1
|
Liu Y, Xu D, Xing X, Shen A, Jin X, Li S, Liu Z, Wang L, Huang Y. Lung-Targeting Perylenediimide Nanocomposites for Efficient Therapy of Idiopathic Pulmonary Fibrosis. NANO LETTERS 2024; 24:12701-12708. [PMID: 39331492 DOI: 10.1021/acs.nanolett.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Idiopathic pulmonary fibrosis, an idiopathic interstitial lung disease with high mortality, remains challenging to treat due to the lack of clinically approved lung-targeting drugs. Herein, we present PDIC-DPC, a perylenediimide derivative that exhibits superior lung-selective enrichment. PDIC-DPC forms nanocomposites with plasma proteins, including fibrinogen beta chain and vitronectin, which bind to pulmonary endothelial receptors for lung-specific accumulation. Moreover, PDIC-DPC significantly suppresses transforming growth factor beta1 and activates adenosine monophosphate-activated protein kinase. As a result, compared to existing therapeutic drugs, PDIC-DPC achieves superior therapeutic outcomes, evidenced by the lowest Ashcroft score, significantly improved pulmonary function, and an extended survival rate in a bleomycin-induced pulmonary fibrosis model. This study elucidates the lung-selective enrichment of assembled prodrug from biological perspectives and affords a platform enabling therapeutic efficiency on idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuting Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Damin Xu
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoyi Xing
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Anqi Shen
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Xinpeng Jin
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Shijiao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Kaminskas LM, Butcher NJ, Subasic CN, Kothapalli A, Haque S, Grace JL, Morsdorf A, Blanchfield JT, Whittaker AK, Quinn JF, Whittaker MR. Lipidated brush-PEG polymers as low molecular weight pulmonary drug delivery platforms. Expert Opin Drug Deliv 2024; 21:151-167. [PMID: 38248870 DOI: 10.1080/17425247.2024.2305116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Nanomedicines are being actively developed as inhalable drug delivery systems. However, there is a distinct utility in developing smaller polymeric systems that can bind albumin in the lungs. We therefore examined the pulmonary pharmacokinetic behavior of a series of lipidated brush-PEG (5 kDa) polymers conjugated to 1C2, 1C12 lipid or 2C12 lipids. METHODS The pulmonary pharmacokinetics, patterns of lung clearance and safety of polymers were examined in rats. Permeability through monolayers of primary human alveolar epithelia, small airway epithelia and lung microvascular endothelium were also investigated, along with lung mucus penetration and cell uptake. RESULTS Polymers showed similar pulmonary pharmacokinetic behavior and patterns of lung clearance, irrespective of lipid molecular weight and albumin binding capacity, with up to 30% of the dose absorbed from the lungs over 24 h. 1C12-PEG showed the greatest safety in the lungs. Based on its larger size, 2C12-PEG also showed the lowest mucus and cell membrane permeability of the three polymers. While albumin had no significant effect on membrane transport, the cell uptake of C12-conjugated PEGs were increased in alveolar epithelial cells. CONCLUSION Lipidated brush-PEG polymers composed of 1C12 lipid may provide a useful and novel alternative to large nanomaterials as inhalable drug delivery systems.
Collapse
Affiliation(s)
- Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | | | - Ashok Kothapalli
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Shadabul Haque
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - James L Grace
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Alexander Morsdorf
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Joanne T Blanchfield
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, University of Queensland, St Lucia, QLD, Australia
| | - John F Quinn
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|
3
|
Fu Y, Kong Y, Li X, Cheng D, Hou Y, Li Y, Li T, Xiao Y, Zhang Q, Rong R. Novel Pt(IV) prodrug self-assembled nanoparticles with enhanced blood circulation stability and improved antitumor capacity of oxaliplatin for cancer therapy. Drug Deliv 2023; 30:2171158. [PMID: 36744299 PMCID: PMC9904295 DOI: 10.1080/10717544.2023.2171158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pt(IV) compounds are regarded as prodrugs of active Pt(II) drugs (i.e. cisplatin, carboplatin, and oxaliplatin) and burgeoned as the most ideal candidates to substitute Pt(II) anticancer drugs with severe side effects. Nanoparticle drug delivery systems have been widely introduced to deliver Pt(IV) prodrugs more effectively and safely to tumors, but clinical outcomes were unpredictable owing to limited in vivo pharmacokinetics understanding. Herein, a novel Pt(IV) prodrug of oxaliplatin(OXA) was synthesized and prepared as self-assembled micellar nanoparticles(PEG-OXA NPs). In vitro, PEG-OXA NPs rapidly released biologically active OXA within 5 min in tumor cells while remaining extremely stable in whole blood or plasma. Importantly, the pharmacokinetic results showed that the AUC0-∞, and t1/2 values of PEG-OXA NPs were 1994 ± 117 h·µg/mL and 3.28 ± 0.28 h, respectively, which were much higher than that of free OXA solution (2.03 ± 0.55 h·µg/mL and 0.16 ± 0.07 h), indicating the longer drug circulation of PEG-OXA NPs in vivo. The altered pharmacokinetic behavior of PEG-OXA NPs remarkably contributed to improve antitumor efficacy, decrease systemic toxicity and increase tumor growth inhibition compared to free OXA. These findings establish that PEG-OXA NPs have the potential to offer a desirable self-delivery platform of platinum drugs for anticancer therapeutics.
Collapse
Affiliation(s)
- Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Ying Kong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Xiangping Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Dongfang Cheng
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Yuqian Hou
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Tongfang Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Yani Xiao
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Qiuyan Zhang
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China,CONTACT Qiuyan Zhang
| | - Rong Rong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China,Rong Rong
| |
Collapse
|
4
|
Dao NV, Ercole F, Li Y, Davis TP, Kaminskas LM, Sloan EK, Quinn JF, Whittaker MR. Nitroxide-functional PEGylated nanostars arrest cellular oxidative stress and exhibit preferential accumulation in co-cultured breast cancer cells. J Mater Chem B 2021; 9:7805-7820. [PMID: 34586131 DOI: 10.1039/d1tb00812a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The limited application of traditional antioxidants to reducing elevated levels of reactive oxygen species (ROS) is potentially due to their lack of stability and biocompatibility when tested in a biological milieu. For instance, the poor biological antioxidant performance of small molecular nitroxides arises from their limited diffusion across cell membranes and their significant side effects when applied at high doses. Herein, we describe the use of nanostructured carriers to improve the antioxidant activity of a typical nitroxide derivative, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). Polymers with star-shaped structures were synthesised and were further conjugated to TEMPO moieties via amide linkages. The TEMPO-loaded stars have small hydrodynamic sizes (<20 nm), and are better tolerated by cells than free TEMPO in a breast cancer-fibroblast co-culture, a system exhibiting elevated ROS levels. At a well-tolerated concentration, the polymer with the highest TEMPO-loading capacity successfully downregulated ROS production in co-cultured cells (a significant decrease of up to 50% vs. basal ROS levels), which was accompanied by a specific reduction in superoxide anion generation in the mitochondria. In contrast, the equivalent concentration of free TEMPO did not achieve the same outcome. Further investigation showed that the TEMPO-conjugated star polymers can be recycled inside the cells, thus providing longer term scavenging activity. Cell association studies demonstrated that the polymers can be taken up by both cell types in the co-culture, and are found to co-locate with the mitochondria. Interestingly the stars exhibited preferential mitochodria targeting in the co-cultured cancer cells compared to accompanying fibroblasts. The data suggest the potential of TEMPO-conjugated star polymers to arrest oxidative stress for various applications in cancer therapy.
Collapse
Affiliation(s)
- Nam V Dao
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Francesca Ercole
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Yuhuan Li
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Thomas P Davis
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.,Peter MacCallum Cancer Centre, Division of Surgery, Melbournem, VIC 3000, Australia
| | - John F Quinn
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Michael R Whittaker
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
5
|
Marasini N, Fu C, Fletcher NL, Subasic C, Er G, Mardon K, Thurecht KJ, Whittaker AK, Kaminskas LM. The Impact of Polymer Size and Cleavability on the Intravenous Pharmacokinetics of PEG-Based Hyperbranched Polymers in Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2452. [PMID: 33302413 PMCID: PMC7762536 DOI: 10.3390/nano10122452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022]
Abstract
A better understanding of the impact of molecular size and linkers is important for PEG-based hyperbranched polymers (HBPs) intended as tailored drug delivery vehicles. This study aimed to evaluate the effects of crosslinker chemistry (cleavable disulphide versus non-cleavable ethylene glycol methacrylate (EGDMA) linkers) and molecular weight within the expected size range for efficient renal elimination (22 vs. 48 kDa) on the intravenous pharmacokinetic and biodistribution properties of 89Zr-labelled HBPs in rats. All HBPs showed similar plasma pharmacokinetics over 72 h, despite differences in linker chemistry and size. A larger proportion of HBP with the cleavable linker was eliminated via the urine and faeces compared to a similar-sized HBP with the non-cleavable linker, while size had no impact on the proportion of the dose excreted. The higher molecular weight HBPs accumulated in organs of the mononuclear phagocyte system (liver and spleen) more avidly than the smaller HBP. These results suggest that HBPs within the 22 to 48 kDa size range show no differences in plasma pharmacokinetics, but distinct patterns of organ biodistribution and elimination are evident.
Collapse
Affiliation(s)
- Nirmal Marasini
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Queensland, Australia;
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Queensland, Australia; (C.F.); (N.L.F.); (G.E.); (K.J.T.); (A.K.W.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Nicholas L. Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Queensland, Australia; (C.F.); (N.L.F.); (G.E.); (K.J.T.); (A.K.W.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
- ARC Training Centre for innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
- Centre for Advance Imaging, The University of Queensland, St Lucia 4072, Queensland, Australia;
| | - Christopher Subasic
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Queensland, Australia;
| | - Gerald Er
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Queensland, Australia; (C.F.); (N.L.F.); (G.E.); (K.J.T.); (A.K.W.)
| | - Karine Mardon
- Centre for Advance Imaging, The University of Queensland, St Lucia 4072, Queensland, Australia;
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Queensland, Australia; (C.F.); (N.L.F.); (G.E.); (K.J.T.); (A.K.W.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
- ARC Training Centre for innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
- Centre for Advance Imaging, The University of Queensland, St Lucia 4072, Queensland, Australia;
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Queensland, Australia; (C.F.); (N.L.F.); (G.E.); (K.J.T.); (A.K.W.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Lisa M. Kaminskas
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Queensland, Australia;
| |
Collapse
|
6
|
Bayat N, McOrist N, Ariotti N, Lai M, Sia KC, Li Y, Grace JL, Quinn JF, Whittaker MR, Kavallaris M, Davis TP, Lock RB. Thiol-Reactive Star Polymers Functionalized with Short Ethoxy-Containing Moieties Exhibit Enhanced Uptake in Acute Lymphoblastic Leukemia Cells. Int J Nanomedicine 2019; 14:9795-9808. [PMID: 31853178 PMCID: PMC6914812 DOI: 10.2147/ijn.s220326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/16/2019] [Indexed: 01/27/2023] Open
Abstract
Purpose Directing nanoparticles to cancer cells without using antibodies is of great interest. Subtle changes to the surface chemistry of nanoparticles can significantly affect their biological fate, including their propensity to associate with different cell populations. For instance, nanoparticles functionalized with thiol-reactive groups can potentially enhance association with cells that over-express cell-surface thiol groups. The potential of such an approach for enhancing drug delivery for childhood acute lymphoblastic leukemia (ALL) cells has not been investigated. Herein, we investigate the impact of thiol-reactive star polymers on the cellular association and the mechanisms of uptake of the nanoparticles. Methods We prepared fluorescently labeled star polymers functionalized with an mPEG brush corona and pyridyl disulfide to examine how reactivity to exofacial thiols impacts cellular association with ALL cells. We also studied how variations to the mPEG brush composition could potentially be used as a secondary method for controlling the extent of cell association. Specifically, we examined how the inclusion of shorter diethylene glycol brush moieties into the nanoparticle corona could be used to further influence cell association. Results Star polymers incorporating both thiol-reactive and diethylene glycol brush moieties exhibited the highest cellular association, followed by those functionalized solely with thiol reactive groups compared to control nanoparticles in T and B pediatric ALL patient-derived xenografts harvested from the spleens and bone marrow of immunodeficient mice. Transfection of cells with an early endosomal marker and imaging with correlative light and electron microscopy confirmed cellular uptake. Endocytosis inhibitors revealed dynamin-dependent clathrin-mediated endocytosis as the main uptake pathway for all the star polymers. Conclusion Thiol-reactive star polymers having an mPEG brush corona that includes a proportion of diethylene glycol brush moieties represent a potential strategy for improved leukemia cell delivery.
Collapse
Affiliation(s)
- Narges Bayat
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Nathan McOrist
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Nicholas Ariotti
- Electron Microscope Unit, Mark Wainwright Analytical Centre, Chemical Sciences Building, University of New South Wales, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - May Lai
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Keith Cs Sia
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L Grace
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Maria Kavallaris
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Tumor Biology and Targeting Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Department of Chemistry, University of Warwick, Coventry, UK.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard B Lock
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Chen C, Guo X, Du J, Choi B, Tang H, Feng A, Thang SH. Synthesis of multifunctional miktoarm star polymers via an RGD peptide-based RAFT agent. Polym Chem 2019. [DOI: 10.1039/c8py01355a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A “grafting from” approach for facile access of multifunctional miktoarm star polymers containing peptide arms.
Collapse
Affiliation(s)
- Chao Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiaofeng Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jinhong Du
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Bonnie Choi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Houliang Tang
- Department of Chemistry
- Southern Methodist University
- Dallas
- USA
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - San H. Thang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
8
|
Yu SH, Patra M, Ferrari S, Ramirez Garcia P, Veldhuis NA, Kaminskas LM, Graham B, Quinn JF, Whittaker MR, Gasser G, Davis TP. Linker chemistry dictates the delivery of a phototoxic organometallic rhenium(i) complex to human cervical cancer cells from core crosslinked star polymer nanoparticles. J Mater Chem B 2018; 6:7805-7810. [PMID: 32255026 DOI: 10.1039/c8tb02464b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have investigated core-crosslinked star polymer nanoparticles designed with tunable release chemistries as potential nanocarriers for a photoactive Re(i) organometallic complex. The nanoparticles consisted of a brush poly(oligo-ethylene glycol)methyl ether acrylate (POEGA) corona and a cross-linked core of non-biodegradable N,N'-methylenebis(acrylamide) (MBAA) and either pentafluorophenyl acrylate (PFPA), 3-vinyl benzaldehyde (VBA) or diacetone acrylamide (DAAM). Each star was modified with an amine functionalized photodynamic agent (i.e. a rhenium(i) organometallic complex) resulting in the formation of either a stable amide bond (POEGA-star-PFPA), or hydrolytically labile aldimine (POEGA-star-VBA) or ketimine bonds (POEGA-star-DAAM). These materials revealed linker dependent photo- and cytotoxicity when tested in vitro against non-cancerous lung fibroblast MRC-5 cells and HeLa human cervical cancer cells: the toxicity results correlated with final intracellular Re concentrations.
Collapse
Affiliation(s)
- Sul Hwa Yu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rodrigues DB, Oliveira JM, Santos TC, Reis RL. Dendrimers: Breaking the paradigm of current musculoskeletal autoimmune therapies. J Tissue Eng Regen Med 2018; 12:e1796-e1812. [DOI: 10.1002/term.2597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel B. Rodrigues
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho Avepark 4805‐017 Barco Guimarães Portugal
| | - Tírcia C. Santos
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho Avepark 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
10
|
Esser L, Lengkeek NA, Moffat BA, Vu MN, Greguric I, Quinn JF, Davis TP, Whittaker MR. A tunable one-pot three-component synthesis of an125I and Gd-labelled star polymer nanoparticle for hybrid imaging with MRI and nuclear medicine. Polym Chem 2018. [DOI: 10.1039/c8py00621k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bimodal radioiodine/Gd labelled polymeric nanoparticles prepared using a versatile one-step three-component click reaction.
Collapse
Affiliation(s)
- Lars Esser
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Nigel A. Lengkeek
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Kirrawee DC
- Australia
| | | | - Mai N. Vu
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Ivan Greguric
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Kirrawee DC
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| |
Collapse
|
11
|
Yang DP, Oo MNNL, Deen GR, Li Z, Loh XJ. Nano-Star-Shaped Polymers for Drug Delivery Applications. Macromol Rapid Commun 2017; 38. [PMID: 28895248 DOI: 10.1002/marc.201700410] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 06/28/2017] [Indexed: 12/19/2022]
Abstract
With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates.
Collapse
Affiliation(s)
- Da-Peng Yang
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Ma Nwe Nwe Linn Oo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive Singapore, Singapore, 637459, Singapore
| | - Gulam Roshan Deen
- Soft Materials Laboratory, Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637459, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|
12
|
Marasini N, Haque S, Kaminskas LM. Polymer-drug conjugates as inhalable drug delivery systems: A review. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Glass JJ, Li Y, De Rose R, Johnston APR, Czuba EI, Khor SY, Quinn JF, Whittaker MR, Davis TP, Kent SJ. Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood Components. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12182-12194. [PMID: 28338321 DOI: 10.1021/acsami.6b15942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Directing nanoparticles to specific cell types using nonantibody-based methods is of increasing interest. Thiol-reactive nanoparticles can enhance the efficiency of cargo delivery into specific cells through interactions with cell-surface proteins. However, studies to date using this technique have been largely limited to immortalized cell lines or rodents, and the utility of this technology on primary human cells is unknown. Herein, we used RAFT polymerization to prepare pyridyl disulfide (PDS)-functionalized star polymers with a methoxy-poly(ethylene glycol) brush corona and a fluorescently labeled cross-linked core using an arm-first method. PDS star polymers were examined for their interaction with primary human blood components: six separate white blood cell subsets, as well as red blood cells and platelets. Compared with control star polymers, thiol-reactive nanoparticles displayed enhanced association with white blood cells at 37 °C, particularly the phagocytic monocyte, granulocyte, and dendritic cell subsets. Platelets associated with more PDS than control nanoparticles at both 37 °C and on ice, but they were not activated in the duration examined. Association with red blood cells was minor but still enhanced with PDS nanoparticles. Thiol-reactive nanoparticles represent a useful strategy to target primary human immune cell subsets for improved nanoparticle delivery.
Collapse
Affiliation(s)
- Joshua J Glass
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Yang Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Robert De Rose
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Angus P R Johnston
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Ewa I Czuba
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Song Yang Khor
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- Department of Chemistry, University of Warwick , Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Victoria 3010, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University , Melbourne, Victoria 3800, Australia
| |
Collapse
|
14
|
Hu J, Qiao R, Whittaker MR, Quinn JF, Davis TP. Synthesis of Star Polymers by RAFT Polymerization as Versatile Nanoparticles for Biomedical Applications. Aust J Chem 2017. [DOI: 10.1071/ch17391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The precise control of polymer chain architecture has been made possible by developments in polymer synthesis and conjugation chemistry. In particular, the synthesis of polymers in which at least three linear polymeric chains (or arms) are tethered to a central core has yielded a useful category of branched architecture, so-called star polymers. Fabrication of star polymers has traditionally been achieved using either a core-first technique or an arm-first approach. Recently, the ability to couple polymeric chain precursors onto a functionalized core via highly efficient coupling chemistry has provided a powerful new methodology for star synthesis. Star syntheses can be implemented using any of the living polymerization techniques using ionic or living radical intermediates. Consequently, there are innumerable routes to fabricate star polymers with varying chemical composition and arm numbers. In comparison with their linear counterparts, star polymers have unique characteristics such as low viscosity in solution, prolonged blood circulation, and high accumulation in tumour regions. These advantages mean that, far beyond their traditional application as rheology control agents, star polymers may also be useful in the medical and pharmaceutical sciences. In this account, we discuss recent advances made in our laboratory focused on star polymer research ranging from improvements in synthesis through to novel applications of the product materials. Specifically, we examine the core-first and arm-first preparation of stars using reversible addition–fragmentation chain transfer (RAFT) polymerization. Further, we also discuss several biomedical applications of the resulting star polymers, particularly those made by the arm-first protocol. Emphasis is given to applications in the emerging area of nanomedicine, in particular to the use of star polymers for controlled delivery of chemotherapeutic agents, protein inhibitors, signalling molecules, and siRNA. Finally, we examine possible future developments for the technology and suggest the further work required to enable clinical applications of these interesting materials.
Collapse
|
15
|
Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG. Star Polymers. Chem Rev 2016; 116:6743-836. [PMID: 27299693 DOI: 10.1021/acs.chemrev.6b00008] [Citation(s) in RCA: 553] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.
Collapse
Affiliation(s)
- Jing M Ren
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Thomas G McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Edgar H H Wong
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 2000444, People's Republic of China
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|