferation and invasiveness. So far, the interactions observed with various cancer cell types have not led to clear conclusions. The evidence shows both inhibitory and stimulatory effects on tumor growth. Notably, these effects appear to be dependent on the tumor type, prompting speculation regarding their potential inhibitory impact on HCC. This review briefly synthesizes findings from preclinical and clinical studies examining the effects of ADSCs on cancers, with a specific focus on HCC, and emphasizes the need for further research.
Collapse
Affiliation(s)
- Aleksandra Gładyś
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Adam Mazurski
- Students Scientific Society, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| |
Collapse
|
35
|
Peng H, Yang M, Feng K, Lv Q, Zhang Y. Semaphorin 3C (Sema3C) reshapes stromal microenvironment to promote hepatocellular carcinoma progression. Signal Transduct Target Ther 2024; 9:169. [PMID: 38956074 PMCID: PMC11220018 DOI: 10.1038/s41392-024-01887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
More than 90% of hepatocellular carcinoma (HCC) cases develop in the presence of fibrosis or cirrhosis, making the tumor microenvironment (TME) of HCC distinctive due to the intricate interplay between cancer-associated fibroblasts (CAFs) and cancer stem cells (CSCs), which collectively regulate HCC progression. However, the mechanisms through which CSCs orchestrate the dynamics of the tumor stroma during HCC development remain elusive. Our study unveils a significant upregulation of Sema3C in fibrotic liver, HCC tissues, peripheral blood of HCC patients, as well as sorafenib-resistant tissues and cells, with its overexpression correlating with the acquisition of stemness properties in HCC. We further identify NRP1 and ITGB1 as pivotal functional receptors of Sema3C, activating downstream AKT/Gli1/c-Myc signaling pathways to bolster HCC self-renewal and tumor initiation. Additionally, HCC cells-derived Sema3C facilitated extracellular matrix (ECM) contraction and collagen deposition in vivo, while also promoting the proliferation and activation of hepatic stellate cells (HSCs). Mechanistically, Sema3C interacted with NRP1 and ITGB1 in HSCs, activating downstream NF-kB signaling, thereby stimulating the release of IL-6 and upregulating HMGCR expression, consequently enhancing cholesterol synthesis in HSCs. Furthermore, CAF-secreted TGF-β1 activates AP1 signaling to augment Sema3C expression in HCC cells, establishing a positive feedback loop that accelerates HCC progression. Notably, blockade of Sema3C effectively inhibits tumor growth and sensitizes HCC cells to sorafenib in vivo. In sum, our findings spotlight Sema3C as a novel biomarker facilitating the crosstalk between CSCs and stroma during hepatocarcinogenesis, thereby offering a promising avenue for enhancing treatment efficacy and overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical. Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
36
|
Wang F, Zhu L, Xiong F, Chai B, Wang J, Zhou G, Cao Y, Zheng C. Relaxin combined with transarterial chemoembolization achieved synergistic effects and inhibited liver cancer metastasis in a rabbit VX2 model. J Cancer Res Clin Oncol 2024; 150:333. [PMID: 38955827 PMCID: PMC11219380 DOI: 10.1007/s00432-024-05864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE To explore the effect and mechanism of relaxin (RLX) in the growth and metastasis of livercancer after combination treatment with transarterial chemoembolization (TACE). MATERIALS AND METHODS HCCLM3 and Huh-7 cells were adopted to evaluate the effect of tumor proliferation, migration, and invasion after RLX administration in vitro. The rabbit VX2 model was used to evaluate the biosafety, doxorubicin penetration, local tumor response, tumor metastasis, and survival benefit of RLX combined with TACE treatment. RESULTS RLX did not affect the proliferation, migration, or invasion of HCCLM3 and Huh-7 cells, and the expression of E-cadherin and HIF-1α also remained unchanged while the MMP-9 protein was upregulated in vitro. In the rabbit VX2 model, compared to the normal saline group (NS), RLX group (RLX) and TACE mono-therapy group (TACE), the group that received TACE combined with RLX (TACE + RLX) showed an improved local tumor response and survival benefit. Furthermore, TACE combined with RLX was found to reduce tumor metastasis. This combination therapy reduced the fibrotic extracellular matrix in the tumor microenvironment, allowing for better penetration of doxorubicin, improved infiltration of CD8+ T cells and affected the secretion of cytokines. Additionally, RLX combined with TACE was able to decrease the expression of HIF-1α and PD-L1. The biosafety of TACE combined with RLX was also confirmed. CONCLUSION RLX synergized with TACE by mitigating the fibrotic extracellular matrix and tumor hypoxic microenvironment, improving the therapeutic effect and inhibiting metastasis during the treatment of liver cancer.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Fu Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Bin Chai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Jihua Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China.
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China.
| |
Collapse
|
37
|
Ding DY, Jiang SY, Zu YX, Yang Y, Gan XJ, Yuan SX, Zhou WP. Collagen in hepatocellular carcinoma: A novel biomarker and therapeutic target. Hepatol Commun 2024; 8:e0489. [PMID: 38967581 PMCID: PMC11227359 DOI: 10.1097/hc9.0000000000000489] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024] Open
Abstract
HCC is globally recognized as a major health threat. Despite significant progress in the development of treatment strategies for liver cancer, recurrence, metastasis, and drug resistance remain key factors leading to a poor prognosis for the majority of liver cancer patients. Thus, there is an urgent need to develop effective biomarkers and therapeutic targets for HCC. Collagen, the most abundant and diverse protein in the tumor microenvironment, is highly expressed in various solid tumors and plays a crucial role in the initiation and progression of tumors. Recent studies have shown that abnormal expression of collagen in the tumor microenvironment is closely related to the occurrence, development, invasion, metastasis, drug resistance, and treatment of liver cancer, making it a potential therapeutic target and a possible diagnostic and prognostic biomarker for HCC. This article provides a comprehensive review of the structure, classification, and origin of collagen, as well as its role in the progression and treatment of HCC and its potential clinical value, offering new insights into the diagnosis, treatment, and prognosis assessment of liver cancer.
Collapse
Affiliation(s)
- Dong-yang Ding
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| | - Shu-ya Jiang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| | - Yun-xi Zu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| | - Xiao-jie Gan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Sheng-xian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| | - Wei-ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| |
Collapse
|
38
|
Lee NY, Choi MG, Lee EJ, Koo JH. Interplay between YAP/TAZ and metabolic dysfunction-associated steatotic liver disease progression. Arch Pharm Res 2024; 47:558-570. [PMID: 38874747 PMCID: PMC11217110 DOI: 10.1007/s12272-024-01501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming an increasingly pressing global health challenge, with increasing mortality rates showing an upward trend. Two million deaths occur annually from cirrhosis and liver cancer together each year. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key effectors of the Hippo signaling pathway, critically regulate tissue homeostasis and disease progression in the liver. While initial studies have shown that YAP expression is normally restricted to cholangiocytes in healthy livers, the activation of YAP/TAZ is observed in other hepatic cells during chronic liver disease. The disease-driven dysregulation of YAP/TAZ appears to be a critical element in the MASLD progression, contributing to hepatocyte dysfunction, inflammation, and fibrosis. In this study, we focused on the complex roles of YAP/TAZ in MASLD and explored how the YAP/TAZ dysregulation of YAP/TAZ drives steatosis, inflammation, fibrosis, and cirrhosis. Finally, the cell-type-specific functions of YAP/TAZ in different types of hepatic cells, such as hepatocytes, hepatic stellate cells, hepatic macrophages, and biliary epithelial cells are discussed, highlighting the multifaceted impact of YAP/TAZ on liver physiology and pathology.
Collapse
Affiliation(s)
- Na Young Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Myeung Gi Choi
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Eui Jin Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Ja Hyun Koo
- Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
39
|
Galasso L, Cerrito L, Maccauro V, Termite F, Ainora ME, Gasbarrini A, Zocco MA. Hepatocellular Carcinoma and the Multifaceted Relationship with Its Microenvironment: Attacking the Hepatocellular Carcinoma Defensive Fortress. Cancers (Basel) 2024; 16:1837. [PMID: 38791916 PMCID: PMC11119751 DOI: 10.3390/cancers16101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatocellular carcinoma is a malignant tumor that originates from hepatocytes in an inflammatory substrate due to different degrees of liver fibrosis up to cirrhosis. In recent years, there has been growing interest in the role played by the complex interrelationship between hepatocellular carcinoma and its microenvironment, capable of influencing tumourigenesis, neoplastic growth, and its progression or even inhibition. The microenvironment is made up of an intricate network of mesenchymal cells, immune system cells, extracellular matrix, and growth factors, as well as proinflammatory cytokines and translocated bacterial products coming from the intestinal microenvironment via the enterohepatic circulation. The aim of this paper is to review the role of the HCC microenvironment and describe the possible implications in the choice of the most appropriate therapeutic scheme in the prediction of tumor response or resistance to currently applied treatments and in the possible development of future therapeutic perspectives, in order to circumvent resistance and break down the tumor's defensive fort.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
40
|
Zhu M, Li Y, Liu D, Gong Z. Partial Hepatectomy Promotes the Development of KRASG12V-Induced Hepatocellular Carcinoma in Zebrafish. Cancers (Basel) 2024; 16:1793. [PMID: 38791872 PMCID: PMC11119731 DOI: 10.3390/cancers16101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The purpose of this study was to investigate the effects of PH on the development of oncogenic krasG12V-induced HCC in zebrafish. The inducible HCC model in Tg(fabp10a:rtTA2s-M2; TRE2:EGFP-krasG12V) zebrafish was used. PH or sham surgery was performed before the induction of oncogenic krasG12V expression in the livers of transgenic zebrafish. Histological analysis was carried out to determine the progression of HCC and other HCC-associated features including hepatocyte proliferation, extracellular matrix production, and local oxidative stress. The similarity between the process of PH-induced liver regeneration and that of krasG12V-induced HCC development was further compared by RNA-Seq analysis. The results show that PH promotes the development of krasG12V-induced HCC in zebrafish possibly through enhancing neutrophil-mediated oxidative stress and promoting the upregulation of s100a1, and the downregulation of ribosome biogenesis.
Collapse
Affiliation(s)
- Mingkai Zhu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (M.Z.); (Y.L.)
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (M.Z.); (Y.L.)
| | - Dong Liu
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (M.Z.); (Y.L.)
| |
Collapse
|