1
|
Arend M, Paulitz E, Hsieh YE, Nikoloski Z. Scaling metabolic model reconstruction up to the pan-genome level: A systematic review and prospective applications to photosynthetic organisms. Metab Eng 2025; 90:67-77. [PMID: 40081464 DOI: 10.1016/j.ymben.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Advances in genomics technologies have generated large data sets that provide tremendous insights into the genetic diversity of taxonomic groups. However, it remains challenging to pinpoint the effect of genetic diversity on different traits without performing resource-intensive phenotyping experiments. Pan-genome-scale metabolic models (panGEMs) extend traditional genome-scale metabolic models by considering the entire reaction repertoire that enables the prediction and comparison of metabolic capabilities within a taxonomic group. Here, we systematically review the state-of-the-art methodologies for constructing panGEMs, focusing on used tools, databases, experimental datasets, and orthology relationships. We highlight the unique advantages of panGEMs compared to single-species GEMs in predicting metabolic phenotypes and in guiding the experimental validation of genome annotations. In addition, we emphasize the disparity between the available (pan-)genomic data on photosynthetic organisms and their under-representation in current (pan)GEMs. Finally, we propose a perspective for tackling the reconstruction of panGEMs for photosynthetic eukaryotes that can help advance our understanding of the metabolic diversity in this taxonomic group.
Collapse
Affiliation(s)
- Marius Arend
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Emilian Paulitz
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Yunli Eric Hsieh
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
2
|
Faulk C, Walls C, Nelson B, Arakaki PR, Gonzalez IHL, Banevicius N, Teixeira RHF, Medeiros MA, Silva GP, Talebi M, Chung WCJ, Takeshita RSC. De novo whole-genome assembly of the critically endangered southern muriqui (Brachyteles arachnoides). G3 (BETHESDA, MD.) 2025; 15:jkaf034. [PMID: 39960481 PMCID: PMC12005144 DOI: 10.1093/g3journal/jkaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/08/2025] [Indexed: 04/18/2025]
Abstract
The southern muriqui (Brachyteles arachnoides) is one of the 2 species of muriquis (genus Brachyteles), the largest body-sized nonhuman primate from the Neotropics. Deforestation and illegal hunting have led to a continuing decline in the muriqui population, leading to their current classification as critically endangered. The lack of a reference genome for the genus Brachyteles prevents scientists from taking full advantage of genomic tools to improve their conservation status. This study reports the first whole-genome assemblies of the genus Brachyteles, using DNA from 2 zoo-housed southern muriqui females. We performed sequencing with Oxford Nanopore Technologies' PromethION 2 Solo using a native DNA library preparation to preserve DNA modifications. We used Flye to assemble genomes for each individual. The best final assembly was 2.6 Gb, in 319 contigs, with an N50 of 58.8 Mb and an L50 of 17. BUSCO completeness score for this assembly was 99.5%. The assembly of the second individual had similar quality, with a length of 2.6 Gb, 759 contigs, an N50 of 47.9 Mb, an L50 of 18, and a BUSCO completeness score of 99.04%. Both assemblies had <1% duplicates, missing, or fragments. Gene model mapper detected 24,353 protein-coding genes, and repetitive elements accounted for 46% of the genome. We also reported the mitogenome, which had 16,562 bp over 37 genes, and global methylation of CpG sites, which revealed a mean of 80% methylation. Our study provides a high-quality reference genome assembly for the southern muriqui, expanding the tools that can be used to aid in their conservation efforts.
Collapse
Affiliation(s)
- Christopher Faulk
- Department of Animal Science, University of Minnesota, Minneapolis, MN 55108, United States
| | - Carrie Walls
- Department of Animal Science, University of Minnesota, Minneapolis, MN 55108, United States
| | - Brandie Nelson
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
| | - Paloma R Arakaki
- Coordenadoria de Fauna Silvestre, Secretaria de Meio Ambiente, Infraestrutura e Logística, São Paulo, SP 04301-905, Brazil
- Centro de Ciências da Natureza, Programa de Pós-Graduação em Conservação da Fauna, Universidade Federal de São Carlos, Buri, SP 18290-000, Brazil
| | - Irys H L Gonzalez
- Coordenadoria de Fauna Silvestre, Secretaria de Meio Ambiente, Infraestrutura e Logística, São Paulo, SP 04301-905, Brazil
| | - Nancy Banevicius
- Departamento de Pesquisa e Conservação da Fauna, Zoológico Municipal de Curitiba, Curitiba, PR 80020-290, Brazil
| | - Rodrigo H F Teixeira
- Departamento de Veterinária, Parque Zoológico Municipal Quinzinho de Barros, Sorocaba, SP 18020-286, Brazil
- Hospital Veterinário, Universidade de Sorocaba, Sorocaba, SP 18023-000, Brazil
- Programa de Pós-Graduação em Animais Silvestres, Universidade Estadual Paulista, Botucatu, SP 18618-681, Brazil
| | - Marina A Medeiros
- Departamento de Veterinária, Parque Zoológico Municipal Quinzinho de Barros, Sorocaba, SP 18020-286, Brazil
| | - Gessiane P Silva
- Instituto de Biodiversidades e Florestas, Universidade Federal do Oeste do Pará, PA, Santarém, PA 68035-110, Brazil
| | - Mauricio Talebi
- Departamento de Ciências Ambientais, Programa de Pós-Graduação Análise Ambiental Integrada, Universidade Federal de São Paulo, Diadema, SP 09913-030, Brazil
| | - Wilson C J Chung
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States
| | - Rafaela S C Takeshita
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States
- Department of Anthropology, Kent State University, Kent, OH 44242, United States
| |
Collapse
|
3
|
Clavell-Revelles P, Reese F, Carbonell-Sala S, Degalez F, Oliveros W, Arnan C, Guigó R, Melé M. Long-read transcriptomics of a diverse human cohort reveals widespread ancestry bias in gene annotation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643250. [PMID: 40166264 PMCID: PMC11956941 DOI: 10.1101/2025.03.14.643250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Accurate gene annotations are fundamental for interpreting genetic variation, cellular function, and disease mechanisms. However, current human gene annotations are largely derived from transcriptomic data of individuals with European ancestry, introducing potential biases that remain uncharacterized. Here, we generate over 800 million full-length reads with long-read RNA-seq in 43 lymphoblastoid cell line samples from eight genetically-diverse human populations and build a cross-ancestry gene annotation. We show that transcripts from non-European samples are underrepresented in reference gene annotations, leading to systematic biases in allele-specific transcript usage analyses. Furthermore, we show that personal genome assemblies enhance transcript discovery compared to the generic GRCh38 reference assembly, even though genomic regions unique to each individual are heavily depleted of genes. These findings underscore the urgent need for a more inclusive gene annotation framework that accurately represents global transcriptome diversity.
Collapse
Affiliation(s)
- Pau Clavell-Revelles
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Catalonia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia
- Universitat de Barcelona (UB), Barcelona, Catalonia
| | - Fairlie Reese
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Catalonia
| | - Sílvia Carbonell-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia
| | - Fabien Degalez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia
| | - Winona Oliveros
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Catalonia
- Universitat de Barcelona (UB), Barcelona, Catalonia
| | - Carme Arnan
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Catalonia
| |
Collapse
|
4
|
Righi E, Guigó R. The BioGenome Portal: a web-based platform for biodiversity genomics data management. NAR Genom Bioinform 2025; 7:lqaf020. [PMID: 40124712 PMCID: PMC11928930 DOI: 10.1093/nargab/lqaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Biodiversity genomics projects are underway with the aim of sequencing the genomes of all eukaryotic species on Earth. Here we describe the BioGenome Portal, a web-based application to facilitate organization and access to the data produced by biodiversity genomics projects. The portal integrates user-generated data with data deposited in public repositories. The portal generates sequence status reports that can be eventually ingested by designated metadata tracking systems, facilitating the coordination task of these systems. The portal is open-source and fully customizable. It can be deployed at any site with minimum effort, contributing to the democratization of biodiversity genomics projects. We illustrate the features of the BioGenome Portal through a number of specific instances. One such instance is being used as the reference portal for the Catalan Initiative for the Earth Biogenome Project, a regional project aiming to sequencing the genomes of the species of the Catalan linguistic area.
Collapse
Affiliation(s)
- Emilio Righi
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C/ Dr. Aiguader 88, Barcelona 08003 Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C/ Dr. Aiguader 88, Barcelona 08003 Catalonia, Spain
- Departament of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), C/ Dr. Aiguader 80, Barcelona 08003, Catalonia, Spain
| |
Collapse
|
5
|
Schwarz EM, Noon JB, Chicca JD, Garceau C, Li H, Antoshechkin I, Ilík V, Pafčo B, Weeks AM, Homan EJ, Ostroff GR, Aroian RV. Hookworm genes encoding intestinal excreted-secreted proteins are transcriptionally upregulated in response to the host's immune system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636063. [PMID: 39975173 PMCID: PMC11838427 DOI: 10.1101/2025.02.01.636063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hookworms are intestinal parasitic nematodes that chronically infect ~500 million people, with reinfection common even after clearance by drugs. How infecting hookworms successfully overcome host protective mechanisms is unclear, but it may involve hookworm proteins that digest host tissues, or counteract the host's immune system, or both. To find such proteins in the zoonotic hookworm Ancylostoma ceylanicum, we identified hookworm genes encoding excreted-secreted (ES) proteins, hookworm genes preferentially expressed in the hookworm intestine, and hookworm genes whose transcription is stimulated by the host immune system. We collected ES proteins from adult hookworms harvested from hamsters; mass spectrometry identified 565 A. ceylanicum genes encoding ES proteins. We also used RNA-seq to identify A. ceylanicum genes expressed both in young adults (12 days post-infection) and in intestinal and non-intestinal tissues dissected from mature adults (19 days post-infection), with hamster hosts that either had normal immune systems or were immunosuppressed by dexamethasone. In adult A. ceylanicum, we observed 1,670 and 1,196 genes with intestine- and non-intestine-biased expression, respectively. Comparing hookworm gene activity in normal versus immunosuppressed hosts, we observed almost no changes of gene activity in 12-day young adults or non-intestinal 19-day adult tissues. However, in intestinal 19-day adult tissues, we observed 1,951 positively immunoregulated genes (upregulated at least two-fold in normal hosts versus immunosuppressed hosts), and 137 genes that were negatively immunoregulated. Thus, immunoregulation was observed primarily in mature adult hookworm intestine directly exposed to host blood; it may include hookworm genes activated in response to the host immune system in order to neutralize the host immune system. We observed 153 ES genes showing positive immunoregulation in 19-day adult intestine; of these genes, 69 had ES gene homologs in the closely related hookworm Ancylostoma caninum, 24 in the human hookworm Necator americanus, and 24 in the more distantly related strongylid parasite Haemonchus contortus. Such a mixture of rapidly evolving and conserved genes could comprise virulence factors enabling infection, provide new targets for drugs or vaccines against hookworm, and aid in developing therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Erich M. Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jason B. Noon
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jeffrey D. Chicca
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Cellular and Molecular Biology Graduate Program, University of Wisconsin, 413 Bock Labs, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Carli Garceau
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Leveragen Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vladislav Ilík
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - E. Jane Homan
- ioGenetics LLC, 301 South Bedford Street, Ste.1, Madison, WI, 53703, USA
| | - Gary R. Ostroff
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
6
|
Kaur G, Perteghella T, Carbonell-Sala S, Gonzalez-Martinez J, Hunt T, Mądry T, Jungreis I, Arnan C, Lagarde J, Borsari B, Sisu C, Jiang Y, Bennett R, Berry A, Cerdán-Vélez D, Cochran K, Vara C, Davidson C, Donaldson S, Dursun C, González-López S, Gopal Das S, Hardy M, Hollis Z, Kay M, Montañés JC, Ni P, Nurtdinov R, Palumbo E, Pulido-Quetglas C, Suner MM, Yu X, Zhang D, Loveland JE, Albà MM, Diekhans M, Tanzer A, Mudge JM, Flicek P, Martin FJ, Gerstein M, Kellis M, Kundaje A, Paten B, Tress ML, Johnson R, Uszczynska-Ratajczak B, Frankish A, Guigó R. GENCODE: massively expanding the lncRNA catalog through capture long-read RNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620654. [PMID: 39554180 PMCID: PMC11565817 DOI: 10.1101/2024.10.29.620654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Accurate and complete gene annotations are indispensable for understanding how genome sequences encode biological functions. For twenty years, the GENCODE consortium has developed reference annotations for the human and mouse genomes, becoming a foundation for biomedical and genomics communities worldwide. Nevertheless, collections of important yet poorly-understood gene classes like long non-coding RNAs (lncRNAs) remain incomplete and scattered across multiple, uncoordinated catalogs, slowing down progress in the field. To address these issues, GENCODE has undertaken the most comprehensive lncRNAs annotation effort to date. This is founded on the manual annotation of full-length targeted long-read sequencing, on matched embryonic and adult tissues, of orthologous regions in human and mouse. Altogether 17,931 novel human genes (140,268 novel transcripts) and 22,784 novel mouse genes (136,169 novel transcripts) have been added to the GENCODE catalog representing a 2-fold and 6-fold increase in transcripts, respectively - the greatest increase since the sequencing of the human genome. Novel gene annotations display evolutionary constraints, have well-formed promoter regions, and link to phenotype-associated genetic variants. They greatly enhance the functional interpretability of the human genome, as they help explain millions of previously-mapped "orphan" omics measurements corresponding to transcription start sites, chromatin modifications and transcription factor binding sites. Crucially, our targeted design assigned human-mouse orthologs at a rate beyond previous studies, tripling the number of human disease-associated lncRNAs with mouse orthologs. The expanded and enhanced GENCODE lncRNA annotations mark a critical step towards deciphering the human and mouse genomes.
Collapse
Affiliation(s)
- Gazaldeep Kaur
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Tamara Perteghella
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF)
| | - Sílvia Carbonell-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Jose Gonzalez-Martinez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tomasz Mądry
- Department of Computational Biology of Noncoding RNA, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Irwin Jungreis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Carme Arnan
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Julien Lagarde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Flomics Biotech, SL, Carrer de Roc Boronat 31, 08005 Barcelona, Catalonia, Spain
| | - Beatrice Borsari
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Cristina Sisu
- Department of Life Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ruth Bennett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrew Berry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniel Cerdán-Vélez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Covadonga Vara
- Hospital del Mar Research Institute, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Claire Davidson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sarah Donaldson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Silvia González-López
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF)
| | - Sasti Gopal Das
- Department of Computational Biology of Noncoding RNA, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Matthew Hardy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Zoe Hollis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mike Kay
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ramil Nurtdinov
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Emilio Palumbo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Carlos Pulido-Quetglas
- Department of Medical Oncology, Bern University Hospital, Murtenstrasse 35, 3008 Bern, Switzerland
- School of Biology and Environmental Science, University College Dublin, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Marie-Marthe Suner
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Xuezhu Yu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Dingyao Zhang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jane E Loveland
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - M Mar Albà
- Hospital del Mar Research Institute, Dr. Aiguader 88, Barcelona 08003, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, 2300 Delaware Avenue, University of California, Santa Cruz, CA 95060, USA
| | - Andrea Tanzer
- University of Vienna, Research Network Data Science, Kolingasse 14-16, 1090 Vienna, Austria
- University of Vienna, Faculty of Computer Science, Research Group Visualization and Data Analysis, Waehringerstrasse 29, 1090 Vienna, Austria
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, 2300 Delaware Avenue, University of California, Santa Cruz, CA 95060, USA
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Rory Johnson
- Department of Medical Oncology, Bern University Hospital, Murtenstrasse 35, 3008 Bern, Switzerland
- School of Biology and Environmental Science, University College Dublin, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Barbara Uszczynska-Ratajczak
- Department of Computational Biology of Noncoding RNA, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF)
| |
Collapse
|
7
|
Langschied F, Bordin N, Cosentino S, Fuentes-Palacios D, Glover N, Hiller M, Hu Y, Huerta-Cepas J, Coelho LP, Iwasaki W, Majidian S, Manzano-Morales S, Persson E, Richards TA, Gabaldón T, Sonnhammer E, Thomas PD, Dessimoz C, Ebersberger I. Quest for Orthologs in the Era of Biodiversity Genomics. Genome Biol Evol 2024; 16:evae224. [PMID: 39404012 PMCID: PMC11523110 DOI: 10.1093/gbe/evae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 11/01/2024] Open
Abstract
The era of biodiversity genomics is characterized by large-scale genome sequencing efforts that aim to represent each living taxon with an assembled genome. Generating knowledge from this wealth of data has not kept up with this pace. We here discuss major challenges to integrating these novel genomes into a comprehensive functional and evolutionary network spanning the tree of life. In summary, the expanding datasets create a need for scalable gene annotation methods. To trace gene function across species, new methods must seek to increase the resolution of ortholog analyses, e.g. by extending analyses to the protein domain level and by accounting for alternative splicing. Additionally, the scope of orthology prediction should be pushed beyond well-investigated proteomes. This demands the development of specialized methods for the identification of orthologs to short proteins and noncoding RNAs and for the functional characterization of novel gene families. Furthermore, protein structures predicted by machine learning are now readily available, but this new information is yet to be integrated with orthology-based analyses. Finally, an increasing focus should be placed on making orthology assignments adhere to the findable, accessible, interoperable, and reusable (FAIR) principles. This fosters green bioinformatics by avoiding redundant computations and helps integrating diverse scientific communities sharing the need for comparative genetics and genomics information. It should also help with communicating orthology-related concepts in a format that is accessible to the public, to counteract existing misinformation about evolution.
Collapse
Affiliation(s)
- Felix Langschied
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, University College London, WC1E 6BT, London, UK
| | - Salvatore Cosentino
- Department of Integrated Biosciences, The University of Tokyo, 277-0882 Tokyo, Japan
| | - Diego Fuentes-Palacios
- Barcelona Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Natasha Glover
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Michael Hiller
- Department of Comparative Genomics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Madrid, Spain
| | - Luis Pedro Coelho
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Wataru Iwasaki
- Department of Integrated Biosciences, University of Tokyo, 277-0882 Tokyo, Japan
| | - Sina Majidian
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Saioa Manzano-Morales
- Barcelona Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Emma Persson
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Solna, Sweden
| | | | - Toni Gabaldón
- Barcelona Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Erik Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Solna, Sweden
| | - Paul D Thomas
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christophe Dessimoz
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
| |
Collapse
|
8
|
Lang T, Cummins SF, Paul NA, Campbell AH. Molecular responses of seaweeds to biotic interactions: A systematic review. JOURNAL OF PHYCOLOGY 2024; 60:1036-1057. [PMID: 39298370 DOI: 10.1111/jpy.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
Seaweed farming is the single largest aquaculture commodity with >30 million tonnes produced each year. Furthermore, the restoration of lost seaweed forests is gaining significant momentum, particularly for kelps in warming temperate areas. Whether in aquaculture settings, following restoration practices, or in the wild, all seaweeds undergo biotic interactions with a diverse range of co-occurring or cocultured organisms. To date, most research assessing such biotic interactions has focused on the response of the organism interacting with seaweeds, rather than on the seaweeds themselves. However, understanding how seaweeds respond to other organisms, particularly on a molecular scale, is crucial for optimizing outcomes of seaweed farming or restoration efforts and, potentially, also for the conservation of natural populations. In this systematic review, we assessed the molecular processes that seaweeds undergo during biotic interactions and propose priority areas for future research. Despite some insights into the response of seaweeds to biotic interactions, this review specifically highlights a lack of characterization of biomolecules involved in the response to chemical cues derived from interacting organisms (four studies in the last 20 years) and a predominant use of laboratory-based experiments conducted under controlled conditions. Additionally, this review reveals that studies targeting metabolites (70%) are more common than those examining the role of genes (22%) and proteins (8%). To effectively inform seaweed aquaculture efforts, it will be crucial to conduct larger scale experiments simulating natural environments. Also, employing a holistic approach targeting genes and proteins would be beneficial to complement the relatively well-established role of metabolites.
Collapse
Affiliation(s)
- Tomas Lang
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Scott F Cummins
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nicholas A Paul
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Alexandra H Campbell
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
9
|
Corominas M, Marquès-Bonet T, Arnedo M, Bayés M, Belmonte J, Escrivà H, Fernández R, Gabaldón T, Garnatje T, Germain J, Niell M, Palero F, Pons J, Puigdomènech P, Arroyo V, Cuevas-Caballé C, Obiol JF, Gut I, Gut M, Hidalgo O, Izquierdo-Arànega G, Pérez-Sorribes L, Righi E, Riutort M, Vallès J, Rozas J, Alioto T, Guigó R. The Catalan initiative for the Earth BioGenome Project: contributing local data to global biodiversity genomics. NAR Genom Bioinform 2024; 6:lqae075. [PMID: 39022326 PMCID: PMC11252852 DOI: 10.1093/nargab/lqae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/10/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
The Catalan Initiative for the Earth BioGenome Project (CBP) is an EBP-affiliated project network aimed at sequencing the genome of the >40 000 eukaryotic species estimated to live in the Catalan-speaking territories (Catalan Linguistic Area, CLA). These territories represent a biodiversity hotspot. While covering less than 1% of Europe, they are home to about one fourth of all known European eukaryotic species. These include a high proportion of endemisms, many of which are threatened. This trend is likely to get worse as the effects of global change are expected to be particularly severe across the Mediterranean Basin, particularly in freshwater ecosystems and mountain areas. Following the EBP model, the CBP is a networked organization that has been able to engage many scientific and non-scientific partners. In the pilot phase, the genomes of 52 species are being sequenced. As a case study in biodiversity conservation, we highlight the genome of the Balearic shearwater Puffinus mauretanicus, sequenced under the CBP umbrella.
Collapse
Affiliation(s)
- Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut d’Estudis Catalans (IEC), 08001 Barcelona, Catalonia, Spain
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (IBE, UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Centre Nacional d’Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Miquel A Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Mònica Bayés
- Centre Nacional d’Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Jordina Belmonte
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - Hector Escrivà
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Rosa Fernández
- Institute of Evolutionary Biology (IBE, UPF-CSIC), PRBB, 08003 Barcelona, Spain
| | - Toni Gabaldón
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Jardí Botànic Marimurtra - Fundació Carl Faust, 17300 Blanes, Catalonia, Spain
| | - Josep Germain
- Institució Catalana d’Història Natural, 08001 Barcelona, Catalonia, Spain
| | - Manel Niell
- Andorra Recerca + Innovació (ARI), AD600 Sant Julià de Lòria, Andorra
| | - Ferran Palero
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Paterna, Valencia, Spain
| | - Joan Pons
- Departament de Biodiversitat Animal i Microbiana, Institut Mediterrani d’Estudis Avançats (CSIC-UIB), 07190 Esporles, Illes Balears, Spain
| | - Pere Puigdomènech
- Institut d’Estudis Catalans (IEC), 08001 Barcelona, Catalonia, Spain
- Centre de Recerca en Agrigenòmica, CSIC/IRTA/UAB/UB, 08193 Bellaterra, Catalonia, Spain
| | - Vanesa Arroyo
- Andorra Recerca + Innovació (ARI), AD600 Sant Julià de Lòria, Andorra
| | - Cristian Cuevas-Caballé
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Joan Ferrer Obiol
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ivo Gut
- Centre Nacional d’Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Marta Gut
- Centre Nacional d’Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Oriane Hidalgo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Royal Botanic Gardens, Kew, TW9 3DS Richmond, UK
| | - Guillem Izquierdo-Arànega
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Laia Pérez-Sorribes
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Estación Biológica de Doñana, CSIC, 41092 Sevilla, Spain
| | - Emilio Righi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Joan Vallès
- Institut d’Estudis Catalans (IEC), 08001 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Laboratori de Botànica (UB), Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Tyler Alioto
- Centre Nacional d’Anàlisi Genòmica (CNAG), 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Roderic Guigó
- Institut d’Estudis Catalans (IEC), 08001 Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Nibali L, Divaris K, Lu EMC. The promise and challenges of genomics-informed periodontal disease diagnoses. Periodontol 2000 2024; 95:194-202. [PMID: 39072804 DOI: 10.1111/prd.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024]
Abstract
Recent advances in human genomics and the advent of molecular medicine have catapulted our ability to characterize human and health and disease. Scientists and healthcare practitioners can now leverage information on genetic variation and gene expression at the tissue or even individual cell level, and an enormous potential exists to refine diagnostic categories, assess risk in unaffected individuals, and optimize disease management among those affected. This review investigates the progress made in the domains of molecular medicine and genomics as they relate to periodontology. The review summarizes the current evidence of association between genomics and periodontal diseases, including the current state of knowledge that approximately a third of the population variance of periodontitis may be attributable to genetic variation and the management of several monogenic forms of the disease can be augmented by knowledge of the underlying genetic cause. Finally, the paper discusses the potential utility of polygenic risk scores and genetic testing for periodontitis diagnosis now and in the future, in light of applications that currently exist in other areas of medicine and healthcare.
Collapse
Affiliation(s)
- Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Kimon Divaris
- Department of Pediatric Dentistry and Dental Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emily Ming-Chieh Lu
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
11
|
Petrova M, Margasyuk S, Vorobeva M, Skvortsov D, Dontsova O, Pervouchine DD. BRD2 and BRD3 genes independently evolved RNA structures to control unproductive splicing. NAR Genom Bioinform 2024; 6:lqad113. [PMID: 38226395 PMCID: PMC10789245 DOI: 10.1093/nargab/lqad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
The mammalian BRD2 and BRD3 genes encode structurally related proteins from the bromodomain and extraterminal domain protein family. The expression of BRD2 is regulated by unproductive splicing upon inclusion of exon 3b, which is located in the region encoding a bromodomain. Bioinformatic analysis indicated that BRD2 exon 3b inclusion is controlled by a pair of conserved complementary regions (PCCR) located in the flanking introns. Furthermore, we identified a highly conserved element encoding a cryptic poison exon 5b and a previously unknown PCCR in the intron between exons 5 and 6 of BRD3, however, outside of the homologous bromodomain. Minigene mutagenesis and blockage of RNA structure by antisense oligonucleotides demonstrated that RNA structure controls the rate of inclusion of poison exons. The patterns of BRD2 and BRD3 expression and splicing show downregulation upon inclusion of poison exons, which become skipped in response to transcription elongation slowdown, further confirming a role of PCCRs in unproductive splicing regulation. We conclude that BRD2 and BRD3 independently acquired poison exons and RNA structures to dynamically control unproductive splicing. This study describes a convergent evolution of regulatory unproductive splicing mechanisms in these genes, providing implications for selective modulation of their expression in therapeutic applications.
Collapse
Affiliation(s)
- Marina Petrova
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
| | - Sergey Margasyuk
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
| | - Margarita Vorobeva
- Faculty of Chemistry, Moscow State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitry Skvortsov
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
- Faculty of Chemistry, Moscow State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Olga A Dontsova
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
- Faculty of Chemistry, Moscow State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitri D Pervouchine
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
| |
Collapse
|