1
|
Weijers DD, Hinić S, Kroeze E, Gorris MA, Schreibelt G, Middelkamp S, Mensenkamp AR, Bladergroen R, Verrijp K, Hoogerbrugge N, Wesseling P, van der Post RS, Loeffen JL, Gidding CE, van Kouwen MC, de Vries IJM, van Boxtel R, de Voer RM, Jongmans MC, Kuiper RP. Unraveling mutagenic processes influencing the tumor mutational patterns of individuals with constitutional mismatch repair deficiency. Nat Commun 2025; 16:4459. [PMID: 40368937 PMCID: PMC12078508 DOI: 10.1038/s41467-025-59775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
Constitutional mismatch repair deficiency (CMMRD), caused by bi-allelic germline variants in mismatch repair (MMR) genes, is associated with high cancer incidence early in life. A better understanding of mutational processes driving sequential CMMRD tumors can advance optimal treatment. Here, we describe a genomic characterization on a representative collection of CMMRD-associated tumors consisting of 41 tumors from 17 individuals. Mutational patterns in these tumors appear to be influenced by multiple factors, including the affected MMR gene and tumor type. Somatic polymerase proofreading mutations, commonly present in brain tumors, are also found in a T-cell lymphoblastic lymphoma displaying associated mutational patterns. We show prominent mutational patterns in two second primary hematological malignancies after temozolomide treatment. Furthermore, an indel signature, characterized by one-base pair cytosine insertions in cytosine homopolymers, is found in 54% of tumors. In conclusion, analysis of sequential CMMRD tumors reveals diverse mutational patterns influenced by the affected MMR gene, tumor type and treatment history.
Collapse
Affiliation(s)
- Dilys D Weijers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Snežana Hinić
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Emma Kroeze
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mark Aj Gorris
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud university medical center, Nijmegen, The Netherlands
| | - Gerty Schreibelt
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Sjors Middelkamp
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Reno Bladergroen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kiek Verrijp
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud university medical center, Nijmegen, The Netherlands
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Jan Lc Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Corrie Em Gidding
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mariëtte Ca van Kouwen
- Department of Gastroenterology and Hepatology, Radboud university medical center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolijn Cj Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Mascarenhas R, Merrikh D, Khanbabaei M, Kaur N, Ghaderi N, Maroilley T, Liu Y, Soule T, Appendino JP, Jacobs J, Wiebe S, Hader W, Pfeffer G, Tarailo‐Graovac M, Klein KM. Detecting somatic variants in purified brain DNA obtained from surgically implanted depth electrodes in epilepsy. Epilepsia 2025; 66:1234-1249. [PMID: 39751777 PMCID: PMC11997914 DOI: 10.1111/epi.18251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Somatic variants causing epilepsy are challenging to detect, as they are only present in a subset of brain cells (e.g., mosaic), resulting in low variant allele frequencies. Traditional methods relying on surgically resected brain tissue are limited to patients undergoing brain surgery. We developed an improved protocol to detect somatic variants using DNA from stereoelectroencephalographic (SEEG) depth electrodes, enabling access to a larger patient cohort and diverse brain regions. This protocol mitigates issues of contamination and low yields by purifying neuronal nuclei using fluorescence-activated nuclei sorting (FANS). METHODS SEEG depth electrodes were collected upon extraction from 41 brain regions across 17 patients undergoing SEEG. Nuclei were isolated separately from depth electrodes in the affected brain regions (seizure onset zone) and the unaffected brain regions. Neuronal nuclei were isolated using FANS, and DNA was amplified using primary template amplification. Short tandem repeat (STR) analysis and postsequencing allelic imbalance assessment were used to evaluate sample integrity. High-quality amplified DNA samples from affected brain regions, patient-matched unaffected brain regions, and genomic DNA were subjected to whole exome sequencing (WES). A bioinformatic workflow was developed to reduce false positives and to accurately detect somatic variants in the affected brain region. RESULTS Based on DNA yield and STR analysis, 14 SEEG-derived neuronal DNA samples (seven affected and seven unaffected) across seven patients underwent WES. From the variants prioritized using our bioinformatic workflow, we chose four candidate variants in MTOR, CSDE1, KLLN, and NLE1 across four patients based on pathogenicity scores and association with phenotype. All four variants were validated using digital droplet polymerase chain reaction. SIGNIFICANCE Our approach enhances the reliability and applicability of SEEG-derived DNA for epilepsy, offering insights into its molecular basis, facilitating epileptogenic zone identification, and advancing precision medicine.
Collapse
Affiliation(s)
- Rumika Mascarenhas
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Daria Merrikh
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Maryam Khanbabaei
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Navprabhjot Kaur
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Navid Ghaderi
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Tatiana Maroilley
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Yiping Liu
- Flow Cytometry Core FacilityUniversity of CalgaryCalgaryAlbertaCanada
| | - Tyler Soule
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Juan Pablo Appendino
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of PediatricsUniversity of Calgary, Alberta Children's HospitalCalgaryAlbertaCanada
| | - Julia Jacobs
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PediatricsUniversity of Calgary, Alberta Children's HospitalCalgaryAlbertaCanada
| | - Samuel Wiebe
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryAlbertaCanada
- Clinical Research Unit, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Walter Hader
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Gerald Pfeffer
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Maja Tarailo‐Graovac
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Karl Martin Klein
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
3
|
Poort VM, Hagelaar R, van Roosmalen MJ, Trabut L, Buijs-Gladdines JGCAM, van Wijk B, Meijerink J, van Boxtel R. Transient Differentiation-State Plasticity Occurs during Acute Lymphoblastic Leukemia Initiation. Cancer Res 2024; 84:2720-2733. [PMID: 38885294 PMCID: PMC11325147 DOI: 10.1158/0008-5472.can-24-1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Leukemia is characterized by oncogenic lesions that result in a block of differentiation, whereas phenotypic plasticity is retained. A better understanding of how these two phenomena arise during leukemogenesis in humans could help inform diagnosis and treatment strategies. Here, we leveraged the well-defined differentiation states during T-cell development to pinpoint the initiation of T-cell acute lymphoblastic leukemia (T-ALL), an aggressive form of childhood leukemia, and study the emergence of phenotypic plasticity. Single-cell whole genome sequencing of leukemic blasts was combined with multiparameter flow cytometry to couple cell identity and clonal lineages. Irrespective of genetic events, leukemia-initiating cells altered their phenotypes by differentiation and dedifferentiation. The construction of the phylogenies of individual leukemias using somatic mutations revealed that phenotypic diversity is reflected by the clonal structure of cancer. The analysis also indicated that the acquired phenotypes are heritable and stable. Together, these results demonstrate a transient period of plasticity during leukemia initiation, where phenotypic switches seem unidirectional. Significance: A method merging multicolor flow cytometry with single-cell whole genome sequencing to couple cell identity with clonal lineages uncovers differentiation-state plasticity in leukemia, reconciling blocked differentiation with phenotypic plasticity in cancer.
Collapse
Affiliation(s)
- Vera M Poort
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurianne Trabut
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Bram van Wijk
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jules Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
4
|
Bertrums EJM, de Kanter JK, Derks LLM, Verheul M, Trabut L, van Roosmalen MJ, Hasle H, Antoniou E, Reinhardt D, Dworzak MN, Mühlegger N, van den Heuvel-Eibrink MM, Zwaan CM, Goemans BF, van Boxtel R. Selective pressures of platinum compounds shape the evolution of therapy-related myeloid neoplasms. Nat Commun 2024; 15:6025. [PMID: 39019934 PMCID: PMC11255340 DOI: 10.1038/s41467-024-50384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) arise as a complication of chemo- and/or radiotherapy. Although t-MN can occur both in adult and childhood cancer survivors, the mechanisms driving therapy-related leukemogenesis likely vary across different ages. Chemotherapy is thought to induce driver mutations in children, whereas in adults pre-existing mutant clones are selected by the exposure. However, selective pressures induced by chemotherapy early in life are less well studied. Here, we use single-cell whole genome sequencing and phylogenetic inference to show that the founding cell of t-MN in children starts expanding after cessation of platinum exposure. In patients with Li-Fraumeni syndrome, characterized by a germline TP53 mutation, we find that the t-MN already expands during treatment, suggesting that platinum-induced growth inhibition is TP53-dependent. Our results demonstrate that germline aberrations can interact with treatment exposures in inducing t-MN, which is important for the development of more targeted, patient-specific treatment regimens and follow-up.
Collapse
Affiliation(s)
- Eline J M Bertrums
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jurrian K de Kanter
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lucca L M Derks
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Mark Verheul
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurianne Trabut
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Evangelia Antoniou
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Dirk Reinhardt
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Michael N Dworzak
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nora Mühlegger
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - C Michel Zwaan
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Bianca F Goemans
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
5
|
van Soest DMK, Polderman PE, den Toom WTF, Keijer JP, van Roosmalen MJ, Leyten TMF, Lehmann J, Zwakenberg S, De Henau S, van Boxtel R, Burgering BMT, Dansen TB. Mitochondrial H 2O 2 release does not directly cause damage to chromosomal DNA. Nat Commun 2024; 15:2725. [PMID: 38548751 PMCID: PMC10978998 DOI: 10.1038/s41467-024-47008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Reactive Oxygen Species (ROS) derived from mitochondrial respiration are frequently cited as a major source of chromosomal DNA mutations that contribute to cancer development and aging. However, experimental evidence showing that ROS released by mitochondria can directly damage nuclear DNA is largely lacking. In this study, we investigated the effects of H2O2 released by mitochondria or produced at the nucleosomes using a titratable chemogenetic approach. This enabled us to precisely investigate to what extent DNA damage occurs downstream of near- and supraphysiological amounts of localized H2O2. Nuclear H2O2 gives rise to DNA damage and mutations and a subsequent p53 dependent cell cycle arrest. Mitochondrial H2O2 release shows none of these effects, even at levels that are orders of magnitude higher than what mitochondria normally produce. We conclude that H2O2 released from mitochondria is unlikely to directly damage nuclear genomic DNA, limiting its contribution to oncogenic transformation and aging.
Collapse
Affiliation(s)
- Daan M K van Soest
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Paulien E Polderman
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Wytze T F den Toom
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Janneke P Keijer
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, 3584 CS, The Netherlands
| | - Tim M F Leyten
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Johannes Lehmann
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Susan Zwakenberg
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Sasha De Henau
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, 3584 CS, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, 3521 AL, The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, 3521 AL, The Netherlands
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands.
| |
Collapse
|
6
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|