1
|
Ren YY, Liu Z. Characterization of Single-Cell Cis-regulatory Elements Informs Implications for Cell Differentiation. Genome Biol Evol 2024; 16:evae241. [PMID: 39506564 PMCID: PMC11580522 DOI: 10.1093/gbe/evae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
Cis-regulatory elements govern the specific patterns and dynamics of gene expression in cells during development, which are the fundamental mechanisms behind cell differentiation. However, the genomic characteristics of single-cell cis-regulatory elements closely linked to cell differentiation during development remain unclear. To explore this, we systematically analyzed ∼250,000 putative single-cell cis-regulatory elements obtained from snATAC-seq analysis of the developing mouse cerebellum. We found that over 80% of these single-cell cis-regulatory elements show pleiotropic effects, being active in 2 or more cell types. The pleiotropic degrees of proximal and distal single-cell cis-regulatory elements are positively correlated with the density and diversity of transcription factor binding motifs and GC content. There is a negative correlation between the pleiotropic degrees of single-cell cis-regulatory elements and their distances to the nearest transcription start sites, and proximal single-cell cis-regulatory elements display higher relevance strengths than distal ones. Furthermore, both proximal and distal single-cell cis-regulatory elements related to cell differentiation exhibit enhanced sequence-level evolutionary conservation, increased density and diversity of transcription factor binding motifs, elevated GC content, and greater distances from their nearest genes. Together, our findings reveal the general genomic characteristics of putative single-cell cis-regulatory elements and provide insights into the genomic and evolutionary mechanisms by which single-cell cis-regulatory elements regulate cell differentiation during development.
Collapse
Affiliation(s)
- Ying-Ying Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
2
|
Li R, Sone N, Gotoh S, Sun X, Hagood JS. Contemporary and emerging technologies for research in children's rare and interstitial lung disease. Pediatr Pulmonol 2024; 59:2349-2359. [PMID: 37204232 DOI: 10.1002/ppul.26490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Although recent decades have seen the identification, classification and discovery of the genetic basis of many children's interstitial and rare lung disease (chILD) disorders, detailed understanding of pathogenesis and specific therapies are still lacking for most of them. Fortunately, a revolution of technological advancements has created new opportunities to address these critical knowledge gaps. High-throughput sequencing has facilitated analysis of transcription of thousands of genes in thousands of single cells, creating tremendous breakthroughs in understanding normal and diseased cellular biology. Spatial techniques allow analysis of transcriptomes and proteomes at the subcellular level in the context of tissue architecture, in many cases even in formalin-fixed, paraffin-embedded specimens. Gene editing techniques allow creation of "humanized" animal models in a shorter time frame, for improved knowledge and preclinical therapeutic testing. Regenerative medicine approaches and bioengineering advancements facilitate the creation of patient-derived induced pluripotent stem cells and their differentiation into tissue-specific cell types which can be studied in multicellular "organoids" or "organ-on-a-chip" approaches. These technologies, singly and in combination, are already being applied to gain new biological insights into chILD disorders. The time is ripe to systematically apply these technologies to chILD, together with sophisticated data science approaches, to improve both biological understanding and disease-specific therapy.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - Naoyuki Sone
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Xin Sun
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - James S Hagood
- Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Shirazi SP, Negretti NM, Jetter CS, Sharkey AL, Garg S, Kapp ME, Wilkins D, Fortier G, Mallapragada S, Banovich NE, Wright CVE, Frank DB, Kropski JA, Sucre JMS. Bronchopulmonary Dysplasia with Pulmonary Hypertension Associates with Loss of Semaphorin Signaling and Functional Decrease in FOXF1 Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609955. [PMID: 39253423 PMCID: PMC11383282 DOI: 10.1101/2024.08.27.609955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Lung injury in preterm infants leads to structural and functional respiratory deficits, with a risk for bronchopulmonary dysplasia (BPD) that in its most severe form is accompanied by pulmonary hypertension (PH). To examine cellular and molecular dynamics driving evolving BPD in humans, we performed single-cell RNA sequencing of preterm infant lungs in early stages of BPD and BPD+PH compared to term infants. Analysis of the endothelium revealed a unique aberrant capillary cell-state primarily in BPD+PH marked by ANKRD1 expression. Predictive signaling analysis identified deficits in the semaphorin guidance-cue signaling pathway and decreased expression of pro-angiogenic transcription factor FOXF1 within the alveolar parenchyma in neonatal lung samples with BPD/BPD+PH. Loss of semaphorin signaling was replicated in a murine BPD model and in humans with alveolar capillary dysplasia (ACDMPV), suggesting a mechanistic link between the developmental programs underlying BPD and ACDMPV and a critical role for semaphorin signaling in normal lung development.
Collapse
|
4
|
Wambach JA, Vece TJ. Clinical and research innovations in childhood interstitial lung disease (chILD). Pediatr Pulmonol 2024; 59:2233-2235. [PMID: 38651871 PMCID: PMC11324416 DOI: 10.1002/ppul.27025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, Saint Louis, Missouri, USA
| | - Timothy J Vece
- Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, USA
| |
Collapse
|
5
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Yin Y, Koenitzer JR, Patra D, Dietmann S, Bayguinov P, Hagan AS, Ornitz DM. Identification of a myofibroblast differentiation program during neonatal lung development. Development 2024; 151:dev202659. [PMID: 38602479 PMCID: PMC11165721 DOI: 10.1242/dev.202659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey R. Koenitzer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter Bayguinov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew S. Hagan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Yaremenko AV, Pechnikova NA, Porpodis K, Damdoumis S, Aggeli A, Theodora P, Domvri K. Association of Fetal Lung Development Disorders with Adult Diseases: A Comprehensive Review. J Pers Med 2024; 14:368. [PMID: 38672994 PMCID: PMC11051200 DOI: 10.3390/jpm14040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal lung development is a crucial and complex process that lays the groundwork for postnatal respiratory health. However, disruptions in this delicate developmental journey can lead to fetal lung development disorders, impacting neonatal outcomes and potentially influencing health outcomes well into adulthood. Recent research has shed light on the intriguing association between fetal lung development disorders and the development of adult diseases. Understanding these links can provide valuable insights into the developmental origins of health and disease, paving the way for targeted preventive measures and clinical interventions. This review article aims to comprehensively explore the association of fetal lung development disorders with adult diseases. We delve into the stages of fetal lung development, examining key factors influencing fetal lung maturation. Subsequently, we investigate specific fetal lung development disorders, such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), congenital diaphragmatic hernia (CDH), and other abnormalities. Furthermore, we explore the potential mechanisms underlying these associations, considering the role of epigenetic modifications, transgenerational effects, and intrauterine environmental factors. Additionally, we examine the epidemiological evidence and clinical findings linking fetal lung development disorders to adult respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and other respiratory ailments. This review provides valuable insights for healthcare professionals and researchers, guiding future investigations and shaping strategies for preventive interventions and long-term care.
Collapse
Affiliation(s)
- Alexey V. Yaremenko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Nadezhda A. Pechnikova
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
- Saint Petersburg Pasteur Institute, Saint Petersburg 197101, Russia
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Savvas Damdoumis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Amalia Aggeli
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
| | - Papamitsou Theodora
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
8
|
Zhang H, Mulqueen RM, Iannuzo N, Farrera DO, Polverino F, Galligan JJ, Ledford JG, Adey AC, Cusanovich DA. txci-ATAC-seq: a massive-scale single-cell technique to profile chromatin accessibility. Genome Biol 2024; 25:78. [PMID: 38519979 PMCID: PMC10958877 DOI: 10.1186/s13059-023-03150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/20/2023] [Indexed: 03/25/2024] Open
Abstract
We develop a large-scale single-cell ATAC-seq method by combining Tn5-based pre-indexing with 10× Genomics barcoding, enabling the indexing of up to 200,000 nuclei across multiple samples in a single reaction. We profile 449,953 nuclei across diverse tissues, including the human cortex, mouse brain, human lung, mouse lung, mouse liver, and lung tissue from a club cell secretory protein knockout (CC16-/-) model. Our study of CC16-/- nuclei uncovers previously underappreciated technical artifacts derived from remnant 129 mouse strain genetic material, which cause profound cell-type-specific changes in regulatory elements near many genes, thereby confounding the interpretation of this commonly referenced mouse model.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Ryan M Mulqueen
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Natalie Iannuzo
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Dominique O Farrera
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Francesca Polverino
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona, Tucson, AZ, USA
- Banner - University Medicine North, Pulmonary - Clinic F, Tucson, AZ, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Julie G Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
- Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA.
- Oregon Health & Science University, Knight Cardiovascular Institute, Portland, OR, USA.
| | - Darren A Cusanovich
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
9
|
Moos P, Cheminant J, Adhikari U, Venosa A. Transcriptomic-based roadmap to the healthy and ozone-exposed lung. CURRENT OPINION IN TOXICOLOGY 2024; 37:100445. [PMID: 38187954 PMCID: PMC10769160 DOI: 10.1016/j.cotox.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The lung is constantly exposed to a myriad of exogenous stressors. Ground-level ozone represents a ubiquitous and extremely reactive anthropogenic toxicant, impacting the health of millions across the globe. While abundant, epidemiological, in vivo, and in vitro data focuses the ozone toxicity in individual cell types (e.g. epithelial type II, alveolar macrophages) or signaling pathways involved in the injury (e.g., akt, glutathione). When appropriately used, bulk and single cell RNA sequencing techniques have the potential to provide complete, and in certain cases unbiased, information of the molecular events taking place in the steady state and injured lung, and even capture the phenotypic diversity of neighboring cells. To this end, this review compiles information pertaining to the latest understanding of lung cell identity and activation in the steady state and ozone exposed lung. In addition, it discusses the value and benefits of multi-omics approaches and other tools developed to predict cell-cell communication and dissect spatial heterogeneity.
Collapse
Affiliation(s)
- Philip Moos
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Jenna Cheminant
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Ujjwal Adhikari
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| |
Collapse
|
10
|
Tian K, Dangarh P, Zhang H, Hines CL, Bush A, Pybus HJ, Harker JA, Lloyd CM, Tanaka RJ, Saglani S. Role of epithelial barrier function in inducing type 2 immunity following early-life viral infection. Clin Exp Allergy 2024; 54:109-119. [PMID: 38011856 DOI: 10.1111/cea.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Preschool wheeze attacks triggered by recurrent viral infections, including respiratory syncytial virus (RSV), are associated with an increased risk of childhood asthma. However, mechanisms that lead to asthma following early-life viral wheezing remain uncertain. METHODS To investigate a causal relationship between early-life RSV infections and onset of type 2 immunity, we developed a neonatal murine model of recurrent RSV infection, in vivo and in silico, and evaluated the dynamical changes of altered airway barrier function and downstream immune responses, including eosinophilia, mucus secretion and type 2 immunity. RESULTS RSV infection of neonatal BALB/c mice at 5 and 15 days of age induced robust airway eosinophilia, increased pulmonary CD4+ IL-13+ and CD4+ IL-5+ cells, elevated levels of IL-13 and IL-5 and increased airway mucus at 20 days of age. Increased bronchoalveolar lavage albumin levels, suggesting epithelial barrier damage, were present and persisted following the second RSV infection. Computational in silico simulations demonstrated that recurrent RSV infection resulted in severe damage of the airway barrier (epithelium), triggering the onset of type 2 immunity. The in silico results also demonstrated that recurrent infection is not always necessary for the development of type 2 immunity, which could also be triggered with single infection of high viral load or when the epithelial barrier repair is compromised. CONCLUSIONS The neonatal murine model demonstrated that recurrent RSV infection in early life alters airway barrier function and promotes type 2 immunity. A causal relationship between airway barrier function and type 2 immunity was suggested using in silico model simulations.
Collapse
Affiliation(s)
- Kunyuan Tian
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Prakrati Dangarh
- Department of Bioengineering, Imperial College London, London, UK
| | - Haina Zhang
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Hannah J Pybus
- Department of Bioengineering, Imperial College London, London, UK
| | - James A Harker
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| |
Collapse
|
11
|
Yin Y, Koenitzer JR, Patra D, Dietmann S, Bayguinov P, Hagan AS, Ornitz DM. Identification of a myofibroblast differentiation program during neonatal lung development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573370. [PMID: 38234814 PMCID: PMC10793446 DOI: 10.1101/2023.12.28.573370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFB) and a stable but poorly described population of lipid rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFB). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single cell RNA sequencing, and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a myofibroblast differentiation program that is distinct form other mesenchymal cells types and increases the known repertoire of mesenchymal cell types in the neonatal lung.
Collapse
Affiliation(s)
- Yongjun Yin
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Debabrata Patra
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sabine Dietmann
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO 63110
| | - Peter Bayguinov
- Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew S. Hagan
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - David M. Ornitz
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
12
|
Shi W, Ye J, Shi Z, Pan C, Zhang Q, Lin Y, Liang D, Liu Y, Lin X, Zheng Y. Single-cell chromatin accessibility and transcriptomic characterization of Behcet's disease. Commun Biol 2023; 6:1048. [PMID: 37848613 PMCID: PMC10582193 DOI: 10.1038/s42003-023-05420-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Behect's disease is a chronic vasculitis characterized by complex multi-organ immune aberrations. However, a comprehensive understanding of the gene-regulatory profile of peripheral autoimmunity and the diverse immune responses across distinct cell types in Behcet's disease (BD) is still lacking. Here, we present a multi-omic single-cell study of 424,817 cells in BD patients and non-BD individuals. This study maps chromatin accessibility and gene expression in the same biological samples, unraveling vast cellular heterogeneity. We identify widespread cell-type-specific, disease-associated active and pro-inflammatory immunity in both transcript and epigenomic aspects. Notably, integrative multi-omic analysis reveals putative TF regulators that might contribute to chromatin accessibility and gene expression in BD. Moreover, we predicted gene-regulatory networks within nominated TF activators, including AP-1, NF-kB, and ETS transcript factor families, which may regulate cellular interaction and govern inflammation. Our study illustrates the epigenetic and transcriptional landscape in BD peripheral blood and expands understanding of potential epigenomic immunopathology in this disease.
Collapse
Affiliation(s)
- Wen Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| |
Collapse
|
13
|
Gaulton KJ, Preissl S, Ren B. Interpreting non-coding disease-associated human variants using single-cell epigenomics. Nat Rev Genet 2023; 24:516-534. [PMID: 37161089 PMCID: PMC10629587 DOI: 10.1038/s41576-023-00598-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
Genome-wide association studies (GWAS) have linked hundreds of thousands of sequence variants in the human genome to common traits and diseases. However, translating this knowledge into a mechanistic understanding of disease-relevant biology remains challenging, largely because such variants are predominantly in non-protein-coding sequences that still lack functional annotation at cell-type resolution. Recent advances in single-cell epigenomics assays have enabled the generation of cell type-, subtype- and state-resolved maps of the epigenome in heterogeneous human tissues. These maps have facilitated cell type-specific annotation of candidate cis-regulatory elements and their gene targets in the human genome, enhancing our ability to interpret the genetic basis of common traits and diseases.
Collapse
Affiliation(s)
- Kyle J Gaulton
- Department of Paediatrics, Paediatric Diabetes Research Center, University of California San Diego School of Medicine, La Jolla, CA, USA.
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bing Ren
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
| |
Collapse
|
14
|
de la O S, Yao X, Chang S, Liu Z, Sneddon JB. Single-cell chromatin accessibility of developing murine pancreas identifies cell state-specific gene regulatory programs. Mol Metab 2023; 73:101735. [PMID: 37178817 PMCID: PMC10230264 DOI: 10.1016/j.molmet.2023.101735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Numerous studies have characterized the existence of cell subtypes, along with their corresponding transcriptional profiles, within the developing mouse pancreas. The upstream mechanisms that initiate and maintain gene expression programs across cell states, however, remain largely unknown. Here, we generate single-nucleus ATAC-Sequencing data of developing murine pancreas and perform an integrated, multi-omic analysis of both chromatin accessibility and RNA expression to describe the chromatin landscape of the developing pancreas at both E14.5 and E17.5 at single-cell resolution. We identify candidate transcription factors regulating cell fate and construct gene regulatory networks of active transcription factor binding to regulatory regions of downstream target genes. This work serves as a valuable resource for the field of pancreatic biology in general and contributes to our understanding of lineage plasticity among endocrine cell types. In addition, these data identify which epigenetic states should be represented in the differentiation of stem cells to the pancreatic beta cell fate to best recapitulate in vitro the gene regulatory networks that are critical for progression along the beta cell lineage in vivo.
Collapse
Affiliation(s)
- Sean de la O
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Xinkai Yao
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sean Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Zhe Liu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Julie B Sneddon
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
15
|
Shmarakov IO, Gusarova GA, Islam MN, Marhuenda-Muñoz M, Bhattacharya J, Blaner WS. Retinoids stored locally in the lung are required to attenuate the severity of acute lung injury in male mice. Nat Commun 2023; 14:851. [PMID: 36792627 PMCID: PMC9932169 DOI: 10.1038/s41467-023-36475-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Retinoids are potent transcriptional regulators that act in regulating cell proliferation, differentiation, and other cellular processes. We carried out studies in male mice to establish the importance of local cellular retinoid stores within the lung alveolus for maintaining its health in the face of an acute inflammatory challenge induced by intranasal instillation of lipopolysaccharide. We also undertook single cell RNA sequencing and bioinformatic analyses to identify roles for different alveolar cell populations involved in mediating these retinoid-dependent responses. Here we show that local retinoid stores and uncompromised metabolism and signaling within the lung are required to lessen the severity of an acute inflammatory challenge. Unexpectedly, our data also establish that alveolar cells other than lipofibroblasts, specifically microvascular endothelial and alveolar epithelial cells, are able to take up lipoprotein-transported retinoid and to accumulate cellular retinoid stores that are directly used to respond to an acute inflammatory challenge.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Galina A Gusarova
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Mohammad N Islam
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - María Marhuenda-Muñoz
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921, Santa Coloma de Gramenet, Spain
| | - Jahar Bhattacharya
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
16
|
Nakwan N, Kunhapan P, Chaiyasung T, Satproedprai N, Singkhamanan K, Mahasirimongkol S, Charalsawadi C. Genome-wide association study identifies WWC2 as a possible locus associated with persistent pulmonary hypertension of the newborn in the Thai population. Transl Pediatr 2023; 12:1-12. [PMID: 36798934 PMCID: PMC9926135 DOI: 10.21037/tp-22-280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND There is known to be significant genetic involvement in persistent pulmonary hypertension of the newborn (PPHN), but to date there is not a clear understanding of this situation, and clarifying that involvement would be of considerable assistance in devising effective treatments for the disease. This case-control study was undertaken to search for genetic variants associated with PPHN in the Thai population using a genome-wide association study (GWAS). METHODS A 659,184 single nucleotide polymorphisms from 387 participants (54 PPHN cases and 333 healthy participants) were genotyped across the human genome using an Illumina Asian Screening Array-24 v1.0 BeadChip Array. After quality control, we obtained 443,063 autosomal SNPs for the GWAS analysis. The FaST-LMM and R packages were used for all statistical analyses. RESULTS For the case-control analysis, the genomic inflation factor (λ) was 1.016, rs149768622 T>C in the first intron of WWC2 gene showed the strongest association with a P value of 3.76E-08 and odds ratio (OR) of 13.24 (95% CI: 3.91-44.78). The variants at the LOC102723906/LOC105377599, CADM4, GPM6A, CIT, RIMBP2, LOC105374510, LOC105375193, PTPRN2, CDK14, and LCORL loci showed suggestive evidence of associations with PPHN (P<1E-05). CONCLUSIONS This GWAS found that rs149768622 T>C in the WWC2 gene was possibly associated with PPHN. However, replication and functional studies are needed to validate this association and further explore the role(s) of the WWC2 gene in PPHN.
Collapse
Affiliation(s)
- Narongsak Nakwan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.,Department of Pediatrics, Hat Yai Medical Education Center, Hat Yai Hospital, Songkhla, Thailand
| | - Punna Kunhapan
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Tassamonwan Chaiyasung
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nusara Satproedprai
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Chariyawan Charalsawadi
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.,Genomic Medicine Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
17
|
Preissl S, Gaulton KJ, Ren B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat Rev Genet 2023; 24:21-43. [PMID: 35840754 PMCID: PMC9771884 DOI: 10.1038/s41576-022-00509-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
Cell type-specific gene expression patterns and dynamics during development or in disease are controlled by cis-regulatory elements (CREs), such as promoters and enhancers. Distinct classes of CREs can be characterized by their epigenomic features, including DNA methylation, chromatin accessibility, combinations of histone modifications and conformation of local chromatin. Tremendous progress has been made in cataloguing CREs in the human genome using bulk transcriptomic and epigenomic methods. However, single-cell epigenomic and multi-omic technologies have the potential to provide deeper insight into cell type-specific gene regulatory programmes as well as into how they change during development, in response to environmental cues and through disease pathogenesis. Here, we highlight recent advances in single-cell epigenomic methods and analytical tools and discuss their readiness for human tissue profiling.
Collapse
Affiliation(s)
- Sebastian Preissl
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA.
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Kyle J Gaulton
- Department of Paediatrics, Paediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA.
| | - Bing Ren
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA.
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
| |
Collapse
|