1
|
Revencu N, Coulie J, Boon LM, Vikkula M. Genetic aspects of vascular malformations. Presse Med 2025:104295. [PMID: 40449790 DOI: 10.1016/j.lpm.2025.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 05/09/2025] [Indexed: 06/03/2025] Open
Abstract
Vascular anomalies are a heterogenous group of diseases that include vascular tumours and vascular malformations. Over the past two decades, significant progress has been made in elucidating the genetic basis of these anomalies, leading to improved classification, management and genetic counselling. Major signalling pathways, such as RAS/MAPK/ERK, PI3K/AKT/mTOR, and G protein-coupled receptor pathways, have been identified as central to the pathogenesis of vascular anomalies. This article reviews the major types of vascular malformations, addresses the challenges associated with genetic testing and counselling, and explores the emerging potential for precision medicine in the treatment of these diseases.
Collapse
Affiliation(s)
- Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium; VASCERN VASCA European Reference Centre.
| | - Julien Coulie
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium; VASCERN VASCA European Reference Centre; Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M Boon
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium; VASCERN VASCA European Reference Centre; Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Alharbi S, Merkle S, Hammill AM, Waters AM, Le Cras TD. RAS Pathway Mutations and Therapeutics in Vascular Anomalies. Pediatr Blood Cancer 2025; 72:e31605. [PMID: 39984187 DOI: 10.1002/pbc.31605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 02/02/2025] [Indexed: 02/23/2025]
Abstract
Vascular anomalies (VAs) are a diverse group of vascular tumors and vascular malformations (VMs). VMs are characterized by abnormal vessel development, overgrowth, and dysfunction. Coagulopathy, edema, and effusions can cause severe morbidity and mortality in children and adults with these diseases. Germline or somatic mutations in the RAS/RAF/MAPK pathway have been identified in multiple types of VAs. RAS genes (KRAS, NRAS, and HRAS) are small GTPase proteins that play an important role in normal development and cell function. In healthy cells, RAS proteins cycle between GDP (inactive) and GTP (active) states that regulate important functions such as proliferation, migration, and survival. "Hot spot" mutations in codons 12, 13, or 61 of RAS genes are found in multiple tumor types and VAs. RAS mutations often cause excessive MAP kinase signaling, driving unchecked cell proliferation. In this review, we discuss the different RAS pathway mutations discovered in VAs and the role that these may play using insights from cell and animal models. Current therapies targeting RAS pathways are presented. In the future, a better understanding of the role of RAS pathway mutations may advance therapeutic strategies for people with VAs.
Collapse
Affiliation(s)
- Sara Alharbi
- Cancer and Cell Biology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Svatava Merkle
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Adrienne M Hammill
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew M Waters
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Timothy D Le Cras
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Kratz CP. Re-envisioning genetic predisposition to childhood and adolescent cancers. Nat Rev Cancer 2025; 25:109-128. [PMID: 39627375 DOI: 10.1038/s41568-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Although cancer is rare in children and adolescents, it remains a leading cause of death within this age range, and genetic predisposition is the main known risk factor. Since the discovery of retinoblastoma-predisposing RB1 pathogenic germline variants in 1985, several additional high-penetrance cancer predisposition genes (CPGs) have been identified. Although few clinically recognizable genetic conditions display moderate cancer phenotypes, burden testing has revealed low-to-moderate penetrance CPGs. In addition to germline pathogenic variants in CPGs, postzygotic somatic mosaic CPG pathogenic variants acquired during embryonic development are increasingly recognized as factors that predispose children and adolescents to malignancies. Genome-wide association studies of various childhood and adolescent cancer types have identified some common low-risk cancer susceptibility alleles. Although the clinical utility of polygenic risk scores is currently limited in children and adolescents, polygenic risk scores developed for adults can predict subsequent cancer risks in childhood and adolescent cancer survivors. In this Review, I describe our current knowledge of genetic predisposition to childhood and adolescent cancers. Survival rates in children and adolescents with cancer and CPGs are often poor, necessitating better integration of genomic testing into clinical care to improve cancer prevention, surveillance and therapies.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Yuan M, Königs I, Reinshagen K, Ambs JM, Rutkowski S, Kordes UR. Rapid remission of life-threatening chylo-ascites with dabrafenib and trametinib combination in complex lymphatic anomaly with pathogenic somatic BRAF and PIK3CA co-variation. Pediatr Blood Cancer 2024; 71:e31342. [PMID: 39307987 DOI: 10.1002/pbc.31342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Mathias Yuan
- Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ingo Königs
- Pediatric Surgery, AKK Altonaer Kinderkrankenhaus gGmbH, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jan-Malte Ambs
- Department of Pediatric Radiology, Altonaer Kinderkrankenhaus, Hamburg, Germany
| | - Stefan Rutkowski
- Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Uwe R Kordes
- Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Wedemeyer MA, Ding T, Garfinkle EAR, Westfall JJ, Navarro JB, Hernandez Gonzalez ME, Varga EA, Witman P, Mardis ER, Cottrell CE, Miller AR, Miller KE. Defining the transcriptome of PIK3CA-altered cells in a human capillary malformation using single cell long-read sequencing. Sci Rep 2024; 14:25440. [PMID: 39455600 PMCID: PMC11512043 DOI: 10.1038/s41598-024-72167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/04/2024] [Indexed: 10/28/2024] Open
Abstract
PIK3CA-related overgrowth spectrum (PROS) disorders are caused by somatic mosaic variants that result in constitutive activation of the phosphatidylinositol-3-kinase/AKT/mTOR pathway. Promising responses to molecularly targeted therapy have been reported, although identification of an appropriate agent can be hampered by the mosaic nature and corresponding low variant allele frequency of the causal variant. Moreover, our understanding of the molecular consequences of these variants-for example how they affect gene expression profiles-remains limited. Here we describe in vitro expansion of a human capillary malformation followed by molecular characterization using exome sequencing, single cell gene expression, and targeted long-read single cell RNA-sequencing in a patient with clinical features consistent with Megalencephaly-Capillary Malformation Syndrome (MCAP, a PROS condition). These approaches identified a targetable PIK3CA variant with expression restricted to PAX3+ fibroblast and undifferentiated keratinocyte populations. This study highlights the innovative combination of next-generation single cell sequencing methods to better understand unique transcriptomic profiles and cell types associated with MCAP, revealing molecular intricacies of this genetic syndrome.
Collapse
Affiliation(s)
- Michelle A Wedemeyer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tianli Ding
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A R Garfinkle
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jesse J Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jaye B Navarro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Maria Elena Hernandez Gonzalez
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Patricia Witman
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Division of Dermatology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
6
|
Josephs S, Martin L, Josephs T, Hovsepian D. What the Interventional Radiologist Needs to Know about the Genetics of Vascular Anomalies. Semin Intervent Radiol 2024; 41:350-362. [PMID: 39524236 PMCID: PMC11543101 DOI: 10.1055/s-0044-1791204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The purpose of this article is to familiarize the reader with the basic genetics and vascular biology behind the array of vascular anomalies they may encounter in their practice. Individuals with vascular malformations are often referred to multidisciplinary clinics composed of diverse specialists all with the same goal: how to provide the best care possible. The team is typically composed of physicians, nurses, social workers, and technical staff from multiple specialties including diagnostic and interventional radiology, dermatology, hematology/oncology, otolaryngology, plastic surgery, and several additional subspecialties. Imaging plays a crucial role in diagnosis and treatment planning, but increasingly biopsies are needed for more accurate histopathological and genetic information to inform the plan of treatment, as well as for counseling patients and their families on the natural history, heritability, and long-term prognosis of the condition. Understanding the molecular mechanism that gives rise to vascular anomalies is crucial for arriving at the proper diagnosis and choosing among treatment options. As oncological medications are being increasingly repurposed to treat vascular malformations, it is vital for those caring for patients with vascular anomalies to understand how these anomalies develop, and which drug may be appropriate to repurpose for this benign disease.
Collapse
Affiliation(s)
- Shellie Josephs
- Department of Radiology, Texas Children's Hospital North Austin, Austin, Texas
| | - Lynne Martin
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | | | - David Hovsepian
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
7
|
Trevisan V, De Corso E, Viscogliosi G, Onesimo R, Cina A, Panfili M, Perri L, Agazzi C, Giorgio V, Rigante D, Vento G, Papacci P, Paradiso FV, Silvaroli S, Nanni L, Resta N, Castori M, Galli J, Paludetti G, Zampino G, Leoni C. A multi-step approach to overcome challenges in the management of head and neck lymphatic malformations, and response to treatment. Orphanet J Rare Dis 2024; 19:276. [PMID: 39044220 PMCID: PMC11265367 DOI: 10.1186/s13023-024-03200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/05/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Lymphatic malformations are vascular developmental anomalies varying from local superficial masses to diffuse infiltrating lesions, resulting in disfigurement. Patients' outcomes range from spontaneous regression to severe sequelae notwithstanding appropriate treatment. The current classification guides, in part, clinicians through the decision-making process, prognosis prediction and choice of therapeutic strategies. Even though the understanding of molecular basis of the disease has been recently improved, a standardized management algorithm has not been reached yet. RESULTS Here, we report our experience on five children with different lymphatic anomalies of the head and neck region treated by applying a multidisciplinary approach reaching a consensus among specialists on problem-solving and setting priorities. CONCLUSIONS Although restitutio ad integrum was rarely achieved and the burden of care is challenging for patients, caregivers and healthcare providers, this study demonstrates how the referral to expert centres can significantly improve outcomes by alleviating parental stress and ameliorating patients' quality of life. A flow-chart is proposed to guide the multidisciplinary care of children with LMs and to encourage multidisciplinary collaborative initiatives to implement dedicated patients' pathways.
Collapse
Affiliation(s)
- Valentina Trevisan
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo A. Gemelli 8, Rome, 00168, RM, Italy
| | - Eugenio De Corso
- Unit of Otorhinolaryngology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, RM, Italy
| | - Germana Viscogliosi
- UOC Radiodiagnostica e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Radioterapia, Rome, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo A. Gemelli 8, Rome, 00168, RM, Italy
| | - Alessandro Cina
- UOC Radiodiagnostica e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Radioterapia, Rome, Italy
| | - Marco Panfili
- UOC Radiodiagnostica e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Radioterapia, Rome, Italy
| | - Lucrezia Perri
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo A. Gemelli 8, Rome, 00168, RM, Italy
| | - Cristiana Agazzi
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo A. Gemelli 8, Rome, 00168, RM, Italy
| | - Valentina Giorgio
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo A. Gemelli 8, Rome, 00168, RM, Italy
| | - Donato Rigante
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo A. Gemelli 8, Rome, 00168, RM, Italy
- Università Cattolica del Sacro Cuore, Rome, RM, Italy
| | - Giovanni Vento
- Università Cattolica del Sacro Cuore, Rome, RM, Italy
- Neonatology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Patrizia Papacci
- Neonatology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | | | - Sara Silvaroli
- Scuola di Specializzazione in Chirurgia Pediatrica, Università Cattolica Sacro Cuore, Roma, Italy
| | - Lorenzo Nanni
- Università Cattolica del Sacro Cuore, Rome, RM, Italy
- Scuola di Specializzazione in Chirurgia Pediatrica, Università Cattolica Sacro Cuore, Roma, Italy
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, San Giovanni Rotondo, Italy
| | - Jacopo Galli
- Unit of Otorhinolaryngology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, RM, Italy
- Università Cattolica del Sacro Cuore, Rome, RM, Italy
| | | | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo A. Gemelli 8, Rome, 00168, RM, Italy
- Università Cattolica del Sacro Cuore, Rome, RM, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo A. Gemelli 8, Rome, 00168, RM, Italy.
| |
Collapse
|
8
|
Schmidt VF, Kapp FG, Goldann C, Huthmann L, Cucuruz B, Brill R, Vielsmeier V, Seebauer CT, Michel A, Seidensticker M, Uller W, Weiß JBW, Sint A, Häberle B, Haehl J, Wagner A, Cordes J, Holm A, Schanze D, Ricke J, Kimm MA, Wohlgemuth WA, Zenker M, Wildgruber M, for the APOLLON Investigators. Extracranial Vascular Anomalies Driven by RAS/MAPK Variants: Spectrum and Genotype-Phenotype Correlations. J Am Heart Assoc 2024; 13:e033287. [PMID: 38563363 PMCID: PMC11262533 DOI: 10.1161/jaha.123.033287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND We aimed to correlate alterations in the rat sarcoma virus (RAS)/mitogen-activated protein kinase pathway in vascular anomalies to the clinical phenotype for improved patient and treatment stratification. METHODS AND RESULTS This retrospective multicenter cohort study included 29 patients with extracranial vascular anomalies containing mosaic pathogenic variants (PVs) in genes of the RAS/mitogen-activated protein kinase pathway. Tissue samples were collected during invasive treatment or clinically indicated biopsies. PVs were detected by the targeted sequencing of panels of genes known to be associated with vascular anomalies, performed using DNA from affected tissue. Subgroup analyses were performed according to the affected genes with regard to phenotypic characteristics in a descriptive manner. Twenty-five vascular malformations, 3 vascular tumors, and 1 patient with both a vascular malformation and vascular tumor presented the following distribution of PVs in genes: Kirsten rat sarcoma viral oncogene (n=10), neuroblastoma ras viral oncogene homolog (n=1), Harvey rat sarcoma viral oncogene homolog (n=5), V-Raf murine sarcoma viral oncogene homolog B (n=8), and mitogen-activated protein kinase kinase 1 (n=5). Patients with RAS PVs had advanced disease stages according to the Schobinger classification (stage 3-4: RAS, 9/13 versus non-RAS, 3/11) and more frequent progression after treatment (RAS, 10/13 versus non-RAS, 2/11). Lesions with Kirsten rat sarcoma viral oncogene PVs infiltrated more tissue layers compared with the other PVs including other RAS PVs (multiple tissue layers: Kirsten rat sarcoma viral oncogene, 8/10 versus other PVs, 6/19). CONCLUSIONS This comparison of patients with various PVs in genes of the RAS/MAPK pathway provides potential associations with certain morphological and clinical phenotypes. RAS variants were associated with more aggressive phenotypes, generating preliminary data and hypothesis for future larger studies.
Collapse
Affiliation(s)
- Vanessa F. Schmidt
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | - Friedrich G. Kapp
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent MedicineUniversity Medical Center Freiburg, University of FreiburgGermany
| | - Constantin Goldann
- Clinic and Policlinic of RadiologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Linda Huthmann
- Clinic and Policlinic of RadiologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Beatrix Cucuruz
- Clinic and Policlinic of RadiologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Richard Brill
- Clinic and Policlinic of RadiologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Veronika Vielsmeier
- Department of OtorhinolaryngologyRegensburg University Medical CenterRegensburgGermany
| | - Caroline T. Seebauer
- Department of OtorhinolaryngologyRegensburg University Medical CenterRegensburgGermany
| | - Armin‐Johannes Michel
- Department of Pediatric and Adolescent SurgeryParacelsus Medical University HospitalSalzburgAustria
| | - Max Seidensticker
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | - Wibke Uller
- Department of Diagnostic and Interventional RadiologyUniversity of Freiburg Medical Centre, Medical Faculty of the University of FreiburgFreiburgGermany
| | - Jakob B. W. Weiß
- Department of Plastic and Hand SurgeryUniversity of Freiburg Medical Centre, Medical Faculty of the University of FreiburgFreiburgGermany
| | - Alena Sint
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | - Beate Häberle
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
- Department of Pediatric Surgery, Dr. von Hauner Children’s HospitalLMU University Hospital, LMU MunichMünchenGermany
| | - Julia Haehl
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
- Department of Pediatric Surgery, Dr. von Hauner Children’s HospitalLMU University Hospital, LMU MunichMünchenGermany
| | - Alexandra Wagner
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
- Department of Pediatric Surgery, Dr. von Hauner Children’s HospitalLMU University Hospital, LMU MunichMünchenGermany
| | - Johanna Cordes
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent MedicineUniversity Medical Center Freiburg, University of FreiburgGermany
| | - Annegret Holm
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent MedicineUniversity Medical Center Freiburg, University of FreiburgGermany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital MagdeburgMagdeburgGermany
| | - Jens Ricke
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | - Melanie A. Kimm
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | - Walter A. Wohlgemuth
- Clinic and Policlinic of RadiologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital MagdeburgMagdeburgGermany
| | - Moritz Wildgruber
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | | |
Collapse
|
9
|
Petkova M, Ferby I, Mäkinen T. Lymphatic malformations: mechanistic insights and evolving therapeutic frontiers. J Clin Invest 2024; 134:e172844. [PMID: 38488007 PMCID: PMC10940090 DOI: 10.1172/jci172844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
The lymphatic vascular system is gaining recognition for its multifaceted role and broad pathological significance. Once perceived as a mere conduit for interstitial fluid and immune cell transport, recent research has unveiled its active involvement in critical physiological processes and common diseases, including inflammation, autoimmune diseases, and atherosclerosis. Consequently, abnormal development or functionality of lymphatic vessels can result in serious health complications. Here, we discuss lymphatic malformations (LMs), which are localized lesions that manifest as fluid-filled cysts or extensive infiltrative lymphatic vessel overgrowth, often associated with debilitating, even life-threatening, consequences. Genetic causes of LMs have been uncovered, and several promising drug-based therapies are currently under investigation and will be discussed.
Collapse
Affiliation(s)
- Milena Petkova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ingvar Ferby
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Woodis KM, Garlisi Torales LD, Wolf A, Britt A, Sheppard SE. Updates in Genetic Testing for Head and Neck Vascular Anomalies. Oral Maxillofac Surg Clin North Am 2024; 36:1-17. [PMID: 37867039 PMCID: PMC11092895 DOI: 10.1016/j.coms.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Vascular anomalies include benign or malignant tumors or benign malformations of the arteries, veins, capillaries, or lymphatic vasculature. The genetic etiology of the lesion is essential to define the lesion and can help navigate choice of therapy. . In the United States, about 1.2% of the population has a vascular anomaly, which may be underestimating the true prevalence as genetic testing for these conditions continues to evolve.
Collapse
Affiliation(s)
- Kristina M Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA
| | - Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA
| | - Alejandro Wolf
- Department of Pathology and ARUP Laboratories, University of Utah, 2000 Circle of Hope, Room 3100, Salt Lake City, UT 84112, USA
| | - Allison Britt
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA.
| |
Collapse
|
11
|
Sasaki Y, Ishikawa K, Hatanaka KC, Oyamada Y, Sakuhara Y, Shimizu T, Saito T, Murao N, Onodera T, Miura T, Maeda T, Funayama E, Hatanaka Y, Yamamoto Y, Sasaki S. Targeted next-generation sequencing for detection of PIK3CA mutations in archival tissues from patients with Klippel-Trenaunay syndrome in an Asian population : List the full names and institutional addresses for all authors. Orphanet J Rare Dis 2023; 18:270. [PMID: 37667289 PMCID: PMC10478188 DOI: 10.1186/s13023-023-02893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Klippel-Trenaunay syndrome (KTS) is a rare slow-flow combined vascular malformation with limb hypertrophy. KTS is thought to lie on the PIK3CA-related overgrowth spectrum, but reports are limited. PIK3CA encodes p110α, a catalytic subunit of phosphatidylinositol 3-kinase (PI3K) that plays an essential role in the PI3K/AKT/mammalian target of rapamycin (mTOR) signaling pathway. We aimed to demonstrate the clinical utility of targeted next-generation sequencing (NGS) in identifying PIK3CA mosaicism in archival formalin-fixed paraffin-embedded (FFPE) tissues from patients with KTS. RESULTS Participants were 9 female and 5 male patients with KTS diagnosed as capillaro-venous malformation (CVM) or capillaro-lymphatico-venous malformation (CLVM). Median age at resection was 14 years (range, 5-57 years). Median archival period before DNA extraction from FFPE tissues was 5.4 years (range, 3-7 years). NGS-based sequencing of PIK3CA achieved an amplicon mean coverage of 119,000x. PIK3CA missense mutations were found in 12 of 14 patients (85.7%; 6/8 CVM and 6/6 CLVM), with 8 patients showing the hotspot variants E542K, E545K, H1047R, and H1047L. The non-hotspot PIK3CA variants C420R, Q546K, and Q546R were identified in 4 patients. Overall, the mean variant allele frequency for identified PIK3CA variants was 6.9% (range, 1.6-17.4%). All patients with geographic capillary malformation, histopathological lymphatic malformation or macrodactyly of the foot had PIK3CA variants. No genotype-phenotype association between hotspot and non-hotspot PIK3CA variants was found. Histologically, the vessels and adipose tissues of the lesions showed phosphorylation of the proteins in the PI3K/AKT/mTOR signaling pathway, including p-AKT, p-mTOR, and p-4EBP1. CONCLUSIONS The PI3K/AKT/mTOR pathway in mesenchymal tissues was activated in patients with KTS. Amplicon-based targeted NGS could identify low-level mosaicism from low-input DNA extracted from FFPE tissues, potentially providing a diagnostic option for personalized medicine with inhibitors of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan.
| | - Kanako C Hatanaka
- Center for Development of Advanced Diagnostics, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Hokkaido, Japan
| | - Yumiko Oyamada
- Department of Diagnostic Pathology, Tonan Hospital, Hokkaido, Japan
| | - Yusuke Sakuhara
- Department of Diagnostic and Interventional Radiology, Tonan Hospital, Hokkaido, Japan
| | - Tadashi Shimizu
- Department of Diagnostic and Interventional Radiology, Tonan Hospital, Hokkaido, Japan
| | - Tatsuro Saito
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Hokkaido, Japan
- Riken Genesis Co., Ltd, Tokyo, Japan
| | - Naoki Murao
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yutaka Hatanaka
- Center for Development of Advanced Diagnostics, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Hokkaido, Japan
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Hokkaido, Japan
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Satoru Sasaki
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| |
Collapse
|
12
|
Alkwai H, Alkwai H, Al Namshan M. Sudden Appearance of a Palpable Chest Wall Mass Secondary to Macrocystic Lymphatic Malformation: A Case Report. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020235. [PMID: 36832364 PMCID: PMC9954574 DOI: 10.3390/children10020235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Chest wall lymphatic malformations are rare and can pose a diagnostic dilemma, particularly if they present abruptly. This case report describes a 15-month-old male toddler presenting with a left lateral chest mass. Histopathology of the surgically excised mass confirmed the diagnosis of a macrocystic lymphatic malformation. Furthermore, there was no recurrence of the lesion in the two-year follow-up period.
Collapse
Affiliation(s)
- Hend Alkwai
- Department of Pediatrics, College of Medicine, University of Ha’il, Hail 55255, Saudi Arabia
- Correspondence:
| | - Hala Alkwai
- Department of Pulmonology, King Abdullah Specialized Children’s Hospital, Riyadh 14611, Saudi Arabia
| | - Mohammed Al Namshan
- Department of Pediatric Surgery, King Abdullah Specialized Children’s Hospital, Riyadh 14611, Saudi Arabia
| |
Collapse
|
13
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR) Consortium, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O’Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: what's next in diagnostic testing for Mendelian conditions. ARXIV 2023:arXiv:2301.07363v1. [PMID: 36713248 PMCID: PMC9882576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order and emerging technologies, such as optical genome mapping and long-read DNA or RNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to a consortium such as GREGoR, which is focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H. Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M. Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Michael H. Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010 USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Philip M. Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emily E. Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emmanuèle C. Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
- Center for Genetics Medicine Research, Children’s National Research and Innovation Campus, Washington, DC, USA
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle WA 98195 USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | | | - Lea M. Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Stephen B. Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Jessica X. Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Matthew T. Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Seth I. Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children’s National Hospital, Washington, DC 20010 USA
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005 USA
| | - Danny E. Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|